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Retinitis pigmentosa (RP) is a progressive retinal degenerative disorder

characterized by photoreceptor cell death, leading to vision loss. Current

treatments are limited, and there is a need for non-invasive interventions. This

study evaluates the neuroprotective effects of voluntary exercise in an RP mouse

model and explores the role of the adiponectin signaling pathway in mediating

these effects. Pregnant Pde6brd10 (rd10) mice, a transgenic model of RP, and

wild-type C57BL/6J mice were divided into sedentary or voluntary running

groups (n = 4 per group). Offspring were analyzed at 6 weeks for photoreceptor

nuclei counts, outer segment lengths, serum and retinal adiponectin levels, and

expression of AMPK and PGC-1α proteins using immunohistochemistry, ELISA,

and Western blotting. Voluntary exercise significantly preserved photoreceptor

nuclei (97 ± 16 vs. 32 ± 5 in sedentary rd10 mice) and outer segment lengths for

rods (13.1± 1.2 µ vs. 1.1± 0.6 µ) and cones (7± 0.9 µ vs. 0.2± 0.1 µm) compared

to sedentary rd10 mice. Serum adiponectin levels increased significantly in

exercised rd10 mice (p < 0.05), while retinal adiponectin levels were elevated

in both sedentary and exercised rd10 mice relative to wild-type controls

(p < 0.005). No significant changes in AMPK (p = 0.724) and PGC-1α (p =

0.794) protein levels were observed between exercised and sedentary rd10

mice. These findings suggest that voluntary exercise enhances photoreceptor

survival in RP by increasing serum adiponectin levels, potentially contributing to

neuroprotection. Elevated retinal adiponectin appears linked to RP pathology

rather than exercise-induced changes. This study highlights the therapeutic

potential of exercise in RP and identifies adiponectin as a promising target for

further investigation into neuroprotective mechanisms and treatments.
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1 Introduction

Retinitis pigmentosa (RP) is a genetically heterogeneous retinal
degenerative disorder characterized by the progressive loss of
photoreceptors and retinal pigment epithelial cells, ultimately
leading to blindness. This condition affects both eyes and
can vary significantly in its progression and severity among
individuals (Liu W. et al., 2022; Li et al., 2024). The primary
symptoms include night blindness, followed by a gradual loss
of peripheral vision, and eventually central vision impairment
(Chivers et al., 2021). Photoreceptors, particularly rods, have high
energy demands due to their continuous renewal of outer segments
and the process of phototransduction. RP drastically attenuates
photoreceptor function, which is heavily dependent on proper
energy metabolism (Hurley, 2021; Pan et al., 2021; Nolan et al.,
2022). The metabolic coupling between photoreceptors and the
retinal pigment epithelium (RPE) is crucial for maintaining retinal
health. In RP, this coupling is disrupted, leading to glycolytic
failure and reduced glucose metabolism in photoreceptors (Wang
et al., 2019; Nolan et al., 2022). Current treatments for RP focus
on slowing disease progression and managing symptoms, as no
cure exists. Gene therapy using techniques like CRISPR/Cas9 and
optogenetics are being explored to correct genetic defects and
restore some visual function (Kantor et al., 2020; Liu W. et al.,
2022). Although stem cell therapy shows promise in early-phase
clinical trials, it has not yet been approved for clinical use due
to significant barriers such as high cost and technical complexity
(Alcalde et al., 2022; Chen et al., 2023). There is a pressing need to
develop broadly applicable and effective treatments for RP.

Extensive research highlights the significant benefits of regular
physical exercise on neurological health, including retinal health.
Physical exercise is known to improve various aspects of
neurological function, such as cognitive performance, memory,
attention, and executive functions across all age groups (Liu-
Ambrose et al., 2010; Nanda et al., 2013; Hussey et al., 2020;
Lissek et al., 2024). It promotes the growth and survival of brain
cells, increases neuroplasticity, and supports adult hippocampal
neurogenesis, which is crucial for learning and memory (Yau
et al., 2014; Yau et al., 2015). Furthermore, regular physical
exercise is linked to a reduced risk of neurodegenerative diseases,
including dementia, Alzheimer’s disease, and Parkinson’s disease
(Bacanoiu et al., 2023; Santiago and Potashkin, 2023). Specifically,
in the context of retinal health, physical exercise has been
shown to have neuroprotective effects, potentially delaying the
progression of degenerative conditions like RP. In addition to
physical exercise, other non-invasive strategies have been explored
for retinal neuroprotection, including dietary interventions and
pharmacological approaches. For example, supplementation with
omega-3 fatty acids and vitamin A has been investigated for
its ability to slow photoreceptor degeneration, with mixed
clinical outcomes (Berson et al., 2004; Liu Y. et al., 2022).
Neuroprotective agents such as ciliary neurotrophic factor (CNTF)
and N-acetylcysteine (NAC) have also been studied for their
potential to enhance photoreceptor survival and mitigate oxidative
stress (Faktorovich et al., 1990; Lee et al., 2011). Compared to these
approaches, physical exercise offers a low-cost, broadly accessible
intervention with systemic benefits that extend beyond the retina.
Unlike pharmacological or dietary interventions, which rely on

exogenous compounds, exercise modulates multiple physiological
pathways, including inflammation, metabolism, and neurotrophic
support, that may contribute to retinal resilience. However, while
studies have demonstrated that voluntary exercise can delay
photoreceptor degeneration, the precise mechanisms underlying
these effects remain incompletely understood. The evidence
supporting physical exercise as a neuroprotective intervention is
robust (Agadagba et al., 2024), with preclinical studies in rodent
models demonstrating that physical exercise elevates neurotrophic
factors such as brain-derived neurotrophic factor (BDNF), which
enhance neurotransmission and neurogenesis (Boehme et al., 2011;
Venezia et al., 2017). These neuroprotective effects may extend
to retinal health, as physical exercise has been found to influence
metabolic and cellular pathways critical for photoreceptor survival
and function.

