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Introduction: Attention deficit hyperactivity disorder (ADHD) is a common psychiatric 
disorder in children during their early school years. While many researchers have 
explored automated ADHD detection methods, developing accurate, rapid, and 
reliable approaches remains challenging.

Methods: This study proposes a graph convolutional neural network (GCN)-
based ADHD detection framework utilizing multi-domain electroencephalogram 
(EEG) features. First, time-domain and frequency-domain features are extracted 
via long short-term memory (LSTM) and convolutional neural network 
(CNN) models, respectively. Second, a novel functional connectivity matrix 
is constructed by fusing phase lag index (PLI) and coherence (COH) features 
to simultaneously capture phase synchrony and signal intensity consistency 
between brain regions. Finally, a GCN model integrates these time-frequency 
features with topological patterns from the connectivity matrix for ADHD 
classification.

Results: Evaluated on two EEG datasets, the proposed method achieved 
average accuracies of 97.29% and 96.67%, outperforming comparative models 
(XGBoost, LightGBM, AdaBoost, random forest). Visualization experiments 
further revealed distinct brain connectivity distributions between ADHD patients 
and healthy controls.

Discussion: The fused functional connectivity matrix surpasses traditional 
single-metric approaches in characterizing brain interactions. By synergistically 
combining time, frequency, and topological features, the GCN framework 
enables more precise ADHD detection. This method demonstrates potential 
for assisting neurologists in clinical diagnosis while providing interpretable 
neurophysiological insights.
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1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a neuropsychological and behavioral 
disorder that commonly develops in children during their early school years and has been 
listed as an important category of children’s developmental behavior problems (Leffa et al., 
2022). According to epidemiological data, about 5–7% of children worldwide are affected by 
ADHD. Children with ADHD often have difficulty concentrating, establishing friendships 
with peers, and have high mood swings, which can have a great negative impact on children’s 
lives (Konrad et al., 2010). Accurate and rapid diagnosis of ADHD will be beneficial for clinical 
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research to explore more effective treatment methods. Over the years, 
researchers have used various neuroimaging modalities and analytical 
methods to gain deeper information about ADHD (Samea et  al., 
2019). Among them, electroencephalography (EEG) has become the 
main means of ADHD research due to its advantages of high temporal 
resolution, portable equipment, and low cost. As a comprehensive 
reflection of the electrophysiological activities of brain nerve cells, 
EEG signals present rich information on the cerebral cortex or scalp 
surface (Evans-Lacko et  al., 2018). At present, many medical 
institutions have taken the abnormal performance of EEG as an 
important indicator for the auxiliary diagnosis of ADHD.

With the rapid development of machine learning technology, the 
field of medical diagnosis has ushered in a new revolution (Bhavsar 
et  al., 2021). Especially in the detection of mental diseases, the 
combination of EEG-based analysis methods and machine learning 
technology has become a research frontier and hot spot, and this 
fusion technology is expected to provide strong support for the early 
diagnosis and precise treatment of diseases such as ADHD (Cura 
et al., 2024). Trinh et al. (2023) used closed-eye resting EEG data to 
extract the relative spectral power of 12 frequency bands from 64 
EEG channels and four machine learning models including support 
vector machine, k-nearest neighbor, random forest and elastic 
network, to compare their detection performance for ADHD. Ahire 
et  al. extracted the morphological features and power spectral 
density features using the resting state EEG data with eyes open EEG 
data, and used principal component analysis (PCA) to reduce the 
data dimension. Finally, machine learning classifiers such as 
Adaboost, k-nearest neighbor, naive bayes and random forest were 
utilized to classify ADHD patients (Ahire et  al., 2023). 
Maniruzzaman et al. (2023) proposed a hybrid channel selection 
method and used a Lasso logistic regression-based model to select 
important features from the selected channels, and finally applied 
multiple machine learning classifiers including Gaussian process 
classification (GPC), multilayer perceptron, decision trees, logistic 
regression and other machine learning classifiers to identify children 
with ADHD.

Recently, more and more deep learning models are widely used in 
the ADHD classification (Mao et al., 2019). Deep learning methods 
can automatically extract the features that include almost all the 
information of the data, thus avoiding the tedious feature screening 
process. In contrast, traditional machine learning algorithms often 
have differences in how they handle features, resulting in a lack of 
necessary links between findings (Cicek and Akan, 2021). Zhang et al. 
(2022) proposed a convolutional neural network-long short term 
memory (CNN-LSTM) model, which included temporal convolution 
module, spatial convolution module and long short-term memory 
module, and achieved good classification results in the classification 
tasks of ADHD and healthy controls. Alkahtani et al. (2023) extracted 
the time, frequency, information theory and other features of each 
electrode in each frequency band of EEG signals, used recursive 
feature elimination (RFE) and Lasso regularization methods for 
feature selection, and selected multi-layer perceptron (MLP) model 
and convolutional neural network (CNN) model for training and test. 
Jahani and Safaei (2024) firstly extracted features from EEG signals, 
then trained them with CNN and residual neural network, and found 
that residual neural network had better classification result.

