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The development of a seizure relies on two factors. One is the existence of an 
overexcitable neuronal network and the other is a trigger that switches normal 
activity of that network into a paroxysmal state. While mechanisms of local 
overexcitation have been the focus of many studies, the process of triggering 
remains poorly understood. We suggest that, apart from the known exteroceptive 
sources of reflex epilepsy such as visual, auditory or olfactory signals, there is a 
range of interoceptive triggers, which are relevant for seizure development in 
Temporal Lobe Epilepsy (TLE). The hypothesis proposed here aims to explain the 
prevalence of epileptic activity in sleep and in drowsiness states and to provide a 
detailed mechanism of seizures triggered by interoceptive signals.

KEYWORDS

vagus, epilepsy, circadian rhythm, Hippocampus, sleep, ipRGC (intrinsically 
photosensitive retinal ganglion cells)

Introduction

Temporal Lobe Epilepsy (TLE) is the most frequent form of focal epilepsy (60–70%) and 
constitutes around 24% of all cases of epilepsy (Semah et al., 1998, reviewed by Téllez-Zenteno 
and Hernández-Ronquillo, 2012). Among TLEs, mesial temporal lobe epilepsy (mTLE) is the 
most common form. It is a type of focal epilepsy originating from the medial part of the 
hippocampus, amygdala or the entorhinal cortex and relies on oversynchronization of activity 
of neuronal circuits in these areas (Diehl and Duncan, 2015). However, mTLE is likely a system 
disorder with network alterations due to structural and/or functional abnormalities in 
neocortical areas, especially the limbic, lateral temporal and frontal cortices and the thalamus 
(Bernhardt et al., 2013). TLE has also the highest rate of pharmaco-resistance (75–89%), only 
a moderate rate of successful surgical treatment at 65–70% (Sperling et al., 2005; Fanselow and 
Dong, 2010; Téllez-Zenteno and Hernández-Ronquillo, 2012) and an estimated Standard 
Mortality ratio of treatment-resistant epilepsy at 2.54 (Mohanraj et al., 2006). Although local 
neuronal changes associated with TLE have been extensively studied, much less is known 
about the triggers of seizure activity and mechanisms related to that triggering. Since 
frequency, severity, prodromal symptoms and patterns of occurrence across sleep–wake cycle 
vary between patients (Karoly et  al., 2017, 2018; Lunardi et  al., 2016; Niu et  al., 2025), 
understanding the mechanisms that trigger seizures in TLE can provide substantial advantage 
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for their prediction and treatment. Here we propose a scheme that 
describes a nexus between circadian rhythm, visceral inputs to the 
brain and the hippocampus that provides a fundamental insight into 
triggering of seizures in TLE and the role that stimulation of the vagus 
nerve can potentially fill in the management of TLE.

Vagus nerve stimulation: an 
unorthodox treatment for TLE

Vagus Nerve Stimulation (VNS) is a treatment option that is 
being increasingly adopted for pharmaco-resistant cases of 
epilepsy (for recent reviews, Austelle et al., 2024; Clifford et al., 
2024; Salama et al., 2024). The vagus nerve carries signals between 
the internal (visceral) organs, such as the lungs, heart and intra-
abdominal structures and the brain. The information carried by 
vagal afferents is necessary for ‘interoception’, which helps the 
brain to process the internal signals that are related to our 
physiological state in both subconscious and conscious states 
(Craig, 2002; Quadt et al., 2018; Khalsa et al., 2018; Berntson and 
Khalsa, 2021; Quigley et  al., 2021; Feldman et  al., 2024). On 
average, about two thirds of patients have fewer seizures following 
VNS, though one third do not benefit from it (Yap et al., 2020; 
Elliott, 2011; Englot et al., 2011). The side effects are generally 
mild and often decrease over time or after optimizing the 
stimulation parameters individually for each patient (Sackeim 
et al., 2001).

The antiepileptic effects of VNS were initially attributed to 
widespread cortical desynchronization (Zanchetti et al., 1952), but 
both synchronization and desynchronization have been observed with 
VNS in animal studies (Chase et  al., 1966, 1967). EEG studies in 
human patients have also reported variable outcomes (Vonck and 
Larsen, 2018). A hypothesis involving modulation of noradrenaline 
pathways (Vonck and Larsen, 2018) has also been met with criticism. 
The slow speed of the development of noradrenaline modulation 
cannot explain the immediate effects of VNS (Dorr and Debonnel, 
2006), although such modulation can potentially contribute to the 
increase of the effectiveness of VNS over time. Another confound is 
the lack of VNS-associated sleep disturbances usually caused by 
excessive noradrenaline levels. Although some VNS parameters can 
provoke obstructive sleep apnoea, it has been reported to generally 
improve sleep architecture to the extent that VNS has been proposed 
as an insomnia treatment (Wu et al., 2022). The slow effects of VNS in 
TLE might also be related to normalization of hippocampal activity 
from neuronal development and growth as well as changes in 
sensitivity of hippocampal neurons to GABA. The latter may 
be because GABAA receptor density in the hippocampus increases in 
patients responsive to VNS (Groves and Brown, 2005; Marrosu et al., 
2003). VNS can also affect cytokine production, potentially controlling 
inflammation during long-term application (Majoie et al., 2011).

In summary, an explanation for the fast-acting component of 
vagal stimulation is lacking and the slow effects of VNS are also poorly 
understood. Thus, the method is currently used largely on an empirical 
basis (Yap et al., 2020; Groves and Brown, 2005). Such uncertainty 
means the outcome of the intervention cannot be predicted. This is an 
important issue, since not all patients benefit from VNS and so its 
effectiveness can only be established after the implantation and not 
prognostically (Yap et al., 2020).