The specific effects of physical exercise on retinal health,
particularly in the context of RP, are an emerging area of interest.
Rodent models of RP, such as the PDE6Brd10 (rd10) mouse model,
have provided valuable insights into the potential therapeutic
benefits of physical exercise. Research has shown that voluntary
exercise can lead to significant improvements in photoreceptor
survival and function in these models. For instance, studies have
demonstrated that voluntary exercise preserves visual function
and reduces the inflammatory response in an adult mouse model
of autosomal dominant retinitis pigmentosa (Bales et al., 2024).
These findings suggest that physical exercise may help mitigate
the degenerative effects of RP by enhancing cellular resilience
and metabolic function within the retina. Additionally, physical
exercise has been associated with increased levels of neurotrophic
and metabolic factors, which may contribute to its protective effects
on retinal cells (Yau et al., 2014; Pan et al., 2021). The mechanisms
underlying these benefits are thought to involve the upregulation of
signaling pathways related to mitochondrial biogenesis and energy
metabolism, which are essential for maintaining photoreceptor
health and function.

Despite the promising findings on the benefits of physical
exercise for retinal health, several aspects remain unknown. One
key question is whether the adiponectin signaling pathway plays
a crucial role in mediating the neuroprotective effects of physical
exercise in the context of RP. Adiponectin, a hormone primarily
secreted by adipose tissues was selected as a candidate pathway
based on its established roles in neuroprotection, inflammation
regulation, and energy metabolism. Adiponectin and its receptors
(AdipoR1 and AdipoR2) are expressed in the retina, where
they contribute to mitochondrial function, lipid metabolism, and
oxidative stress regulation (Fu et al., 2016; Choubey and Bora,
2023). Previous studies have demonstrated that loss of AdipoR1
leads to progressive photoreceptor degeneration, highlighting
the importance of adiponectin signaling in retinal homeostasis
(Rice et al., 2015). Furthermore, systemic adiponectin has been
implicated in protecting retinal neurons from degeneration in
models of diabetic retinopathy and retinal ischemia (Shukal et al.,
2022). Given these findings, we hypothesized that adiponectin may
contribute to exercise-induced neuroprotection in RP by activating
pathways associated with photoreceptor survival. Moreover,
adiponectin plays a critical role in metabolic regulation through
its signaling pathways, particularly the AMP-activated protein
kinase (AMPK) and peroxisome proliferator-activated receptor-
gamma coactivator-1-alpha (PGC-1α) pathways (Iwabu et al., 2019;
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Choi et al., 2020). These pathways are known to enhance glucose
uptake, fatty acid oxidation, and mitochondrial biogenesis, which
are vital for cellular energy balance and metabolic health. In
the context of neuroprotection, central adiponectin signaling has
been shown to support neuronal plasticity and metabolic health
(Arquier et al., 2021). Given these established roles of adiponectin
in metabolic regulation and neuroprotection, we hypothesize that
voluntary exercise may delay photoreceptor degeneration in RP by
increasing adiponectin levels in the retina, thereby activating the
AMPK-PGC-1α signaling pathway. This study aims to elucidate
the potential neuroprotective effects of physical exercise in a
mouse model of RP and to determine the role of the adiponectin
signaling pathway in mediating these effects. By bridging the gap
between exercise-induced metabolic benefits and their potential
therapeutic applications in neurodegenerative diseases like RP, this
research seeks to offer new insights into the molecular mechanisms
underlying exercise-mediated neuroprotection and suggest novel
therapeutic strategies for mitigating photoreceptor loss in RP
patients.

2 Materials and methods

2.1 Animals and experimental design

All experimental procedures were approved and conducted
in accordance with the guidelines of the Animal Subjects Ethics
Sub-Committee from The Hong Kong Polytechnic University
and Hong Kong Science and Technology Park Corporation
Institutional Animal Care and Use Committee. Wild-type mice
(C57BL/6J) and retinal degeneration mice (rd10Pde6b) mice were
bred in-house, and raised under a 12 h light/12 h dark cycle
with ad libitum standard mouse chow and water. Animals
were group-housed, in order to avoid the stress induced by
social isolation.

2.2 Voluntary running protocol

Following a 7 days acclimation period, adult rd10 males
were introduced to adult rd10 female breeders. After confirming
pregnancy by the presence of seminal plugs, adult male breeders
were separated from the female breeders. Pregnant females were
randomly assigned into four treatment groups [sedentary wild-
type (n = 4), exercised wild-type (n = 4), sedentary rd10 (n = 4),
exercised rd10 (n = 4)] and running wheels (Med-Associates,
Inc., St. Albans, VT, United States) were introduced in each
cage (Figure 1). Exercised groups had free access to running
wheel while sedentary groups had locked running wheels in the
holding cages. To confirm voluntary running activity, we recorded
the daily running distances of each dam. The running wheels
remained in the cages until the pups reached 6 weeks of age.
Male and female offspring were euthanised at 6 weeks old by
CO2 asphyxiation. The CO2 flow was maintained for at least
1–2 min after respiratory arrest to ensure complete euthanasia.
Retinal and serum samples were collected for further analysis
(Figure 1).