Furthermore, the research methods for EEG medical diagnosis 
have gradually changed from focusing on the capture of single 

channel features to exploring multi-channel connection patterns 
(Chen et al., 2019). A growing body of research suggests that brain 
connectivity can reveal the functions and the complex cortical 
communication of different brain regions, which may lead to better 
research on many psychiatric disorders such as ADHD (Allen et al., 
2014; Babiloni et al., 2005; Drysdale et al., 2017; Fu et al., 2021). In 
recent years, a number of studies have attempted to address the 
question of brain connectivity. Bakhtyari and Mirzaei (2022) 
proposed a new feature extraction scheme based on the evaluation 
of the dynamic connection tensors between EEG channels, and 
used a neural network model composed of the long and short term 
memory (LSTM) network and attention mechanisms for ADHD 
detection. Polat (2023) used the phase lag index (PLI) to construct 
a brain functional connectivity matrix and used residual neural 
networks to achieve automatic diagnosis of schizophrenia. Li et al. 
(2024) fused coherent values and phase locking values (PLV) of 
synchronous compressed wavelet as new markers to build a 
functional connectivity matrix, and used CNN to achieve accurate 
identification of major depressive disorder. Xu et al. (2024) used the 
Pearson correlation coefficient (PCC) to quantify functional 
connectivity among EEG channels, mapped the expanded 
functional connectivity matrix into a time series graph, and finally 
used CNN-LSTM to recognize autism spectrum disorders.

However, the research based on the brain functional connectivity 
of multi-channel EEG signals has still few applications for ADHD 
detection. Moreover, it is well known that the method of constructing 
the functional connectivity matrix using phase synchronization only 
depends on the phase difference between the signals and does not take 
into account the amplitude, so the effect of the change in signal 
strength may be ignored. To address this issue, we propose an ADHD 
detection method using a graph convolutional neural network (GCN) 
model based on multi-domain features from multi-channel EEG 
signals in this paper. In this method, we firstly extract time domain 
and frequency domain features by the LSTM and CNN models 
respectively, and then develop a fusion feature based on the PLI and 
coherence (COH) that can obtain both phase synchronization and 
amplitude coherence and use it as a new index to construct the 
functional connectivity matrix of brain network. Subsequently, in 
order to integrate more useful EEG information, a GCN model 
combining the features extracted by the LSTM and CNN models and 
the functional connectivity features is designed as the classification 
model, which not only takes into account both time and frequency 
information, but also has strong topological feature extraction ability, 
resulting in improving the accuracy and reliability of ADHD 
detection. The main contributions of this study are summarized 
as follows:

 (1) The features in time and frequency domains are extracted using 
the LSTM and CNN models, respectively, from multi-channel 
EEG signals.

 (2) The functional connectivity matrix representing brain 
functional connectivity is constructed by fusing the PLI and 
COH features, which can simultaneously reflects the phase 
synchronization and consistency of signal intensity between 
different brain regions.

 (3) A GCN classification model combining the LSTM and CNN 
models and brain functional connectivity is developed for 
ADHD detection, which improves the performance of 
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proposed detection method by extracting time domain, 
frequency domain and topological features.

 (4) Finally, performance comparisons of the proposed method and 
other methods are performed on our dataset and a public 
dataset, respectively.

The rest of this article is organized as follows. The “Materials and 
methods” section includes the descriptions of datasets, feature 
extraction, classification model and performance metrics. The 
“Experimental results and discussion” section focuses on comparing 
results, visualizing brain connectivity patterns, and the limitations and 
future development of current research. The “Conclusion” section 
discusses the feasibility of the proposed method and summarizes 
the research.

2 Materials and methods

EEG signals contain a wealth of information, in the medical field 
we can make full use of EEG signals to identify mental diseases. In this 
study, we design a GCN framework based on EEG by combining 
multi-domain features to detect ADHD. The implementation process 
of the proposed ADHD detection method is shown in Figure 1. First 
we preprocess the EEG data, and use the LSTM model to extract the 
time domain features. Then we perform Fourier transform on the 
processed time-domain data to obtain the frequency-domain data, 
after which we  input them into the CNN model to extract the 
frequency domain features. Next, we combine the PLI and COH as a 
fusion feature to construct a new functional connectivity matrix that 
is the brain functional connectivity features. Finally, we  input the 

above three kinds of features together into the GCN model for training 
and classification. In addition, we conduct visualization experiments 
on brain connectivity to explore the differences of brain connectivity 
patterns in ADHD.

2.1 Datasets and pre-processing

To better verify the validity of the proposed approach, we use two 
completely different datasets. One is our own collection, the other is 
a public dataset. The detailed descriptions are as follows.

Dataset 1 was collected from January 2023 to January 2024 at the 
Changchun Sixth Hospital of China. A total of 57 participants were 
recruited, including 29 children with ADHD (17 boys and 12 girls; 
Ages 4–13) and 28 healthy children (20 boys and 8 girls; Ages 4–13). 
ADHD children were diagnosed by an experienced child and 
adolescent psychiatrist according to the Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria 
(Cooper, 2001). The clinical diagnosis based on the DSM-IV was 
recorded as the DSM score, which is the mean of the total scores of all 
the indicators. It is greater than one that indicates the presence of 
ADHD and the higher score the more severe the ADHD, while the 
score is less than one that indicates the absence of ADHD. Details of 
the healthy control and ADHD groups in Dataset 1 are shown in 
Table 1. The healthy children in the control group underwent rigorous 
physical health screening and confirmed that they had not taken any 
drugs during the test period, and had no mental abnormalities, 
learning and growth problems. The participants were instructed not to 
drink coffee or abuse other drugs. The parents introduced the 
experiment to the test children and put them in a relaxed state. Nicolet’s 

FIGURE 1

The implementation process of the proposed ADHD detection method.
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FIGURE 2

The LSTM network schematic.