Novel model for action of VNS in TLE

We have recently proposed a new framework describing how the 
antiepileptic effect of VNS may arise from interruption of the resonant 
paroxysmal activity triggered by rhythmical interoceptive signaling 
(Pigarev et al., 2020). In the present paper, we discuss specifically the 
applicability of that hypothesis to TLE and TLE-comorbid conditions, 
with an emphasis on hippocampal connectivity, including signals 
arising from sensory systems.

Since approximately 80% of vagal fibers are afferent, VNS is 
expected to activate multiple brain areas due to the broad 
representation of the vagal input in subcortical and cortical structures; 
e.g., nucleus of the solitary tract (NTS), hippocampus, hypothalamus, 
thalamus and amygdala, as well as multiple cortical areas such as the 
insular, orbitofrontal, medial prefrontal and cingulate cortices and 
some somatosensory and motor cortical areas (Saper, 2002; Cechetto 
and Saper, 1987; Neafsey, 1990; Ongür et al., 1998; Ongür and Price, 
2000; Nieuwenhuys, 2012; Azzalini et al., 2019). The most important 
brain regions involved in visceral sensation and regulation of visceral 
functions are shown in Figure 1.

Hippocampal functional connectivity and 
epilepsy—in sleep and when awake

Of the many brain areas potentially influenced by VNS, the 
hippocampus is the most seizure-susceptible structure in the brain 
(Green and Scheetz, 1964) and so it warrants a close examination of 
its afferent and efferent projections. However, the susceptibility for 
seizures is not uniformly distributed across the hippocampus but 

FIGURE 1

Schematic depiction of the brain structures known to be involved in 
viscerosensory and/or visceromotoric functions. The upper panel 
demonstrates medial view of the brain, and the lower panel shows 
lateral view. ipIGC, intrinsically photosensitive retinal ganglion cells; 
S, somatosensory cortical areas; mPFC, medial prefrontal cortex; 
OFC, orbitofrontal cortex; Ci, cingulate cortex; In, insula; Th, 
thalamus; Hip, hippocampus; Hyp, hypothalamus; Ms, medial 
septum; Pb, parabrachial nucleus; NTS, nucleus tractus solitarius.
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increases along its dorso-ventral axis in animals (corresponding to 
posterior-to-anterior axis in humans), as consistently reported in 
kindling studies in vitro and in vivo (Bragdon et al., 1986; Elul, 1964, 
Strange et al., 2014; Isaeva et al., 2015; Akaike et al., 2001). There is 
also a matching profile of GABAA receptor distribution along the same 
axis (Sotiriou et al., 2005). Human patients suffering from TLE also 
have greater structural atrophy in the anterior parts of the 
hippocampus in comparison to the posterior parts (Barnett et al., 
2019). Furthermore, dorsal and ventral parts of the hippocampus have 
distinctly different connectivity with subcortical and cortical areas 
(Strange et al., 2014; Fanselow and Dong, 2010).

There is a specific smoothly changing pattern of connections 
along the above axis, which supports different goal-oriented behaviors. 
Dorsal hippocampus is engaged in cognitive functions including 
memory and spatial navigation, while ventral hippocampus is involved 
in emotional and affective behavior, stress-related responses and 
autonomic regulation. For example, lesions of dorsal hippocampus in 
rodents impair spatial memory (Moser et al., 1995), while ventral 
hippocampus lesions produce changes in emotional behavior and in 
reactions to stress (Kishi et al., 1990). In both rodents and primates, 
the dorsal hippocampus is connected with cortical and subcortical 
structures that form a circuit organizing exploratory and foraging 
activities (Swanson, 2000).

Ventral hippocampus connects extensively with structures of 
visceral and emotional control: amygdala, insular cortex, infralimbic 
and prelimbic cortices and the areas of hypothalamus that control 
autonomic, endocrine and somatomotor activities supporting 
behaviors with strong emotional components, such as feeding, 
reproduction and defense (Dong and Swanson, 2006; Herman et al., 
2005; Kishi et al., 2000; Petrovich et al., 2001; Fanselow and Dong, 
2010; Castle et  al., 2005). The outermost ventral portions of 
hippocampal CA1 and subiculum project to hypothalamic 
neuroendocrine motor neurons via lateral septum and the bed nucleus 
of the stria terminalis, which is an important relay for hypothalamic–
pituitary–adrenal axis of stress response (Dong and Swanson, 2006; 
Fanselow and Dong, 2010; Herman et al., 2016). Ventral hippocampus 
also projects to the shell of nucleus accumbens and shows responses 
related to expectation of food or to receiving food reward (Vidyasagar 
et al., 1991; Salzman et al., 1993). This emotion-related connectivity 
pattern of the ventral hippocampus may correspond to the high 
comorbidity of TLE and depression (Hermann et al., 2000). A recent 
study has highlighted both the high prevalence of depression in 
epilepsy and its persistence despite therapy with antidepressants 
(Ongchuan Martin et al., 2022). Human data regarding hippocampal 
dysfunction and volume loss also demonstrate association with other 
psychiatric conditions having an affective component, such as anxiety, 
bipolar and posttraumatic stress disorders (Frey et al., 2007; Bonne 
et al., 2008). It is notable that VNS was confirmed to be effective in 
treating depression and approved for use (reviewed by Nemeroff et al., 
2006). This suggests the possible commonality of the VNS mechanism 
in epilepsy and depression.