2.3 Tissue preparation for
immunohistochemistry

Mice were deeply anesthetized with isoflurane (RWD Life
Science, China) administered at 2%–3% for induction and 1%–
2% for maintenance, using 100% medical oxygen as the carrier
gas. Eyes for immunohistochemistry were quickly enucleated
and fixed in 4% paraformaldehyde (PFA, sc-281692, Santa Cruz
Biotechnology, United States) for 30 min at room temperature
and washed with 1X phosphate buffer saline (PBS, pH 7.4, Gibco,
Life Technologies, United States). After fixation, the eyes were
transferred to 30% sucrose solution until they sank. In order
to access the posterior hemispheres (containing the retinas),
the anterior hemispheres (lens, iris-ciliary body, and cornea)
were dissected. Subsequently, the posterior hemispheres were
embedded in a cryomold containing a mixture of 30% sucrose
and optimal cutting tissue solution (ratio 1:1). The retinas were
sectioned (20 µm thickness) in a freezing (−20◦C) cryostat
(Leica, CM1950, Nussloch, Germany). Sections were obtained at
comparable orientations to minimize variability due to sectioning
angle and the sections were stored at−80◦C until use.

2.4 Immunohistochemistry and confocal
imaging

The retinal sections were washed and incubated at room
temperature for 30 min with 0.1% Triton X-100/1X PBS
to permeability the sections and ensure that the antibodies
could access intracellular proteins. Non-specific interactions were
blocked by covering retinal sections with 1X PBS containing
3% bovine serum albumin (BSA) and 0.1% Triton X-100.
Retinal sections were incubated overnight (at 4◦C) with primary
antibodies to stain the rods’ outer segment (OS) (anti-rhodopsin
mouse monoclonal antibody clone 4D2, 1:500, MABN15, Merck
Millipore, Darmstadt, Germany) and cones’ OS (anti-cone arrestin
rabbit polyclonal antibody, 1:500, AB15282, Merck Millipore,
Darmstadt, Germany). Following overnight incubation, the tissues
were washed in PBS and incubated with the corresponding
secondary antibodies (Alexa Fluor R© 594-conjugated affinipure
donkey anti-mouse IgG, 715-585-150 and Alexa Fluor R© 488-
conjugated affinipure donkey anti-rabbit IgG, 711-545-152, Jackson
ImmunoResearch, United States). Furthermore, the outer nuclear
layer (ONL) was also stained with 4,6-diamidino-2-phenylindole
(DAPI, D9542, 1:1000, Sigma-Aldrich, United States) to visualise
the photoreceptors’ nuclei. After overnight incubation, the
retinal sections were rinsed with PBS and cover slipped in
aqueous fluorescent mounting media (HC08, Merck Millipore,
Darmstadt, Germany).

Confocal imaging of immunofluorescent positive staining from
the retinal sections were captured using Zeiss LSM 800 Airyscan
Confocal Microscope (Carl Zeiss, Oberkochen, Germany). To
ensure consistency in photoreceptor nuclei quantification and
retinal cross-sections, a Plan Apochromat 20X/0.8 NA objective
was used to capture 200 µm of three different regions of the retinas:
Central retina (at 50 µm from the optic nerve head), left peripheral
end and right peripheral end. These regions were used to obtain the
mean photoreceptor number. In order to assess the survival of the
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FIGURE 1

Experimental timeline. Stage 1: males were introduced to female breeders for mating. Stage 2: males were removed from the cages; All pregnant
females had free access to running wheels for voluntary exercise; sedentary groups were given locked running wheels. Stage 3: running wheels
remained in the cages until 6 weeks postnatal day. Stage 4: offspring were sacrificed at 6 weeks of age; Retinal tissues and serum samples were
collected for analyses.

photoreceptors (rods and cones), the number of the photoreceptor
nuclei in the ONL was counted. Furthermore, starting from one
end of each 200 µm region, the length of the photoreceptors’ OS
was measured at intervals of 50 µm and averaged to obtain the
mean length ImageJ software (NIH, Bethesda, MA). Was used for
all measurements and double-blind counting system was employed
for all analyses. Although we did not normalize photoreceptor
nuclei counts to the total inner retinal area (nerve fibre layer to
the outer plexiform layer), we ensured that measurements were
taken from equivalent retinal regions across all samples. This
approach minimizes variability while preserving the ability to
detect differences between experimental groups. Future studies may
consider normalizing nuclei counts to inner retinal area to further
account for potential sectioning inconsistencies.

2.5 Tissue preparation for protein
analysis

Fresh retinal tissues were dissected from enucleated eyes
and the total proteins were extracted from the freshly isolated
retinas. The tissues were lysed for 40 min using a chilled
radioimmunoprecipitation assay (RIPA) buffer (Santa Cruz
Biotechnology, United States). This buffer was supplemented
with protease and phosphatase inhibitor cocktails, as well as
phenylmethanesulfonyl fluoride (Santa Cruz Biotechnology,
United States). During the lysis process, the tissues were vortexed
every 5 min. Samples were homogenized in 2 ml tubes [at
5,800 rpm, 4◦C for 30 s and two cycles (frozen time per cycle: 20 s)]
using Precellys R© Evolution Homogenizer (Bertin, Montigny-le-
Bretonneux, France) and cleared by centrifugation (21.380 × g) at
4◦C for 30 min. The supernatant protein was collected and stored
at−80◦C. The protein concentration was measured using the BCA

Protein Assay Kit (Merck Millipore, Darmstadt, Germany). Blood
samples were collected by cardiac puncture with a 25-G needle
and 1 mL syringe. The samples were allowed to clot for 30 min at
room temperature. Blood sera were collected by centrifugation at
3,000 rpm and 4◦C for 15 min and stored at−80◦C until needed.