19-lead 10–20 EEG acquisition device was used to capture at least five 
minutes of data with their eyes closed. The sampling frequency was set 
at 580 Hz and the electrode impedance was controlled below 80 
kΩ. The 19 electrodes covered the scalp with the international 10–20 
electrode placement standard (Klem et al., 1999), including the frontal 
lobe (Fp1, Fp2, F3, F4, F7, F8, Fz), temporal lobe (T7, T8), parietal lobe 
(P3, P4, P7, P8, Pz), occipital lobe (O1, O2), and central (C3, C4, Cz) 
regions. So 19 channels EEG signals were recorded.

Dataset 2 is a publicly available dataset (Nasrabadi et al., 2020). 
The dataset was collected including 61 children with ADHD (48 
boys and 13 girls; Aged 7–12) and 60 healthy children (50 boys and 
10 girls; Ages 7–12). ADHD children were also diagnosed by an 
experienced psychiatrist according to DSM-IV criteria and had 
been treated with Ritalin for up to 6 months. Children in the control 
group did not have any history of psychiatric disorders, epilepsy, or 
high-risk behaviors. Due to visual attention deficits in ADHD 
children, EEG recording protocols revolved around visual attention 
tasks. In the task, children were shown a set of cartoon characters 
and asked to count the number of characters. The number of people 
in each picture was randomly between 5 and 16, and the images 
were large enough for children to easily identify and count. To 
maintain continuity during signal recording, each picture was 
displayed without interruption immediately after the child 
responded. Thus, the duration of the EEG recording throughout the 
cognitive-visual task depended on the child’s performance (i.e., 
response speed). EEG recording also followed a 10–20 system and 
was performed at a sampling frequency of 128 Hz through 19 
channels including Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, 
F8, P3, P4, T5, T6, O1, and O2. The names of the four electrodes in 
the two datasets are different, but their corresponding electrode 
positions are the same: T7, P7, P8, T8 (Dataset 1) corresponds to 
T3, T5, T6, T4 (Dataset 2).

We used the EEGLAB toolbox for data preprocessing. First, the 
EEG data were calibrated with electrode positions. Subsequently, the 
EEG signals were filtered using a bandpass filter from 0.5 Hz to 60 Hz, 
and the sampling frequency was adjusted to 128 Hz. To further 
remove artifacts, independent component analysis (ICA) and ICLable 
algorithm were used to identify artifacts. Finally, we split the raw EEG 
signal into non-overlapping 5-s segments for expanding the available 
data, resulting in 3477 and 3,322 segments in Dataset 1 and Dataset 2, 
respectively.

2.2 Feature extraction

2.2.1 Time domain feature
In this paper, we use a model composed of the LSTM network to 

extract time domain features of multi-channel EEG signals. LSTM 
network is a special type of recurrent neural network (RNN), which 

can effectively capture long-term dependence in sequence data by 
introducing gating mechanism, and overcome the problem of gradient 
disappearance for processing long sequences in traditional RNN. The 
network structure is particularly suitable for processing time series 
data and can capture complex timing patterns.

The structure of LSTM network consists of a forget gate, an input 
gate, a memory cell and an output gate. The memory cell is the 
“memory” of the LSTM network, the forget gate controls the retention 
of old information, the input gate controls the addition of new inputs, 
and the output gate determines what information will be passed on 
the next time. Figure 2 shows the LSTM network schematic.

Specifically, the LSTM network realization process is 
as follows.

2.2.1.1 Forget gate
The purpose of the forget gate is to decide what information 

should be forgotten or retained from the memory cell at each time. It 
is calculated by

 [ ]( )1,t f t t fσ −= +f W h x b  (1)

where tf  (Equation 1) is the output of the forget gate at current time 
t , sigmoid function ( )σ ⋅  is the activation function, which compresses 
the input values between 0 and 1, [ ]⋅  means to splice two vectors, fW , 

1t−h , tx  and fb  are the weight matrix, the hidden state at the previous 
time 1t − , the input at current time t  and bias term, respectively.

2.2.1.2 Input gate
The input gate consists of two parts, a sigmoid layer that decides 

which values will be updated, and a tanh layer that creates a new 
candidate value vector that will be added to the memory cell state. The 
formula for the input gate is

 [ ]( )1,t i t t iσ −= +i W h x b  (2)

 [ ]( )
˜

1tanh ,t C t t C−= +C W h x b  (3)

TABLE 1 Details of the healthy control and ADHD groups of Dataset 1.

Characteristic Control ADHD

Male [nos.] 20 17

Female [nos.] 8 12

Age [years] 9.44 (±1.70) 9.65 (±1.97)

DSM score 0.24 (±0.36) 1.53 (±0.67)
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where ti  (Equation 2) is the output of the input gate, 
˜

tC  
(Equation 3) is the candidate memory cell state, Hyperbolic tangent 
function ( )tanh ⋅  compresses the input value between −1 and 1, and 

iW , CW , ib , Cb  are the relevant weights and biases, respectively.

2.2.1.3 Memory cell
The memory cell is the core of the LSTM network and is 

responsible for maintaining and updating long-term dependent 
information during the whole sequence processing process. The 
memory cell state of the current time is determined by the memory 
cell state of the previous time and the candidate memory cell state. The 
memory cell state is

 
˜

1 tt t t t−= +C f C i C   (4)

where tC  (Equation 4) is the memory cell state of the current time 
t , 1t−C  is the memory cell state of the previous time 1t − , and  
represents Hadamard product, that is the product of corresponding 
elements in two vectors.