Ventral hippocampus also possesses connections with the regions 
of hypothalamus that regulate the sleep–wake cycle, namely the 
suprachiasmatic and dorsomedial hypothalamic nuclei (Cenquizca 
and Swanson, 2007; Kishi et al., 2000; Krout et al., 2002; Saper et al., 
2005). Interestingly, there are several factors related to sleep that could 
potentially play a direct role in TLE. The intrinsically photosensitive 
retinal ganglion cells (ipRGCs), a class of RGCs containing the 

photosensitive pigment, melanopsin, have a fundamental function in 
circadian rhythm in causing the release of melatonin in the dark 
through a separate pathway that does not contribute to image 
formation (Mure, 2021). This is via their projection to the 
suprachiasmatic nucleus (SCN), which in turn can send these signals 
on to the hippocampus through the known connections between the 
SCN and the medial septum (Ruby et al., 2008, 2013; Snider et al., 
2018) and between the medial septum and hippocampus (Castle 
et al., 2005).

Intrinsically photosensitive retinal ganglion cells (ipRGCs) have 
their peak sensitivity in the blue part of the light spectrum, which is 
consistent with the seizure-preventing effects of blue light in 
photosensitive epilepsy (reviewed by Fisher et al., 2022). The role of 
the SCN was recently highlighted by Liang et  al. (2024) who 
demonstrated that either SCN lesions or knocking out a clock gene 
Bmal1 in the SCN led to an increase of seizure frequency in a mice 
model, as well as leading to morphological damage and alterations of 
GABAergic signaling in hippocampus. Core clock genes such as 
CLOCK, Bmal1, PER, and CRY regulate circadian rhythms, which 
influence the timing and occurrence of seizures in many types of 
epilepsy (Li et al., 2017; Castro et al., 2018; Jin et al., 2020; Kreitlow 
et al., 2022; Niu et al., 2025). In kainic acid-induced temporal lobe 
seizures, CRY1 and CLOCK were found to be dysregulated in the 
hippocampus (Casillas-Espinosa et al., 2023; Matos et al., 2020). The 
SCN, as the central circadian pacemaker, coordinates the expression 
of clock genes throughout the body, including in brain regions prone 
to seizures. This regulation modifies neuronal excitability in a time-
dependent manner, potentially affecting seizure susceptibility 
(Gerstner et al., 2012; Chan and Liu, 2021).

Although the hippocampus has its own mechanisms of circadian 
regulation that influence memory functioning over a sleep–wake 
cycle, the suprachiasmatic nucleus is known to function as a “master 
clock,” providing phase setting of circadian rhythms of many 
structures throughout the brain (Mohawk et al., 2012), including in 
the hippocampus (Snider et al., 2018). This is conducted via both 
endocrinal and neuronal pathways. The main endocrine mechanism 
is the regulation of corticosterone production of the adrenal gland by 
the SCN and the dependence of hippocampal circadian phase on 
corticosterone levels. Cortisol levels have been linked to both circadian 
and ultradian (i.e., recurrent periods within a day, as during sleep) 
rhythmicities (Niu et  al., 2025). The neural pathway regulating 
circadian phase of the hippocampus connects the SCN with 
hippocampus via the medial septum, as described earlier. This 
ultimately modulates the balance of excitation and inhibition in the 
hippocampus, potentially altering neural activity and synaptic 
plasticity (Cirelli, 2013; Wu et  al., 2022). Medial septum receives 
inhibitory GABA-ergic signals from the SCN during subjective night 
phase (Ruby et al., 2008, 2013; Snider et al., 2018). In the absence of 
cholinergic support from the inhibited septal areas, the hippocampus 
switches from tonic to phasic type from its own local GABA-
dependent inhibition (Wu et  al., 2022). Such reduction of tonic 
GABA-ergic inhibition and increase of phasic inhibition is known to 
support an oscillatory type of neuronal activity (Farrant and Nusser, 
2005), which is typical during slow wave sleep.

Notably, vagal input into the hippocampus is also transmitted via 
the medial septum (Castle et  al., 2005; Suarez et  al., 2018). This 
pathway thus links the major brainstem input area receiving vagal 
afferents, namely the nucleus of the solitary tract (NTS), to the 
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hippocampus. We hypothesize that a confluence of signals during 
sleep can contribute to increased visceral oscillatory input to the 
hippocampus during sleep. We  suggest that medial septum is a 
structure that provides gating of the vagal inputs based on the 
information coming from the SCN, increasing the strength of vagal 
influence during the night when it is dark and attenuating it 
during daytime.

Another brain area involved in regulation of hippocampal activity 
and in interoception is the locus coeruleus (LC), the main 
noradrenergic center of the brain. LC receives input from the vagus 
nerve via the NTS and in turn sends projections to various brain 
regions, including the hippocampus, amygdala, thalamus and 
neocortical areas and is known to be  involved in processing and 
modulating interoceptive information (Tsetsenis et al., 2023; Fornai 
et al., 2011).

LC activation has been shown to modulate hippocampal synaptic 
plasticity. Stimulation of the LC facilitates long-term depression (LTD) 
in the dentate gyrus of the hippocampus, which is dependent on 
β-adrenergic receptors (Lemon et al., 2009). This LC-induced LTD 
may play a role in selecting salient information for subsequent 
synaptic processing in the hippocampus (Lemon et al., 2009). Since 
many interoceptive signals are of importance to the animal’s survival, 
they are likely to be salient on many occasions. Furthermore, VNS 
activates the NTS, which in turn activates LC neurons, promoting the 
release of noradrenaline throughout the brain including the 
hippocampus and the potential induction of long-term plastic changes 
such as those observed after prolonged VNS application (Fornai et al., 
2011). LC can contribute to neuroplastic changes in the hippocampus 
and the control of arousal in it (Berridge and Foote, 1991). With the 
emerging view that epileptogenesis may involve the disturbance of 
normal NREM sleep-related homeostatic plasticity (Halász et  al., 
2019), neuroplasticity has become an important contemporary target 
for anti-seizure treatments (Asim et al., 2024a, b; Ma et al., 2024; Waris 
et al., 2024),