2.6 Enzyme-linked immunosorbent assay
(ELISA) measurement

Adiponectin levels in the serum/retinas were quantified
by using the Adiponectin (mouse) ELISA Kit (Adipogen R©,
Life Sciences, Füllinsdorf, Switzerland). Adiponectin levels
were determined by sandwich ELISA method according to kit
manufacturer’s instructions.

2.7 Western blot analysis

Prior to electrophoresis, retinal supernatant samples were
heat-denatured at 95◦C for 5 min in Laemmli sample buffer
containing 2% SDS and 5% β-mercaptoethanol to ensure complete
protein denaturation and reduction of disulfide bonds. A total
of 30 µg of total protein from each retinal sample were loaded
on a 12% SDS-PAGE gel and transferred onto polyvinylidine
fluoride membranes (BioRad, Hercules, California, United States).
After 1 h of blocking with 5% non-fat dry milk, the membranes
were washed in 0.1% PBS-Tween and incubated overnight at
4◦C with primary antibodies for PGC-1α (rabbit polyclonal
antibody, 1:500, A12848, MA, United States), AMPK (AMPK-
α 1/2 mouse monoclonal antibody [D-6], 1:500, sc-525713,
Santa Cruz Biotechnology, United States) and GAPDH (mouse
monoclonal antibody, 1:500, sc-47724, Santa Cruz Biotechnology,
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United States). The next day, the membranes were incubated for
1 h with the corresponding HRP-labelled secondary antibodies
(1:1000). The peroxidase reaction was visualized with an ECL kit
(Ultrasense Pico Western Substrate, ECL01-50, Bioland Scientific,
United States). Densiometric analysis was performed using ImageJ
software (NIH, Bethesda, MA).

2.8 Statistical analyses

Statistical analyses to determine significant differences in
the data means from the four groups were performed using
Origin (OriginLab). Data are presented as means ± SEMs.
Appropriate ANOVAs with post-hoc tests were performed for
multiple comparisons. Non-parametric data were statistically
analyzed with Mann-Whitney U test. Any p-values < 0.05 were
considered as significant.

3 Results

3.1 Voluntary exercise preserves
photoreceptor number in rd10 retina

We investigated the neuroprotective effects of voluntary wheel
running exercise on photoreceptor survival in young adult rd10
mouse model of RP. Pregnant females were randomly assigned
into four treatment groups and were allowed to voluntarily
run until their pups were reached 6 weeks of age. Analysis of
running wheel data confirmed that exercised dams engaged in
voluntary running throughout the study. Exercised rd10 dams
exhibited the highest average running distance (11.1 km/day),
while exercised wild-type dams ran an average of 4.7 km/day.
Individual variability was observed, with running distances ranging
from 6.8 to 16 km/day in rd10 dams and 0.2 to 7.2 km/day in
wild-type dams (Table 1). Sedentary dams (both wild-type and
rd10) did not engage in any running activity (Table 1). These data
confirm that maternal exercise occurred consistently, supporting
our hypothesis that prenatal exercise influences offspring retinal
health. At 6 weeks of age, the offspring were sacrificed and their
retinas were subjected to immunohistochemistry. Wild-type mice
did not exhibit a significant difference in photoreceptor nuclei
counts (Figures 2A, B). Although photoreceptor loss was apparent
in exercised or sedentary rd10 mice, exercised rd10 mice had higher
density of ONLs when compared to sedentary rd10 (Figures 2C, D).
A Kruskal-Wallis test was conducted to compare the distributions
of photoreceptor nuclei counts across the four groups. The test
revealed a statistically significant difference between the groups,
χ2(3) = 19.45, p < 0.001. Further analysis revealed that exercised
rd10 mice had significant greater number of photoreceptor nuclei
(97 ± 16) compared to sedentary rd10 mice (32 ± 5) (Figure 3A;
Mann Whitney U-test U = 35, Z = 2.64, p = 0.004). The analysis of
the lengths of cones and rods in the OS revealed that exercised rd10
mice displayed significantly longer rods (13.1± 1.2 µm) (Figure 3B;
Kruskal-Wallis test χ2(3) = 19.48, p < 0.001; Mann Whitney U-test
U = 36, Z = 2.81, p = 0.002) and cones (7 ± 0.9 µm) (Figure 3C;
Kruskal-Wallis test χ2(3) = 19.9, p < 0.001; Mann Whitney U-test
U = 36, Z = 2.81, p = 0.002).