2.2.1.4 Output gate
The output gate is responsible for determining which part of the 

memory cell state will be output to the hidden state, which is calculated by

 [ ]( )1,t o t t oσ −= +o W h x b  (5)

 ( )tanht t t=h o C  (6)

where to  (Equation 5) is the output of the output gate, th  
(Equation 6) is the hidden state at the current time t , oW  and ob  are 
the weight and bias of the output gate, respectively.

We use a LSTM model to extract time domain features by adding 
a fully connected layer after a LSTM layer. To avoid overfitting, each 
layer uses dropout with certain probability. Table  2 shows the 
parameter descriptions for the LSTM model.

In this paper, the input tx  of the LSTM model is the 5-s segment 
of EEG signal after preprocessing, and the output is a two-dimensional 
time-domain feature vector for every channel. For 19 channel EEG 
signals, we obtain a 19 2×  feature matrix. The LSTM model is trained 
by a binary cross-entropy loss function using an Adam optimizer with 
10 epochs and a batch size of 32.

2.2.2 Frequency domain feature
In order to extract frequency domain features, we convert EEG 

signal into the frequency domain by the Fourier transform (FT) for 
each EEG channel, and then obtain the spectrum graph. Then we use 

CNN to extract frequency features. Figure 3 shows the flowchart of 
the CNN model.

The realization process of the CNN model is as follows:

2.2.2.1 Convolution layer
This layer is responsible for extracting local frequency features. 

On the convolution layer, multiple convolution kernels are convolved 
with input data, and a series of feature graphs can be obtained through 
an activation function after biasing (Bouvrie, 2006).

2.2.2.2 Pooling layer
Like convolutional layers, pooling layer plays an important role in 

the CNN model. This layer is often connected behind the convolution 
layer, and the features are downsampled to reduce the dimension of 
the feature graph. Pooling layer generally only performs dimensionality 
reduction operation without parameters updating. On this layer, the 
output of the convolution layer, that is, feature graph, which is pooled 
in each n n×  region with a non-overlapping size. Then the maximum 
value or average value of each region is selected, and finally the output 
feature is reduced by n times in both dimensions.

2.2.2.3 Fully connected layer
After the input data is alternately propagated through multiple 

convolutional layers and pooling layers, the extracted features are 
outputted by a fully connected layer. On the fully connected layer, the 
vector obtained by flattening the feature graph after pooling layer is 
weighted and summated by an activation function.

CNN can effectively capture the features in the frequency domain by 
sensing the local spectrum graph. In this paper, a CNN model is used to 
extract the frequency features, which includes two convolution layers, two 
pooling layers and a fully-connected layer. Dropout is used after the 
convolution layer and fully-connected layer for avoiding overfitting. 
Table 3 shows the parameter descriptions for the CNN model.

In this paper, the number of points of the FT is 640, the size of 
convolution kernel is 5 5× , maxpooling is used, 2n = , the activation 
function is ReLU . The CNN model is trained by a binary cross-
entropy loss function using an Adam optimizer and the number of 
epochs is set to 10 and batch size is 32. The input of the CNN model 
is a 19 640×  spectrum matrix, and the output is a 19 2×  frequency-
domain feature matrix for 19 channels.

2.2.3 Functional connectivity

2.2.3.1 Phase lag index
The phase lag index (PLI) is a measure of phase synchronization 

between two signals, which is particularly suitable for detecting true phase 
synchronization in EEG analysis without volume conduction effects. The 
volume conduction effect is a common problem in EEG signal processing 
because it can cause signals measured from different electrodes to appear 
pseudo-synchronized (Clemens et al., 2016). The PLI avoids this pseudo-
synchronous interference by focusing on situations where the phase 
difference between the two signals is not equal to 0 or π . The PLI 
(Equation 7) of signals between the thk  channel and the thl channel is 
defined as

 
( )( )

1

1 M
kl m

m
PLI sign t

M
φ

=
= ∆∑

 
(7)

TABLE 2 Parameter descriptions for the LSTM model.

Layer-model LSTM

Long short-term memory 128

Dropout 50%

Fully-connected 64

Dropout 50%

Output 2
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where ( )sign ⋅  denotes symbolic function, ( )φ∆ ⋅  represents the 
phase difference of the two channel signals ( )kx t  and ( )lx t , 1 ,k l K≤ ≤ . 
K  is the number of channels, and M  is the number of the sample 
points of signals ( )kx t  and ( )lx t .

The PLI is one of the important brain functional connectivity 
indicators. The range of PLI values is from 0 to 1 with larger values 
indicating stronger phase synchronization between signals. For K  
channel EEG signals, a K K×  PLI functional connectivity matrix 
called PLI  can be obtained.

2.2.3.2 Coherence
The coherence (COH) measures the linear correlation of two 

signals in the frequency domain by calculating the cross spectral 
density and the self-spectral density of the two signals, and reflects the 
coupling intensity of the signals in the frequency domain. In EEG 
signal analysis, the coherence is widely used to study functional 
connections between different brain regions and can provide valuable 
information about the coordination of neural activity (Jun et  al., 
2021). Specifically, the COH (Equation 8) is defined as

 
( ) ( )

( ) ( )

2
kl

kl
kk ll

S f
COH f

S f S f
=

 
(8)

where ( )klS f  is the mutual spectral density of two channel signals 
( )kx t  and ( )lx t  at frequency f . ( )kkS f  and ( )llS f  are the self-

spectral densities of ( )kx t  and ( )lx t  respectively.
The value range of the COH is from 0 to 1, and the larger the value 

is, the greater the correlation is between the two signals in the 
frequency domain. For K  channel EEG signals, we can obtain a K K×  
COH functional connectivity matrix named COH  by averaging 

( )klCOH f  at all frequencies, and set the value on the diagonal to zero 
by not considering the correlation between the two same channels. In 
this paper, 19K = .