We have described previously increased propagation of visceral 
information to various cortical areas during sleep (Pigarev, 1994; 
Pigarev et al., 2013; Pigarev and Pigareva, 2013) and more recently 
we have also reported a striking increase in the responsiveness of cells 
in the insula to visceral stimulation during sleep (Levichkina et al., 
2021) as well as a dependency of hippocampal synchronization to 
visceral signals on the state of vigilance (Vidyasagar et  al., 2022). 
Gastric activity, which is communicated to the brain by vagal afferents, 
is also partly synchronized with the activity during resting state in 
many areas of the brain including the limbic system (Rebollo et al., 
2018; Cao et al., 2022). It has also been recently demonstrated that 
shorter sleep duration in humans is associated with increased 
sympathetic activity, thus contributing to increased risk of 
hypertension and cardiovascular disease in people with shortened 
sleep (Tai et al., 2023). Rembado et al. (2021) demonstrated substantial 
increase of VNS responses during slow wave sleep (SWS) in multiple 
cortical areas in primates. This indicates that there are more 
pronounced vagal inputs during sleep in comparison to waking hours. 
The disturbance of such inputs caused by poor sleep might be the 
source of comorbidities between shortened sleep and cardiovascular 
diseases (Forshaw et al., 2022; Tai et al., 2023).

One cause for the increased visceral afferent signals during sleep 
may itself be due to increased parasympathetic stimulation of the 
internal organs from the vagal complex, which, in turn, receives a 

significant modulation from the suprachiasmatic nucleus (Ferini-
Strambi and Smirne, 1997; Mutoh et  al., 2003; Buijs et  al., 2001; 
Cabiddu et al., 2012; De Zambotti et al., 2018; Karemaker, 2022). The 
light related changes in autonomic regulation are known to 
be  pronounced and are mediated through the SCN, since SCN 
ablation aborts the autonomic responses to light (Mutoh et al., 2003). 
Thus, the changes in ipRGC signals from the eye in the sleep/wake 
cycle may be modulating the circadian signals to the vagal complex 
via the SCN.

As described above, there may be a number of ways in which the 
likelihood of seizures happening during sleep increases. If the 
modulation of visual signals between day and night has a significant 
influence on triggering TLE, it has significant implications for 
preventing seizures. The above-described link between visual system 
and epileptogenesis may also be a critical area for future investigations.

Paroxysmal activity during sleep and TLE

The association between slow wave activity and epileptic 
discharges and the possibility that they may share the same 
mechanisms have been highlighted by Beenhakker and Huguenard 
(2009). There is a strong prevalence of paroxysmal activity during 
SWS and in drowsy states in contrast to wakefulness and 
REM. Roughly half of all seizures occur during SWS or drowsy states 
despite these states occupying less than a third of the whole sleep–
wake cycle of 24 hours (e.g., Shouse et al., 1996; Herman et al., 2001; 
Dinner, 2002; Combi et al., 2004; Pavlova et al., 2004; Hofstra and de 
Weerd, 2009; Chokroverty and Nobili, 2017). Temporal lobe seizures 
occur more frequently during drowsiness and early stages of sleep, 
becoming less frequent during REM sleep (Herman et  al., 2001). 
Furthermore, although seizures in TLE occur at equal frequency in 
wakefulness and sleep, as many as 75% of drug-resistant patients suffer 
from daytime sleepiness, reporting more frequent naps during 
daytime (Zanzmera et  al., 2012). Thus, correct estimation of the 
seizure frequencies as per state of vigilance is problematic in TLE 
patients. Focal epilepsy seems to be  provoked by sleep and sleep 
deprivation leads to hyperexcitability of hippocampal networks. SWS 
predisposes to the development of interictal epileptiform discharges 
in TLE and to generalization of seizure activity (for a systematic 
review see Garg et al., 2022). The burst-firing mode of SWS, which 
normally produces sleep spindles, can turn into an epileptic working 
mode in mTLE (Halász and Szűcs, 2020). In mTLE, there is evidence 
for local wake slow waves (LoWS) that share key features with slow 
waves in sleep (Sheybani et  al., 2023). The hypersynchrony and 
interictal spikes present during SWS may facilitate the onset or spread 
of partial seizures in mTLE (Sammaritano et  al., 1991; Malow 
et al., 1998).

TLE often shows high amplitude spikes lasting for 50–100 ms, 
followed by a slow wave lasting for 200–500 ms. Such events are 
common in SWS, when they propagate to other areas more easily due 
to the increased slow wave synchronization (Mendes et al., 2019). 
Another stereotypical activity is a “sharp wave-ripple” complex 
consisting of a ~ 100 ms wave followed by a high frequency ripple, 
initiated by synchronized activity of CA3 pyramidal neurons. The 
sharp wave-ripples (SPW-Rs) in the hippocampus occurring during 
SWS are known to be essential for memory processing and synaptic 
plasticity. However, an increase of the ripple frequency potentially 
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transform the SPW-Rs into epileptic spikes, thus causing the 
characteristic “fast ripples” in epilepsy (Staba et al., 2007; Maier and 
Kempter, 2017). Recent studies have demonstrated the mechanism of 
the natural ripple control during sleep. It involves cholecystokinin-
expressing basket cells in the hippocampus (Karaba et al., 2024; Amin, 
2024). Cholecystokinin (CCK) is known to increase neuronal activity 
in the hippocampus (Asim et  al., 2024a). Furthermore, in the 
hippocampus, CCK immunoreactivity has been found to coexist with 
GABA (Somogyi et al., 1984) and CCK-induced hypersensitivity in 
the auditory system has been linked to sound-triggered seizures 
(Fedotova et al., 2021). CCK receptors have extensive presence in the 
brain, including hippocampus, amygdala and the cortex. They 
modulate both GABA and glutamatergic systems and affect 
paroxysmal activity (Asim et  al., 2024a, b). CCK enhances the 
inhibitory tone provided by hippocampal GABAergic neurons by 
increasing GABA release (Miller et al., 1997). Such modulation of 
GABAergic activity by CCK may contribute to sleep regulation and 
hippocampal slow wave activity, as GABAergic neurons play a critical 
role in promoting SWS (Saper and Fuller, 2017) and in regulation of 
hippocampal oscillatory behavior (Földy et al., 2007; Whissell et al., 
2015; Klausberger et al., 2004).