3.2 Voluntary exercise elevates serum
adiponectin levels in rd10 mice

Next, we tested whether voluntary exercise induces retinal
neuroprotection via increasing levels of adiponectin. Results
showed significant main effects of exercise on adiponectin levels in
the serum [Welch’s ANOVA, F(3, 11) = 5.88, p = 0.012] and in the
retina [two-way ANOVA, F(1, 20) = 7.59, p = 0.013] of rd10 mice
(Figures 4A, B, respectively). In exercised rd10 mice, voluntary
exercise significantly increased serum adiponectin levels compared
to sedentary rd10 (Figure 4A; Mann Whitney U-test U = 31, Z = 2,
p = 0.04). Increase in retinal adiponectin levels was observed in both
sedentary and exercised rd10 mice compared with sedentary and
exercised wild-type mice (Figure 4B; Mann Whitney, p < 0.005 in
all pairwise comparisons). Exercise did not show significant effect
on altering serum and retinal adiponectin levels in wild-type C57
mice (Figures 4A, B).

3.3 Voluntary exercise shows no effect
on retinal AMPK and PGC-1α of rd10

The AMPK/PGC-1α signaling pathway is involved in
adiponectin receptor-mediated signaling transduction (Jäger et al.,
2007; Balasubramanian et al., 2022). Results showed that voluntary
exercise did not significantly affect retinal protein expression of
AMPK and PGC-1α in rd10 mice (Figures 5A, B). Moreover, there
was no change in retinal AMPK [two-way ANOVA, F(1, 20) = 0.07,
p = 0.794] and PGC-1α [two-way ANOVA; F(1, 20) = 0.13,
p = 0.724] levels, respectively (Figures 5C, D).

4 Discussion

The present study provides evidence for the neuroprotective
effects of voluntary exercise on photoreceptor survival in a
transgenic mouse model of RP with severe rod and cone
cell death. Our findings demonstrated exercise-induced retinal
neuroprotection, supporting the potential effectiveness of a
physical exercise intervention to protect against retinal cell death
associated with RP.

Our morphological analysis revealed significant preservation
of photoreceptor nuclei in exercised rd10 mice compared to
their sedentary counterparts. This preservation was evident in
the quantitative count of photoreceptor nuclei in the ONL.
Moreover, the exercised rd10 mice exhibited significantly longer
rod and cone OS. Our measurement of OS length was based
on histological sections, which, while commonly used in retinal
studies, may be affected by expansion and contraction during
tissue processing. This could introduce variability in absolute
measurements. Optical coherence tomography (OCT) would
provide in vivo measurements that avoid these artifacts and allow
for longitudinal assessments of retinal structure. Future studies
should consider incorporating OCT imaging prior to histological
analysis to further validate exercise-induced preservation of
photoreceptor morphology.

Our results are consistent with previous studies that have
demonstrated the neuroprotective effects of exercise in retinal
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TABLE 1 Summary of daily running distances in wild-type and rd10 mice under sedentary and exercise conditions.

Mouse group Dam 1
(kilometres/day)

Dam 2
(kilometres/day)

Dam 3
(kilometres/day)

Dam 4
(kilometres/day)

Average distance
per day
(kilometres/dam)

Sedentary wild-type 0 0 0 0 0

Exercised wild-type 0.2 5.8 7.2 5.6 4.7

Sedentary rd10 0 0 0 0 0

Exercised rd10 13.8 16 7.7 6.8 11.1

Values represent the distance (in kilometers) run per day by individual dams across different experimental groups. The average distance per day was calculated for each group. Wild-type and
rd10 mice were either maintained under sedentary conditions (0 km/day) or subjected to voluntary running.

FIGURE 2

Representative immunofluorescent images of retinal cross-sections co-stained with rhodopsin (red), mouse cone arrestin (green) and DAPI (blue).
(A) Sedentary wild-type mouse, (B) Exercised wild-type mouse, (C) Sedentary rd10 mouse, and (D) Exercised rd10 mouse. Voluntary exercise
rescued loss of outer nuclei layer (ONL), rods and cones outer segment (OS) when compared to sedentary rd10 mice.

FIGURE 3

Photoreceptors’ nuclei and outer segment quantification. (A) Density of photoreceptor nuclei; (B) Rods’ outer segment length and (C) Cones’ outer
segment length. Voluntary exercise did not show significant effects on the density of photoreceptor nuclei, rods’ outer segment length and cones’
outer segment length in wild-type mice. However, voluntary exercise showed significant effect in preserving photoreceptor nuclei (p = 0.004), rods’
outer segment (p = 0.002) and cones’ outer segment length (p = 0.002) in rd10 mice when compared to sedentary rd10 mice, though there were
still significant higher number of photoreceptor nuclei, longer rods’ outer segment and cones’ outer segment length in wild-type mice. n = 6 mice
offspring from four mice dams per group. Asterisk indicates significant difference ** p < 0.05, *** p < 0.005.

degeneration models. Our findings demonstrate that maternal
voluntary exercise confers neuroprotective effects on photoreceptor
survival in rd10 offspring. These results expand upon previous
studies investigating the effects of postnatal voluntary exercise
in RP models. Notably, Hanif et al. (2015) reported similar
photoreceptor preservation in rd10 mice when pups were
provided with running wheels post-weaning. However, our study

differs in that we specifically examined the effects of maternal
exercise during pregnancy, rather than postnatal exercise by the
offspring. This distinction is important, as maternal exercise has
been shown to induce systemic metabolic changes, including
increased circulating neurotrophic factors and adiponectin, which
may influence foetal development and retinal resilience (Yau
et al., 2019). This transgenerational effect of exercise on
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FIGURE 4

Changes in serum adiponectin levels of the wild-type and rd10 mice. (A) Serum adiponectin levels increased significantly in exercised rd10 mice
compared to sedentary rd10 mice (p = 0.04), with a significant increase in (B) Retinal adiponectin levels when compared with exercised wild-type
mice (p < 0.005). Rd10 mice showed significantly higher levels of retinal adiponectin when compared to the wild-type mice (p < 0.005). Voluntary
exercise significantly increased serum adiponectin levels in rd10 exercise group compared to their sedentary counterparts, but showed no effect in
the wild-type mice. Asterisk indicates significant difference * p < 0.04, *** p < 0.005.