2.2.3.3 Functional connectivity matrix integrating PLI and 
COH

In EEG analysis, functional connectivity matrix is an important 
tool to reveal the interaction between different brain regions. It can 
reveal the dynamic characteristics of brain network by calculating 
the connection strength between the signals of the EEG channels. 
The PLI can effectively detect functional connections between brain 
regions, which is a very useful indicator. The COH provides 
information about frequency-domain connections between different 
brain regions, enabling the quantification of interactions between 
brain regions at specific frequencies. What is known is that building 
a functional connectivity matrix with metrics such as COH can 
reflect the amplitude synchronization relationship between the 
signals of the EEG channels, while it is strongly influenced by 
volume conduction artifacts (Murias et al., 2007). The PLI reduces 
the effect of volume conduction artifacts (Stam et al., 2007) and 
reflects the phase synchronization relationship between the signals 
of the EEG channels. Although the PLI and COH can provide 
functional connectivity information of different dimensions, it is 
difficult for a single indicator to fully reflect the complex interaction 
characteristics between brain regions. Therefore, in order to 
effectively circumvent the influence of volume conduction effect and 
capture the functional connectivity characteristics of brain networks 
more comprehensively, we fuse the PLI and COH to obtain a new 
feature (Equation 9) which is defined as

 ( )kl kl klP COH F PLI COH− = +  (9)

FIGURE 3

The flowchart of the CNN model.

TABLE 3 Parameter descriptions for the CNN model.

Layer-model CNN

Convolution 16–1 * 1 strides

Dropout 50%

Pooling 2–2 * 2 strides

Convolution 32–1 * 1 strides

Dropout 50%

Pooling 2–2 * 2 strides

Fully-connected 64

Dropout 50%

Output 2
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where klPLI  and klCOH  are the ( ), thk l  element in matrix PLI
andCOH  respectively, and ( )F ⋅  (Equation 10) is a mapping function 
that maps the value range of the fused feature from [0,2] to [0,1], 
which is defined as

 

( )
( )

( )

z

2

1 , 0 1
2 2

11 , 1 2
2 2

z

e z
eF z

e z
e

−

 −
≤ ≤

 −= 
− − < ≤ −  

(10)

The purpose of the mapping function is to standardise the fused 
features while increasing their discriminative power. It enhances the 
discrimination between the fusion features of the patient and control 
participants and improves the effect of the new features by decreasing 
the values of smaller features and increasing the values of larger ones.

After mapping, the functional connectivity matrix P COH−  
based on the fusion features is obtained, which simultaneously reflects 
the phase synchronization and consistency of signal intensity in 
frequency domain between brain regions, and is the input of the GCN 
classification model. However, for the input of the GCN model, a 
binary matrix is required. It is important to set the appropriate 
threshold during the binarization process. In this study, we introduce 
a small-worldness as an index for threshold setting. We first set the 
threshold range between 0.3 and 0.7 with a step size of 0.01, then 
iterate all the thresholds and choose the value that maximizes the 
small-worldness as the threshold. Finally, we set the elements of the 
matrix P COH−  greater than or equal to the threshold as 1 and the 
elements less than the threshold as 0.

By combining the PLI and COH to construct a functional 
connectivity matrix, we are able to capture more information about 
EEG signals simultaneously. This method can not only reduce the 
interference of volume conduction effect, but also effectively measure 
the connectivity characteristics between brain regions. With the 
nonlinear mapping, we  can ensure that the resulting functional 
connectivity matrix has good normalization properties while retaining 
key information, which contributes to a more comprehensive 

assessment of the functional connectivity of brain networks and 
enables a more detailed understanding of brain neural communication.

2.3 GCN classification model

As a powerful deep learning framework, GCN is widely used in 
classification and recognition of graph structured data. In this study, 
we used a GCN classification model based on the mixed features and 
functional connectivity features to detect ADHD, which is shown in 
Figure 4.

The GCN model consists of graph convolution layers and pooling 
layers that play a role in reducing the dimensionality. The main 
purpose of the graph convolution layer is to aggregate the local 
neighborhood information of each node, so as to learn the relationship 
between the topology of the graph and node features. The graph 
convolution of each layer updates the node embeddings according to 
the characteristics of the node itself and its neighbors. The propagation 
rules (Equation 11) in GCN are defined by

 

( ) ( ) ( )
1 1

˜ ˜ ˜2 21l l lReLU
− −

+
 
 

=  
 
 

H D A D H W

 

(11)

where, activation function ( ) ( )max 0,ReLU z z= , ˜
A is the 

adjacency matrix added with self-connection, 
˜
= +A A I , A is the 

adjacency matrix, I  is the identity matrix, 
˜
D is the normalized form  

of the degree matrix of the matrix A, ( )lH  and ( )lW  are  
the node characteristic matrix and weight matrix of the layer l  
respectively.

In this study, we  use the GCN model to detect ADHD 
including two graph convolution layers, each of which is followed 
by a pooling layer. The last pooling layer is followed by a global 
pooling layer and a fully connected layer with a dropout. The 
output is the classes for detecting the ADHD and healthy. Table 4 
shows the parameter descriptions for the GCN model.

FIGURE 4

The schematic of the GCN classification model.
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TABLE 5 The p-values of two datasets.