Synchronous activity of hippocampal CA3 cells is also inhibited 
by adenosine, which builds up during waking hours and whose levels 
drop by at least 20% during SWS in comparison to wakefulness 
(Basheer et al., 2004). This increases the probability of CA3 neurons 
to ovesynchronize during SWS, since both ripples and fast ripples 
occur mostly during sleep.

Visceral triggers of hippocampal 
paroxysmal activity

The question now arises as to what may facilitate the slow wave 
oversynchronization that is expected to drive susceptible ventral 
hippocampal circuits into paroxysmal activity. A highly plausible 
candidate that we propose is the afferent rhythmic signaling coming 
from visceral systems. Breathing, heart rate, gastric and intestinal 
activities are all rhythmic. Hippocampal breathing rhythm is a 
particularly well-known phenomenon and the hippocampal sharp 
wave-ripple complex can be entrained by respiration (Liu et al., 2017; 
Lockmann et al., 2016; Radna and MacLean, 1981; Bordoni et al., 
2018). This breathing-associated rhythmic activity is also present in 
prefrontal cortex, especially in areas connected with the olfactory 
system. This provides a ground for synchronization of large brain 
networks by breathing due to their extensive connections to the 
hippocampus. Frequency of the hippocampal breathing rhythm is 
different in different species, with the one reported in human epileptic 
patients being around 0.16–0.33 Hz (Zelano et al., 2016) while, in 
smaller animals, this rhythm is faster and can be mistaken for delta or 
theta activity (Lockmann et al., 2016). In a study on the relationship 
between visceral events such as heart rate and breathing with 
hippocampal cell responses in human patients, a large proportion of 
neurons in hippocampus and amygdala were found to either 
synchronize with the heart rate itself (20%) or respond to changes in 
heart rate (23%), in addition to 15% of cells being synchronized to the 
respiratory period (Frysinger and Harper, 1989). Neuronal responses 
associated with cardiac rhythm were studied in human subjects by 
Kim et al. (2019), who confirmed their presence during the resting 

state in hippocampus, parahippocampal cortical areas, amygdala, and 
the cingulate cortex.

Our framework is consistent with the many studies that have 
reported comorbidities between epilepsy and cardiac and respiratory 
illnesses (e.g., Doherty et  al., 2022; Gaitatzis et  al., 2004). 
Cardiovascular disorders which can potentially cause abnormal 
rhythms such as atrial fibrillation and myocardial infarction show 
significant comorbidity with epilepsy (Doherty et  al., 2022). 
Respiratory rhythm is of particular interest due to its connection to 
Sudden Unexpected Death in Epilepsy (SUDEP), which 
predominantly occurs in sleep (Purnell et al., 2018; Niu et al., 2025). 
There is a strong association between epilepsy and sleep-related 
respiratory conditions such as obstructive and central sleep apnoeae. 
Obstructive sleep apnoea (OSA) occurs in 10% of adult epilepsy 
patients, 20% of children with epilepsy and up to 30% of drug-resistant 
epilepsy cases (Manni and Terzaghi, 2010; Zanzmera et  al., 2012; 
Sivathamboo et al., 2019), while treatment with continuous positive 
airway pressure (CPAP) has been shown to improve seizure control in 
some cases (Malow et al., 2008). Patients with TLE have been reported 
to have a higher risk of obstructive sleep apnoea as well (Yildiz et al., 
2015). However, the most severe comorbidity exists between TLE and 
central sleep apnoea, particularly ictal central apnoea (ICA). ICA has 
a higher prevalence in TLE compared to extratemporal epilepsy. It was 
observed in 36.9% of seizures and 43.2% of patients with focal 
epilepsy, all of whom had temporal lobe involvement (Lacuey et al., 
2018; Lacuey et al., 2019; Vilella et al., 2019). In a study of patients 
with mTLE, the incidence of ICA was reported to be as high as 68.7% 
(Vilella et al., 2019). Thus, the association between TLE and central 
apnoea appears to be often related to the involvement of temporal lobe 
structures in respiratory control. There is also comorbidity between 
bronchial asthma and epilepsy. However, it varies across studies, 
ranging between 9 and 13.4% (Gaitatzis et al., 2004; Téllez-Zenteno 
et  al., 2005; Chiang et  al., 2018; Doherty et  al., 2022). It is also 
interesting that, at 22%, the condition having the highest comorbidity 
with epilepsy is the group of anxiety disorders (Doherty et al., 2022). 
A typical and common symptom in anxiety disorders is 
hyperventilation. It is notable that hyperventilation, used as an 
activation method to provoke interictal discharges and seizures during 
video-EEG monitoring of epilepsy patients is more effective in 
temporal lobe patients (Guaranha et al., 2005).

When the activity in those with TLE falls roughly into the delta 
frequency range and seems to be correlated with cardiac activity, it is 
possible that oversynchronisation may lead to epileptic seizures. 
However, this raises a few issues: (i) In smaller animals, which usually 
tend to have faster heart rates, higher frequency ranges would 
be expected to become oversynchronised, which may not be the case. 
(ii) In the over 50% of the cases where no correlation with cardiac or 
breathing rhythm is seen, is there another rhythmic activity that could 
provide the trigger for seizures?