FIGURE 5

Western blotting analysis of retinal peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) and AMP-activated protein
kinase (AMPK) in wild-type and rd10 mice. (A) PGC-1α and AMPK protein bands from experimental mice M1–M3; (B) PGC-1α and AMPK protein
bands from experimental mice M4–M6. GAPDH served as a loading control for the gels. M indicates mouse; n = 6 mice offspring from four DAMS
per group; (C) Relative level of retinal AMPK protein in experimental mice groups; (D) Relative level of retinal PGC-1α protein in experimental mice
groups. Data shown as a scatter plot with mean ± SEM. No significant difference in retinal AMPK (P = 0.794) and PGC-1α (P = 0.724) was observed
across all groups of wild-type and rd10 mice. Voluntary exercise did not significantly alter the levels of PGC-1α and AMPK in the retina of wild-type
and rd10 mice; n = 6 mice offspring from four dams per group.

retinal health opens up new avenues for potential preventive
strategies in RP management. While our study focused on
the rd10 model, similar neuroprotective effects of exercise
have been observed in other retinal degeneration models. For
example, a recent study demonstrated that voluntary exercise
preserves visual function and reduces inflammatory response
in an adult mouse model of autosomal dominant RP (Bales
et al., 2024). Additionally, aerobic exercise has been shown
to protect retinal function and structure in a light-induced

retinal degeneration mouse model, by preserving photoreceptor
cell counts and retinal layers (Lawson et al., 2014). This
consistency across different models strengthens the potential
therapeutic effects of exercise interventions in various forms of
retinal degeneration.

Our running wheel data confirmed that rd10 dams engaged
in more voluntary running than WT dams, with an average daily
distance of 11.1 km/day compared to 4.7 km/day in WT dams.
This increased activity may reflect behavioral differences in rd10
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mice, possibly linked to compensatory mechanisms associated
with visual impairment (Strettoi et al., 2002; Phillips et al., 2010).
The observed photoreceptor preservation in offspring of exercised
dams suggests that maternal exercise may exert protective effects
through circulating factors, independent of post-weaning voluntary
activity. However, it is also possible that postnatal voluntary activity
contributed to the observed neuroprotection, as previous studies
have reported that post-weaning exercise can enhance retinal
resilience in RP models. While our study primarily focused on
maternal exercise, we cannot rule out the potential additive effects
of postnatal activity in rescuing both rod and cone degeneration.
Exercise is known to promote mitochondrial biogenesis, enhance
neurotrophic signaling, and reduce oxidative stress, all of which
could play a role in preserving photoreceptor integrity. Clinically,
these findings have potential implications for individuals with RP
who are considering pregnancy. As RP is an inherited disorder,
maternal lifestyle interventions such as regular physical activity
during pregnancy may offer a non-invasive strategy to enhance
retinal resilience in offspring. While additional studies are needed
to determine the exact mechanisms and translational potential of
maternal exercise in human RP, our study provides novel insights
into its possible role as a protective intervention. Future research
should aim to delineate the relative contributions of prenatal and
postnatal exercise to retinal neuroprotection. Longitudinal studies
incorporating both maternal and post-weaning exercise paradigms,
as well as assessments of circulating metabolic and neurotrophic
factors, could provide a more comprehensive understanding of how
physical activity influences RP progression. In particular, future
studies should investigate whether postnatal voluntary running
initiated at 4 weeks of age, when pups are physically capable
of engaging in exercise, can mitigate the severe rod and cone
degeneration observed at earlier time points. This approach would
help delineate the specific contributions of postnatal exercise in
comparison to maternal exercise. Additionally, controlling for
stress-related factors introduced by premature wheel removal will
be important to ensure that observed effects are attributed to
exercise rather than environmental stressors.

Our study found a significant elevation of adiponectin levels in
both serum and retina of exercised rd10 mice, but not wild-type
mice, indicating a specific response in the RP model. The exercise-
induced elevation of serum adiponectin levels aligns with previous
studies demonstrating its neuroprotective properties in various
neurological disorders. For example, a systematic review and
meta-analysis confirmed that physical exercise, particularly aerobic
exercise, significantly increases adiponectin levels in prediabetic
and diabetic adults (Becic et al., 2018; Otu and Otu, 2021). However,
retinal adiponectin levels were elevated in both sedentary and
exercised rd10 mice relative to wild-type controls, suggesting that
retinal adiponectin accumulation is more likely a pathological
response rather than an effect of exercise. The lack of increased
adiponectin in the exercised WT group was not unexpected, as
previous studies have shown that baseline adiponectin levels in
healthy animals remain relatively stable and may not respond to
exercise unless metabolic stressors are present (Polak et al., 2006).
In contrast, in degenerative disease models like rd10, systemic
metabolic alterations may increase adiponectin responsiveness
to exercise. This increase in adiponectin is associated with its
neuroprotective properties, as adiponectin plays a crucial role
in the central nervous system by influencing synaptic plasticity

and energy homeostasis (Yau et al., 2014; Bloemer et al., 2018;
Formolo et al., 2022). Moreover, in Alzheimer’s disease and
Parkinson’s disease models, adiponectin crosses the blood-brain
barrier to reduce inflammation and oxidative stress (Ng and Chan,
2017; Polito et al., 2020; Formolo et al., 2022). Consequently,
adiponectin may act as a key mediator in exercise-induced retinal
neuroprotection.