Measure Dataset 1 Dataset 2

p-value 2.53e-65 1.87e-189

In this paper, the functional connectivity matrix P COH−  after 
binarizing is regarded as the adjacency matrix A of the graph 
convolution layer, where each node represents an EEG channel and 
the edge encodes the functional connections between the different 
channels. For 19 channels, the number of nodes of the graph 
convolution layer is 19. In order to enhance the expression ability of 
node features, we use the LSTM model and CNN model to obtain a 
19 2×  time domain feature matrix and a 19 2×  frequency domain 
feature matrix, respectively. Finally, a 19 4×  mixed feature matrix X is 
obtained, which is the input of the GCN model as the initial node 
characteristic matrix, that is ( )0 =H X.

2.4 Performance metrics

2.4.1 Statistical analysis
The Mann–Whitney U test is a non-parametric statistical test used to 

assess whether there is a significant difference between two independent 
groups. It does not assume a normal distribution of the data and is 
appropriate for comparing ordinal or continuous data that do not meet 
the assumptions of parametric tests. As we know, the p-value obtained 
from the test is used to determine the statistical significance of the 
difference in feature distributions. A p-value less than 0.05 suggests that 
the difference between the two groups is statistically significant, indicating 
substantial dissimilarity in the features between the patient and normal 
groups. As mentioned above, we use fusion features as a new marker to 
construct the functional connectivity matrix in this study, and we use the 
Mann–Whitney U test method to verify its validity.

2.4.2 Evaluation index
In order to better evaluate the classification performance of the 

proposed method, we  chose accuracy (Equation 12), recall 
(Equation 13) (also known as sensitivity), and precision (Equation 14) 
(also known as specificity) as the evaluation metrics in this paper. 
These three indicators are defined, respectively, as

 
TP TNaccuracy

TP TN FP FN
+

=
+ + +  

(12)

 
TPrecall

TP FN
=

+  
(13)

 
TPprecision

TP FP
=

+  
(14)

where TP, TN , FP and FN are true positive, true negative, false 
positive and false negative, respectively.

3 Experimental results and discussion

3.1 Experimental results

3.1.1 Mann–Whitney U test results
We conduct Mann–Whitney U test on the functional 

connectivity matrix constructed based on Dataset 1 and Dataset 2, 
and a small p-value indicates a large difference in features. Table 5 

shows the p-values of two datasets. The results show that p-values of 
both datasets are far less than 0.05, which means that the proposed 
method has good effectiveness on both datasets, and the p-value of 
Dataset 2 is far less than the p-value Dataset 1, indicating that the 
proposed method has more obvious effect on Dataset 2. We notice 
that the difference in p-values between the two datasets is very 
obvious, indicating that although our method achieves good results 
on both datasets with a small number of participants, the effect on 
each group of data is not completely consistent. The key to solving 
this problem may be  to conduct experiments with large-scale 
datasets in the future.

3.1.2 Classification results of two datasets
On both datasets, we use five-fold cross-validation and conduct 

Bootstrap analysis on the model. The sample size of Bootstrap is set to 
1,000 times and the confidence interval is set to 95%. During GCN 
network training, the number of epochs is 100, batch size is 64, Adam 
optimizer is used with an initial learning rate of 1e-3 and a binary 
cross-entropy loss function is used as the loss function.

In Figure 5, the optimal accuracy and loss function curves of both 
datasets are given after the five-fold cross-validation. From the figure, 
we  can see that the accuracy curves on the training set and the 
verification set do not have a large deviation, which indicates that the 
degree of overfitting of our model is small. The results of Bootstrap 
analysis of the model are shown in Table 6. The results show that the 
proposed method performs well on both datasets, resulting in the 
highest accuracy rates of 97.83 and 97.45%, the highest recall scores 
97.84 and 97.36%, and the highest precision scores 98.53 and 98.58%, 
respectively. Moreover the scores of the five folds from the confidence 
interval of 95% are not significantly different, indicating that the 
model is robust.

3.1.3 Comparisons of proposed method against 
other models

In this section, we compare our model with other traditional 
machine learning (ML) algorithms such as XGBoost (Chen and 
Guestrin, 2016), LightGBM (Ke et al., 2017), AdaBoost (Cao et al., 
2013) and random forest (Breiman, 2001) to show the superiority of 
our model with five-fold cross-validation. We use the LSTM and 

TABLE 4 Parameter descriptions for the GCN model.

Layer-model GCN

Graph convolution 16

Pooling 16

Graph convolution 32

Pooling 32

Global pooling 32

Fully-connected 64

Dropout 50%

Output 2
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CNN models mentioned above to extract the time domain and 
frequency domain features as the inputs of these four ML algorithms. 
The comparison results on Dataset 1 and Dataset 2 are shown in 
Tables 7, 8 respectively. The results show that our designed model 
performs much better than the other models, achieving the average 
accuracy rates 97.29 and 96.67%, the average recall scores 96.76 and 
96.27%, and the average precision scores 97.82 and 97.19% on 
Dataset1 and Dateset2, respectively, using five-fold cross-validation. 
Among the traditional ML algorithms, XGBoost algorithm has 
slightly better performance than the other algorithms, resulting in 
the average accuracy rate 83.35%, the average recall scores 82.43% 
and the average precision score 83.56% on Dataset 1. While random 
forest algorithm obtains second best performance with the average 
accuracy 75.53%, the average recall 77.65% and the average precision 
76.85% on Dataset 2.