The above leads to the possibility that rhythmic signals from 
abdominal viscera may set off an over-synchronization. Hippocampus 
is not only known to receive vagal inputs as described earlier, but it is 
also engaged in organization of feeding behavior and has been shown 
to receive signals from the gastrointestinal tract, with neurons in the 
macaque hippocampus and parahippocampus showing responses 
related to food reward (Vidyasagar et al., 1991; Tamura et al., 1991; 
Salzman et al., 1993). Positron Emission Tomography (PET) studies 
in humans have also revealed hippocampal responses to gastric 
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stimulation (Wang et al., 2006). We have recently reported a coupling 
between gastrointestinal myoelectric activity and the spiking of 
hippocampal cells (Vidyasagar et  al., 2022). Furthermore, it was 
shown that vagal afferents that transmit information from the stomach 
to the brain may act as a peripheral clock themselves and that 
mechanosensitivity of these vagal afferents changes over a 24-hour 
period, indicating that their responses to mechanical stimuli are not 
static but exhibit circadian variation (Kentish et al., 2013).

Serotonin and gut peptides such as CCK, peptide-YY and leptin 
released in response to gastric distention provoke satiety and 
somnolence via activation of the vagus nerve (Kim and Lee, 2009). 
Thus, though CCK does not cross the blood–brain barrier, it affects 
neural activity in the brain via the vagus nerve (Cao et al., 2012). 
Furthermore, capillary endothelial cells of the blood–brain barrier 
expressing CCK-1 receptors change their permeability to other 
molecules including leptin in response to CCK (Cano et al., 2008). 
Leptin plays a significant role in hippocampal neuroplasticity, 
affecting multiple molecular pathways involved in synaptic changes 
(Li et al., 2002; Moult and Harvey, 2011; Dhar et al., 2014; McGregor 
et al., 2018). It facilitates LTP in the CA1 region and the dentate 
gyrus, which are believed to underlie learning and memory formation 
(Shanley et al., 2001; Oomura et al., 2006). It also influences excitatory 
synaptic transmission in the hippocampus. In adult tissue, it induces 
a persistent increase in excitatory synaptic transmission, termed 
leptin-induced LTP (Li et al., 2002). Interestingly, intraperitoneal 
CCK injections led to increase of EEG slow wave activity and sleep 
(Kapás et al., 1988). The above studies indicate a strong association 
between increased plasma CCK levels and TLE (Gao and Bao, 2020).

Thus, there are multiple ways in which gastrointestinal events can 
potentially modulate hippocampal activity and there is reason to 
believe that rhythmic gastrointestinal events have different patterns in 
different states of vigilance. Some of these patterns could also lead to 
rhythmic activity in the hippocampus, potentially triggering seizures. 
We  propose that all the variants of TLE, including those where 
correlation or modulation with easily recordable visceral events such 
as breathing or heart rate are not observed, share essentially the same 
mechanism of being susceptible to be triggered by interoceptive slow 
waves. We suggest that networks susceptible to paroxysmal activity 
that include the ventral hippocampus may be triggered by any of the 
afferent visceral signals, including those arising from the 
gastrointestinal tract.

Autonomic disturbances accompany TLE seizures in up to 75% of 
cases and are frequent during the aura period (van Buren and 
Ajmone-Marsan, 1960). Ictal autonomic changes include 
cardiorespiratory, gastrointestinal, vascular, urogenital and pupillary 
symptoms (Dütsch et al., 2006). The most commonly reported seizure 
triggers relate to particular visceral states such as menstruation, sleep 
deprivation, fatigue, eating, fever, et cetera or to stress and anxiety 
(Lunardi et al., 2011, 2016), indicating that such changes do not just 
accompany, but may also induce paroxysmal activity.

External modulation of visceral triggers of 
hippocampal paroxysmal activity

Externally driven seizure events are not uncommon and reflex 
epilepsy is a well-known example of the epileptiform activity 
triggered by sensory stimuli. Seizures in TLE can be provoked by 

rhythmic olfactory stimulation (Lunardi et al., 2016), mediated by 
strong projections from the olfactory system to hippocampus. 
Olfactory auras also occur in drowsy/dreaming states in 6% of TLE 
patients. TLE-associated, ‘eating epilepsy’ has been described as well 
(Nagaraja and Chand, 1984). Here, sight, smell or thought of food did 
not cause seizures and they only rarely ever occurred during eating 
itself. In most cases, the seizures occurred at the end of a heavy meal, 
suggestive of the higher gastrointestinal activity associated with 
digestion as the trigger and partial control of seizures was achieved 
simply by changing the eating habits. Another example of epileptic 
activity associated with gastrointestinal function is the seizure 
resulting from gastroenteritis in children (Cusmai et  al., 2010). 
Irritable bowel syndrome also increases the risk to develop epilepsy 
(Chen et al., 2015). Our proposal provides a neural framework for 
these phenomena.

Figure  2 summarizes our model of changes of functional 
connectivity that predispose to facilitation of seizures originating in 
the ventral hippocampus during the dark (night) phase of the sleep–
wake cycle (right panel) in comparison to their relative suppression 