Interestingly, our study also observed elevated retinal
adiponectin levels in both sedentary and exercised rd10 mice
compared to wild-type controls. This suggests that the increase
in retinal adiponectin is inherent to the RP pathology rather
than being induced by voluntary exercise. It is plausible that this
elevation represents a compensatory mechanism associated with
retinal degeneration. Despite the absence of increased retinal
adiponectin expression in exercised rd10 mice, adiponectin’s
neuroprotective role may still be plausible through indirect
mechanisms. Circulating adiponectin is known to modulate
inflammation and oxidative stress via activation of its receptors,
AdipoR1 and AdipoR2, which are expressed in the retina (Rice
et al., 2015). Given that previous research has demonstrated
adiponectin-mediated neuroprotection in retinal degeneration
models (Fu et al., 2016), it is possible that systemic adiponectin
exerts protective effects through pathways independent of its direct
increase in retinal tissue. Further studies are needed to evaluate
whether adiponectin receptor activation and downstream signaling
play a role in mediating exercise-induced neuroprotection.

The role of adiponectin in retinal health has been previously
explored in other contexts. For instance, it has been demonstrated
that adiponectin mediates the protective effects of dietary
omega-3 long-chain polyunsaturated fatty acid against choroidal
neovascularization in mice (Fu et al., 2017). These findings
highlight the multifaceted role of adiponectin in ocular diseases.
Our present findings provide novel insights into the molecular
pathways involved in exercise-mediated benefits in RP. By linking
exercise-induced serum adiponectin elevation to photoreceptor
preservation, this study emphasizes the potential systemic
benefits of physical activity for retinal health. However, while
our findings establish a strong correlation between increased
circulating adiponectin and photoreceptor preservation, they do
not conclusively demonstrate that adiponectin is the primary
driver of the observed neuroprotection. Exercise induces a broad
range of systemic changes, including elevated BDNF, IGF-1, and
anti-inflammatory cytokines, which may also contribute to retinal
resilience. Future studies using adiponectin-deficient models
or pharmacological inhibition of adiponectin signaling will be
necessary to determine whether adiponectin plays a direct causative
role in exercise-induced neuroprotection or functions as part of a
broader network of exercise-induced metabolic adaptations.

The observation that retinal AMPK and PGC-1α levels did
not significantly change in response to exercise in our rd10
mouse model of RP warrants further discussion, especially in
light of the significant photoreceptor preservation and increased
adiponectin levels we observed. Several factors could contribute
to this seemingly contradictory result. One crucial consideration
is the cellular composition of the retina and the limitations of
whole-tissue analysis. Photoreceptors, while critical for vision,
comprise only a fraction of the total retinal cell population. In
mice, photoreceptors make up approximately 70% of retinal cells,
with rods being the predominant type (Dieterich et al., 2002;
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Masland, 2012). However, in the rd10 model, where photoreceptor
degeneration is a hallmark, this percentage is lower. Consequently,
when analyzing whole retinal lysates via Western blotting in our
study, changes specific to photoreceptors might be diluted or
masked by the protein content of other retinal cell types. This
“dilution effect” has been recognized as a limitation in retinal
research. For instance, it has been noted that in studying cone
survival in RP models, the use of whole retinal extracts could
obscure cone-specific changes due to the overwhelming presence
of rod-derived proteins (Cronin et al., 2010). One limitation of our
study is that whole-retinal lysates may introduce a dilution effect,
potentially masking photoreceptor-specific changes in AMPK
and PGC-1α expression. Given that retinal tissue comprises
multiple cell types, including Müller glia and vascular endothelial
cells, subtle molecular changes within the photoreceptor layer
may be less detectable in homogenized samples. Future studies
should incorporate immunohistochemical analyses or laser capture
microdissection to better resolve cell-specific expression patterns.
Nonetheless, our findings align with previous reports suggesting
that AMPK and PGC-1α activation in the retina may be influenced
by systemic metabolic regulators rather than being confined to
photoreceptors alone (Herzig and Shaw, 2018). To address this
issue, future studies could employ more targeted approaches.
Laser capture microdissection, for example, allows for the isolation
of specific retinal layers or cell types before protein analysis,
potentially revealing photoreceptor-specific changes in AMPK and
PGC-1α that were not detectable in our whole-retina analysis.