3.1.4 Ablation experiments
In order to explore the influence of different feature components 

on the performance of the model proposed in this study, we set up 
ablation experiments with five-fold cross-validation. We quantify the 
impact of these components on the model performance by gradually 
removing or replacing the key components of the model, such as the 
time domain features, frequency domain features, and GCN layers. 
Specifically, we  set up three experiments, including only using 
frequency domain or time domain features as the inputs of the model, 
and reducing one GCN layer, respectively. All experiments are 
performed on the same training set and verification set to ensure a fair 
comparison. The experimental results are shown in Table 9.

The results show that the performances of the three experimental 
models have decreased. Without the time domain features, the 
accuracy rates have decreased by 1.64 and 1.55%, the recall scores have 

FIGURE 5

The accuracy and loss curves: (A) Classification accuracy curves of Dataset 1; (B) loss curves of Dataset 1; (C) Classification accuracy curves of Dataset 
2; (D) loss curves of Dataset 2.
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TABLE 6 Bootstrap analysis results of Dataset 1 and Dataset 2.

Dataset 1 Accuracy (%) Recall (%) Precision (%)

Fold 1 96.54 (95.11, 97.84) 96.36 (94.38, 98.03) 96.73 (94.80, 98.46)

Fold 2 97.56 (96.41, 98.71) 96.74 (95.00, 98.37) 98.47 (96.99, 99.69)

Fold 3 96.69 (95.25, 97.99) 95.69 (93.33, 97.89) 97.57 (95.89, 98.96)

Fold 4 97.83 (96.69, 98.85) 97.15 (95.24, 98.76) 98.53 (97.08, 99.71)

Fold 5 97.82 (96.55, 98.85) 97.84 (96.17, 99.20) 97.82 (96.05, 99.12)

Average 97.29 (96.00, 98.45) 96.76 (94.82, 98.45) 97.82 (96.16, 99.19)

Dataset 2 Accuracy (%) Recall (%) Precision (%)

Fold 1 97.43 (96.24, 98.65) 97.36 (95.76, 98.76) 97.53 (95.64, 99.30)

Fold 2 95.22 (93.52, 96.84) 94.72 (92.33, 96.95) 95.79 (93.31, 98.01)

Fold 3 96.10 (94.43, 97.59) 95.63 (93.39, 97.64) 96.61 (94.46, 98.48)

Fold 4 97.17 (95.78, 98.34) 96.98 (95.27, 98.48) 97.45 (95.32, 99.20)

Fold 5 97.45 (96.24, 98.65) 96.64 (94.74, 98.38) 98.58 (97.08, 99.69)

Average 96.67 (95.24, 98.01) 96.27 (94.30, 98.04) 97.19 (95.16, 98.94)

The bold values represent the highest metrics of the 5 folds.

decreased by 0.03 and 1.84%, and the precision scores have decreased 
2.61 and 1.33% on Dataset 1 and Dataset 2, respectively. Without the 
frequency domain features, the accuracy rates have decreased by 1.06 
and 0.46%, the recall scores have decreased by 0.23 and 1.15%, and the 
precision scores have decreased 0.67 and 0.54% on Dataset 1 and 
Dataset 2, respectively. Reducing one GCN layer, the accuracy rates 

have decreased by 15.76 and 17.56%, the recall scores have decreased 
by 13.89 and 18.06%, and the precision scores have decreased 16.48 
and 15.67% on Dataset 1 and Dataset 2, respectively. These results 
demonstrate that integrated multi-domain features can improve the 
performance of the proposed model. We can see that although the 
performances of the experimental models without time domain 

TABLE 7 Comparisons of the proposed method with other models on Dataset 1.

Metric XGBoost LightGBM AdaBoost Random forest Proposed

Accuracy (%) 83.35 80.81 78.45 81.23 97.29

Recall (%) 82.43 78.35 76.21 80.15 96.76

Precision (%) 83.56 78.93 77.53 81.14 97.82

TABLE 8 Comparisons of the proposed method with other models on Dataset 2.

Metric XGBoost LightGBM AdaBoost Random Forest Proposed

Accuracy (%) 74.69 73.89 72.56 75.53 96.67

Recall (%) 73.83 70.78 73.35 77.65 96.27

Precision (%) 75.43 72.81 72.93 76.85 97.19

TABLE 9 Results of ablation experiments.

Dataset 1 Accuracy (%) Recall (%) Precision (%)

Baseline model (full model) 97.29 96.76 97.82

Without time domain features 95.65 96.73 95.21

Without frequency domain features 96.23 96.53 97.15

Reduced a GCN layer 81.53 82.87 81.34

Dataset 2 Accuracy (%) Recall (%) Precision (%)

Baseline model (full model) 96.67 96.27 97.19

Without time domain features 95.12 94.43 95.86

Without frequency domain features 96.21 95.12 96.65

Reduced a GCN layer 79.11 78.21 81.52
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features or frequency domain features do not decrease much, they fail 
to reach the performance with both time domain and frequency 
domain features, which indicates that the features of a single scale are 
limited for the model. In addition, reducing one GCN layer model has 
the greatest performance degradation, which indicates that the 
complexity of the current GCN structure is reasonable.