FIGURE 2

Model of functional connectivity changes occurring upon transition 
from light to dark phase of a sleep–wake cycle. Left panel represents 
subjective light phase, and right panel represents subjective dark 
phase. During the light phase, ipRGCs of the retina are activated by 
light and send their signals to SCN. SCN stops producing melatonin, 
thus enhancing sympathetic activity (dashed gray arrow). As a result, 
predominantly parasympathetic vagal activity (dashed purple and 
green arrows) is attenuated. SCN also does not inhibit medial septum 
during the light phase; that allows disinhibited septal areas to send 
cholinergic signals to the hippocampus (orange arrow, Ach+), 
promoting arousal and supporting tonic type of hippocampal 
inhibition. Medial septum also “closes the gate” for the vagal signals, 
reducing chances for hippocampal triggering by the vagal input. In 
contrast, during the dark phase, when SCN does not receive ipRGC 
input, it increases melatonin production, supporting parasympathetic 
activity (dashed purple arrows) and so the vagal activity is enhanced. 
SCN also inhibits medial septum (open purple arrow), which 
decreases the medial septum’s cholinergic input to the 
hippocampus, causing switching of the hippocampus to a phasic 
inhibition mode with increased susceptibility to low frequency 
entrainment. Medial septum also “opens the gate” for the vagal 
signals, thus increasing the influence of the visceral activity on 
hippocampus and allowing the triggering of paroxysmal responses 
to occur.
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during the light (day) phase (left panel). During the light phase, 
signals from the ipRGC stimulate neurons in the SCN, which leads 
to reduction of the SCN suppression of the medial septum, which is 
known to project to the hippocampus (Ruby et al., 2008; Snider et al., 
2018). The medial septum supplies cholinergic support to 
hippocampus and also causes hippocampal cells to receive inhibition 
in a tonic mode (Kalsbeek et al., 2006; Wu et al., 2022). However, 
during the night, in the absence of light, ipRGCs stop sending their 
signals to SCN, which suppresses medial septum via GABA-ergic 
connections. Thus, during night, there is a decrease in the cholinergic 
input from the medial septum to hippocampus and as a result, 
hippocampal cells are likely to switch to the phasic inhibition mode 
(Wu et al., 2022). We hypothesize that the vagal input which comes 
to the medial septum from NTS is also disinhibited during the night. 
In addition, vagal and general parasympathetic activity are more 
pronounced during slow wave, non-rapid eye movement (NREM) 
sleep (Trinder et al., 2001; Cabiddu et al., 2012; De Zambotti et al., 
2018). Thus, during slow wave sleep, enhanced and potentially 
disinhibited vagal signals have higher chances of influencing ventral 
hippocampus. The other structures receiving vagal input can also 
be vulnerable to seizures triggered by interoceptive signals, especially 
the insular, anterior cingulate, orbitofrontal, somatosensory and 
motor cortices. One particularly striking example is frontal lobe 
epileptic seizures that consistently show predisposition to occur 
during sleep (Herman et al., 2001). Furthermore, a strong association 
exists between frontal lobe seizures and NREM sleep. Nobili et al. 
(2012) reported that in patients with nocturnal frontal lobe epilepsy 
(NFLE), 98% of all seizures occurred in NREM sleep. Of these NREM 
seizures, 72% emerged from slow wave sleep (SWS). Many frontal 
lobe seizures also originate from the primary motor cortex or the 
orbitofrontal cortex (Wang et al., 2019; Herman et al., 2001), which 
are areas that receive vagal inputs.

However, the hippocampal network is especially vulnerable to 
seizures due to multiple factors such as heightened risk of sclerosis, 
high density of glutamate receptors that increases chances of 
excitotoxicity and neuronal hyperexcitability, enhanced blood–brain 
barrier permeability compared to other brain regions, which makes 
it more susceptible to circulating toxins and pathogens causing 
inflammation, increased oxygen demand leading to higher sensitivity 
to hypoperfusion and low oxygen saturation (Sloviter, 1987; Olney 
et al., 1986; Marchi et al., 2007; Wei et al., 2014; Montagne et al., 2015; 
Mitra et al., 2016).

Mechanism of visceral trigger of TLE 
seizures

There is a case for arguing that slow waves such as from the 
viscera (heart and lungs and the gastrointestinal tract) can induce 
seizure activity which is usually at higher frequencies. Slowing of 
EEG activity with irregular delta waves occurs in over 60% of TLE 
patients (Jan et al., 2010). Stimulation frequencies in a low range, 
such as 1 Hz, are used for pre-operative testing aimed to provoke 
epileptic seizures to define their source. This stimulation induces 
seizures when applied to the hippocampus and related structures of 
the hippocampal gyrus and propagate in ways that match seizure 
propagation (Corcoran and Cain, 1980; Munari et al., 1993). It seems 
likely that natural visceral activity occurring at comparable low 

frequencies, such as cardiac rhythms, can also initiate the same 
processes through resonance.

The frequency range of oscillatory activities, both normal and 
ictal, is determined by the biophysical properties of the morphological 
cell types of the oscillating cell assembly and the balance of excitation 
and inhibition on the cells of the assembly (Hutcheon and Yarom, 
2000; Economo and White, 2012; Markram et al., 2004). These cell 
assemblies, by virtue of the circuitry they are embedded in, would 
also have a resonant frequency to which they are most susceptible 
(Hutcheon and Yarom, 2000; Herrmann, 2001). This has been 
pointed out in the general context of communication through 
coherence between brain regions (Vidyasagar, 2013; Esghaei et al., 
2022) and the concept is extended more specifically in its potential to 
trigger ictal activity (Pigarev et al., 2020; Sohanian Haghighi and 
Markazi, 2019). Thus, when there is sufficient overlap between the 
frequency ranges of the interoceptive wave and the local hippocampal 
oscillatory activity to trigger the resonant frequency in the 
hippocampal circuit, a typical ictal over-synchronization can 
potentially occur. Such overlap and over-synchronization at the 
resonant frequency of the hippocampal circuit may be the result of a 
widening of the frequency bandwidth of one or both circuits, thanks 
to an abnormal hippocampal circuit from a lesion and/or a faster 
than normal visceral oscillation. Consistent with this idea, 
dependence of stimulation treatment outcomes on its frequency, with 
low frequencies being pro-convulsive while high frequencies being 
anti-convulsive, has been demonstrated for both deep brain 
stimulation and spinal stimulation approaches to epilepsy (Waris 
et al., 2024).