Another factor to consider is the distribution of adiponectin
receptors within the retina. While our study demonstrated
increased adiponectin levels in exercised rd10 mice, the expression
pattern of AdipoR1 and AdipoR2 across different retinal cell types
could influence the observed effects. Recent research has shed light
on the distribution of these receptors in the brain and retina. For
instance, it has been reported that both AdipoR1 and AdipoR2
are widely distributed in adult mouse brains, with expression
primarily in neurons and blood vessels (Clain et al., 2022). In the
retina, adiponectin receptors, particularly AdipoR1, are expressed
in photoreceptors and RPE cells. Studies have shown that AdipoR1
is predominantly localized at the interface between the RPE apical
processes and the distal part of the photoreceptor outer segments,
with significantly higher expression in RPE cells compared to the
neural retina (Lewandowski et al., 2022). This localization suggests
a critical role for AdipoR1 in maintaining photoreceptor function
and retinal health. AdipoR2 is also expressed in the retina, but is
primarily localized in the RPE. The differential expression of these
receptors may result in varying adiponectin-mediated effects across
different retinal cell types. If AdipoR1 and AdipoR2 expression is
relatively low in photoreceptors compared to other retinal neurons,
the adiponectin-mediated activation of pathways such as AMPK
and PGC-1α could be more pronounced in non-photoreceptor cells
(Ruiz et al., 2019; Miyagishima et al., 2021). This could explain why
significant changes might not be observed in whole-retina analyses
but could be present at a cellular level. Moreover, the temporal
dynamics of AMPK and PGC-1α activation in response to exercise
and increased adiponectin levels should be considered (Chen et al.,
2022; Shukal et al., 2022). It’s possible that these proteins undergo
transient changes that were not captured at our chosen time point
for analysis. It has been demonstrated in skeletal muscle that
exercise-induced changes in AMPK and PGC-1α can be rapid and

transient (Brandt et al., 2017; Gurd et al., 2023). Similar dynamics
might occur in the retina, necessitating a time-course study to
fully capture the molecular responses to exercise. Additionally, the
complex pathophysiology of RP in the rd10 model might influence
how retinal cells respond to exercise-induced adiponectin increases
(Egger et al., 2012; Zhou et al., 2024). The ongoing stress and
degeneration in photoreceptors could alter their responsiveness to
adiponectin signaling or activate compensatory mechanisms that
maintain baseline levels of AMPK and PGC-1α despite increased
adiponectin (Kaarniranta et al., 2018).

Given the significant loss of photoreceptors by 6 weeks
(postnatal day P42) in rd10 mice, earlier time points such
as 3 weeks (P21) could provide additional insights into the
progression of neuroprotection. Assessing an earlier stage could
help determine whether exercise-induced benefits emerge before
substantial degeneration occurs and reduce variability associated
with advanced cell loss. However, our study focused on P42
to evaluate the long-term effects of maternal exercise on
photoreceptor survival. Future studies should consider a time-
course analysis to better understand the temporal dynamics of
exercise-induced neuroprotection in RP.

5 Conclusion

This study on exercise-induced neuroprotection in RP
highlights the beneficial effects of voluntary exercise on
photoreceptor preservation in the rd10 mouse model. The findings
demonstrate that exercise significantly increases photoreceptor
nuclei density and outer segment lengths in these mice, suggesting
a protective role against retinal degeneration. Notably, serum
adiponectin levels were elevated in exercised rd10 mice, but
retinal adiponectin levels remained unchanged following exercise,
suggesting that systemic rather than local adiponectin signaling
may contribute to the observed neuroprotection. Since no direct
evidence of adiponectin receptor activation was measured in
this study, future investigations are necessary to determine
whether maternal exercise-induced neuroprotection in RP is
mediated through adiponectin-dependent pathways. Importantly,
the elevated retinal adiponectin levels in both sedentary and
exercised rd10 mice suggest that this increase is inherent to the
RP pathology and not solely exercise-induced. Despite these
promising outcomes, no significant changes were observed in the
expression of AMPK and PGC-1α, key regulators of mitochondrial
biogenesis pathways, suggesting that the neuroprotective effects
may occur through alternative mechanisms. Moreover, total
protein levels alone may not fully capture the activation status of
these pathways. AMPK is activated via phosphorylation at Thr172,
and PGC-1α function is regulated through phosphorylation and
deacetylation. Future studies should assess phosphorylated AMPK
(p-AMPK/AMPK ratio) and phosphorylated PGC-1α, as well as
downstream targets such as NRF1, TFAM, and mitochondrial
respiratory chain genes, to determine whether maternal exercise
influences mitochondrial biogenesis at a post-translational level.
Investigating these regulatory mechanisms would provide deeper
insights into the metabolic effects of exercise in RP models.

While our findings demonstrate that voluntary exercise
preserves photoreceptors in rd10 offspring, the underlying
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molecular mechanisms remain to be fully elucidated. Apoptosis
is a key driver of photoreceptor degeneration in rd10 mice,
and future studies should investigate apoptotic markers such as
cleaved caspase-3 and the Bax/Bcl-2 ratio to determine whether
voluntary maternal exercise confers neuroprotection through the
modulation of apoptotic pathways. Incorporating these molecular
analyses would provide further mechanistic insight into the anti-
apoptotic effects of maternal exercise in retinal degeneration.
These results emphasize the potential of exercise as a therapeutic
strategy for RP and highlight adiponectin as a promising target
for future research aimed at elucidating the molecular pathways
underlying retinal neuroprotection. Although our study focused
on adiponectin signaling, it is possible that additional pathways
contribute to the neuroprotective effects of maternal exercise.
Exercise has been shown to upregulate neurotrophic factors such
as BDNF and CNTF (Supplementary Figure 1), which play
critical roles in neuronal survival and photoreceptor preservation.
BDNF has been implicated in retinal neuroprotection, whereas
CNTF has been shown to support retinal ganglion cell survival.
Additionally, exercise is known to exert anti-inflammatory effects,
which may help mitigate retinal degeneration. Future studies
should evaluate whether these neurotrophic and inflammatory
pathways contribute to the observed photoreceptor preservation
to gain a more comprehensive understanding of the mechanisms
underlying exercise-induced neuroprotection in RP.
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