4 Discussion

4.1 Analysis of brain connectivity patterns

In this section, we  use BrainNet Viewer for visualizing and 
analyzing brain connections. We  average the functional 
connectivity matrices of all the samples, and a higher value of the 
matrix elements represents a tighter connection between two 
channels. This method not only visualizes the general location of 
each electrode on the brain, but also shows the connections 

between different brain regions more clearly, which is benefit for 
clinical interpretability. Figure  6 shows the functional brain 
connectivity maps of children with ADHD and children in the 
control group in Dataset 1 and Dataset 2. The red line represents a 
larger value, while the blue line represents a smaller value. It is 
worth noting that Dataset 1 is the resting state EEG data and 
Dataset 2 is the task state EEG data, which can provide a richer 
reference for our research.

ADHD children in Dataset 1 have more warm color connections 
in the functional brain connectivity maps, which means that the 
overall functional brain connectivity of ADHD children in the resting 
state is stronger, while ADHD children in Dataset 2 have more cold 
color connections in the functional brain connectivity maps, 
indicating that the overall functional brain connectivity of ADHD 
children is significantly lower during the task. This phenomenon may 
explain the inability of ADHD children to adjust to task demands. The 
study on dynamic brain connectivity in ADHD based on fNIRS 
(Sutoko et  al., 2020) used a probabilistic model to reveal the 

FIGURE 6

The functional brain connectivity maps of two datasets.
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connectivity states, and concluded that the probability of brain 
connectivity in ADHD children in two major task-related states 
decreased, while the probability of occurrence in two task-
independent states increased. Our results coincide with the 
above conclusions.

What we  do know is that different regions of the brain have 
different functions. The frontal lobe is involved in a wide range of 
cognitive functions such as attention. The occipital lobe is responsible 
for receiving and integrating visual information. The temporal lobe is 
responsible for processing auditory and verbal information as well as 
having advanced visual abilities, and the parietal lobe is capable of 
processing all types of sensory information. From Figure 6, we can 
observe that ADHD children in both Dataset 1 and Dataset 2 have low 
frontal connectivity, and the abnormality of this region has a significant 
impact on the cognitive function of patients (Michalka et al., 2015), 
which may be one of the significant signs of brain connectivity in 
ADHD patients. ADHD children in Dataset 1 have relatively strong 
long-range frontal–parietal and frontal-occipital connections, and the 
frontal–parietal connection is considered to be  a critical attention 
network (Corbetta et al., 2008). Furthermore, the connectivity of the 
frontal and occipital lobes can effectively regulate the processing of 
cognitive information (Siegel et  al., 2008). In the resting state, the 
connectivity of these two long-range connections is abnormal, which 
further indicates that ADHD patients cannot adjust the functional 
regions of the brain according to demand. The occipito-temporal 
pathway contributes to the redirection of attention to obvious, 
behavior-related external stimuli, while the fronto-parietal network is 
responsible for the goal-oriented execution of tasks (Faraone et al., 
2021). The occipito-temporal and fronto-parietal connectivity of 
ADHD children in Dataset 2 is underactivated. This may also be one 
of the abnormal characteristics of brain connectivity in ADHD patients 
under task state.

Our study reveals a link between connectivity between different 
brain regions and attention deficit disorder, and more research in this 
area may lead to a deeper understanding of the underlying causes of 
attention deficit disorder.

4.1.1 Limits and future directions
Although the proposed method based on the multi-domain 

features in this paper has made good progress in the detection of 
ADHD, most of the current automated ADHD detection technologies 
still face some significant challenges. What we all know is that the 
robustness of deep learning depends on the support of large-scale 
datasets. However, building a large medical dataset is a difficult task. 
Therefore, the results of this study are affected by the limitation of the 
size of dataset. Using a broader dataset rather than a limited dataset 
can enhance the efficiency of the proposed method and provide more 
accurate results. In addition, the EEG signal has the advantages of 
ultra-high temporal resolution, portable and cheap equipment, but it 
also has the problem of low spatial resolution, and it is weak to rely 
solely on EEG signals to mine the potential pathological information 
of ADHD. Therefore, we will try to combine other medical imaging 
methods, such as fMRI, to construct a multi-modal dataset in future. 
This may lead to more help for ADHD detection. By in-depth analysis 
of high-quality features in the different modal data, we  expect to 
be  able to more fully reveal the details of the abnormal neural 
mechanisms of ADHD.

5 Conclusion

In this study, we propose a new method for ADHD detection 
using EEG in which the time domain and frequency domain 
features are extracted by a LSTM model and a CNN model 
respectively, a functional connectivity matrix is constructed by a 
new indicator through integrating the PLI and COH, and then a 
GCN model is used to distinguish the ADHD and healthy 
children. On the Dataset 1 collected by ourselves and the public 
Dataset 2, the new functional connectivity is verified that it can 
be used to recognize ADHD by Mann–Whitney U test. Moreover, 
the proposed method shows excellent classification performance 
in terms of the accuracy, recall, and precision by Bootstrap 
analysis, and has better classification results than other methods, 
such as XGBoost, LightGBM, AdaBoost and random forest. The 
ablation experiments show that the fused multi-domain features 
can improve the performance of the proposed method. The 
proposed method can shorten the process of traditional diagnosis 
and help neurologists make more accurate diagnoses. In addition, 
few previous studies have examined brain connectivity in 
children with ADHD using both resting state EEG data and task 
state EEG data, but this is very important. We find that in the 
resting state, the brain connectivity of children with ADHD 
increased overall, while in the task state, their brain connectivity 
decreased overall. This conclusion reveals the differences in brain 
networks of children with ADHD in different states. Certainly, 
there are still some limitations in our study at this stage, and in 
the future, our study will combine other medical imaging 
techniques to help us understand ADHD more comprehensively, 
and strive to make new contributions to the study and diagnosis 
of ADHD.
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