However, it still remains to be  explained how the slow 
interoceptive waves (mostly <1 Hz, e.g., breathing or gastrointestinal 
activity) lead to the ictal over-synchronization that occur at higher 
frequencies and the spread of the seizure from the hippocampus to 
various cortical areas. For example, patients with TLE often have 
“sinusoidal” patches of ictal activity at frequencies of 5–10 Hz (Jan 
et  al., 2010), and fast ripples occurring at very high frequencies 
(>150 Hz) are characteristic of hippocampal epileptiform activity 
(Foffani et al., 2007; Ogren et al., 2009).

One possibility is the occurrence of resonance at harmonics of 
the fundamental frequency, as was pointed out earlier (Pigarev et al., 
2020). Thus, in a study of photosensitive epilepsy when photic 
stimulation was applied at 10–20 Hz, synchronized activity at 
harmonically related frequencies occurred within 30–120 Hz (Parra 
et al., 2003). The other option has been recently described by Stark 
et al. (2022). In their experiment, hippocampal pyramidal cells in 
CA1 were optically stimulated at 5 Hz, which resulted in slow 
depolarization and oscillatory response at frequencies between 60 
and 80 Hz. This was followed by application of linear chirp 
stimulation (sinusoidal waveform stimulation with frequency 
changing over time linearly from 0 to 100 Hz), which revealed a 
resonant peak of a cell to occur at 40 Hz. Thus, high frequency 
oscillations can result from stimulation well outside of the cell’s 
resonant peak, and a neuronal oscillator does not have to be  a 
resonator to show evoked oscillations.

Yet another and likely a more common mechanism is cross-
frequency coupling, which has been suggested as an efficient means 
of communication between brain areas (Canolty and Knight, 2010; 
Lisman and Jensen, 2013; Vidyasagar and Levichkina, 2019; Esghaei 
et al., 2022). CFC can be either amplitude-amplitude coupling, when 
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the two frequencies are similar and oscillation in area A directly adds 
to the oscillation in its target area B, or phase-amplitude coupling, 
when the phase of lower frequency oscillation in area A modulates the 
amplitude of a local higher frequency oscillation in area B. Normal 
hippocampal ripples are known to be entrained by breathing (Liu 
et  al., 2017; Lockmann et  al., 2016; Radna and MacLean, 1981; 
Bordoni et al., 2018; Nokia and Penttonen, 2022). As pathological fast 
ripples in the hippocampus have similar origin as the normal ripples 
(Foffani et  al., 2007), it seems safe to assume that CFC-based 
entrainment of respiration or other low frequency visceral events can 
cause fast ripples as well. Figure  3 schematically compares the 
influence of two potential mechanisms of seizure-triggering on the 
ongoing hippocampal oscillations.

That the visceral waves usually have a frequency range that barely 
overlaps with the theta, beta and gamma frequencies typically seen in 
most of the brain regions, including the hippocampus, explains why 
seizures are not easily triggered, at least during waking hours when 
the vagal afferent activity from gastrointestinal tract is less (Pigarev, 
1994; Pigarev et al., 2013; Rembado et al., 2021; Levichkina et al., 2021; 
Levichkina et al., 2022). However, we suggest that, with an altered 
abnormal hippocampal circuit, this protection is lost, especially 
during sleep, when the visceral oscillations are stronger.

The next question to address is the spread of activity from the 
hippocampus to other brain regions, such as the frontal cortex, which 
receives a strong projection from the hippocampus (Barbas and Blatt, 
1995; Thierry et al., 2000; Catenoix et al., 2011), sometimes leading 
to generalized convulsions. CFC-mediated spread of hippocampal 
seizure may be further augmented by the claustrum, consistent with 
the proposed function of the claustrum with a unique morphology 
and connectivity that enables it to enhance neural synchrony between 
brain areas (Vidyasagar and Levichkina, 2019; Madden et al., 2022). 
The claustral involvement is also consistent with the finding that 
during sleep, the slow wave activity is enhanced through claustral 
projections to widespread neocortical areas (Narikiyo et al., 2020). It 
has been pointed out that the claustral projections are uniquely 
organized to rapidly abort the enhanced neural synchrony between 
cortical areas (Vidyasagar and Levichkina, 2019). This could 
potentially explain why such augmentation of synchrony does not 

usually cause seizures and why claustral damage, on the other hand, 
can sometimes cause seizures (Meletti et al., 2017).

Implications for therapy

The above account of the role of the vagus in transmitting the 
visceral signals to the brain, including the hippocampus, provides a 
basis for the efficacy of vagal nerve stimulation (VNS) in controlling 
seizures in many cases of pharmacoresistant epilepsy. VNS stimulation 
can potentially desynchronise the hippocampal network that is 
causing, or about to cause, a seizure (Pigarev et al., 2020). In that case, 
there is no need for VNS to desynchronize the whole cortex to 
be effective. In fact, consistent with our framework, studies show that 
patients who respond favorably to VNS in comparison to 
non-responders exhibit more heterogeneity in the brain areas where 
desynchronisation in the theta band EEG is most pronounced (Vespa 
et  al., 2021; Clifford et  al., 2024). Furthermore, stronger 
desynchronisation in the theta band during sleep compared to 
wakefulness was found to distinguish VNS responders from 
non-responders (Vespa et al., 2021).

From the above point of view, we suggest both VNS and ventral 
hippocampus stimulation may be  effective in seizure prevention. 
However, VNS implantation has less risk and is, therefore, may 
be preferable in many cases.

In conclusion, we propose that TLE is largely a reflex type of 
epilepsy with visceral and external events serving as triggers. 
These triggers are expected to be  more effective in provoking 
resonant activity and over-synchronization in the hippocampus in 
sleep and during darker hours. From that point of view, 
effectiveness of VNS relies on its ability to stop such over-
synchronization of the networks involved in the analysis of 
visceral information.
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