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This study emulates associative learning in rodents by using a neuromorphic

robot navigating an open-field arena. The goal is to investigate how

biologically inspired neural models can reproduce animal-like learning behaviors

in real-world robotic systems. We constructed a neuromorphic robot by

deploying computational models of spatial and sensory neurons onto a

mobile platform. Different coding schemes—rate coding for vibration signals

and population coding for visual signals—were implemented. The associative

learning model employs 19 spiking neurons and follows Hebbian plasticity

principles to associate visual cues with favorable or unfavorable locations.

Our robot successfully replicated classical rodent associative learning behavior

by memorizing causal relationships between environmental cues and spatial

outcomes. The robot’s self-learning capability emerged from repeated exposure

and synaptic weight adaptation, without the need for labeled training data.

Experiments confirmed functional learning behavior across multiple trials. This

work provides a novel embodied platform for memory and learning research

beyond traditional animal models. By embedding biologically inspired learning

mechanisms into a real robot, we demonstrate how spatial memory can be

formed and expressed through sensorimotor interactions. The model’s compact

structure (19 neurons) illustrates a minimal yet functional learning network, and

the study outlines principles for synaptic weight and threshold design, guiding

future development of more complex neuromorphic systems.

KEYWORDS
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1 Introduction

In recent years, deep learning and artificial intelligence (AI) have achieved remarkable
advancements, especially in pattern recognition, classification, computer vision, and
natural language processing (Voulodimos et al., 2018, Ismail Fawaz et al., 2019, Chowdhary
and Chowdhary, 2020, Yang et al., 2020, Bai et al., 2021, Eskandari et al., 2021). The
remarkable capabilities of these deep learning approaches stem from rigorous training
processes involving extensive datasets and large-scale Artificial Neural Networks (ANNs).
During training, ANNs compare their outputs against labeled ground truth data, and
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errors are backpropagated through the entire neural network.
This process minimizes error via the loss function, achieved
by iterative weight adjustments using optimization algorithms.
Thus, larger datasets and more complex neural networks generally
lead to higher accuracy (Goodfellow et al., 2016a, Devlin et al.,
2018), resulting in a persistent demand for ever-expanding datasets
and network scales (Goodfellow et al., 2016a; Sun et al., 2017;
Devlin et al., 2018). However, this dependence on large-scale data
and labeled data samples introduces critical challenges, including
high power consumption, data scarcity, and reduced flexibility in
autonomous operations. These challenges render ANNs unsuitable
for applications with strict Size, Weight, and Power (SWaP)
constraints from the on-field robots (Goodfellow et al., 2016b,
Devlin et al., 2018). For instance, planetary rovers need to possess
high adjustability and autonomous operating capabilities with
minimal human intervention in environments characterized by
constrained energy sources and communications (Devlin et al.,
2018).

To overcome these challenges, we enhance the autonomous
operating capabilities of intelligent robots by emulating the
associative learning of rodents using neuromorphic computing
and robots. Associative learning is a pervasive self-learning
mechanism observed across diverse animal species. Associative
learning presents the ability to adapt to the environment by
interacting with their surroundings and memorizing concurrent
events (Kandel et al., 2000, Kohonen, 2012, Sun et al., 2019).
The exploration and learning of rodents in an open-field arena
demonstrate classic associative learning behavior. In an open-
field arena, rodents are exposed to distinct stimuli or cues, which
may include visual, auditory, or a combination of sensory inputs.
These stimuli are categorized into conditional and unconditional
stimuli. For example, in the classic Barnes maze (Barnes, 1988,
Barnes et al., 2005), the escape hole is considered the unconditional
stimulus, while the neutral visual cues are treated as conditional
stimuli. Through repeated exposure, the rodents gradually discern
the predictive relationships between the presented cues and
their corresponding outcomes. One specific outcome is a direct
movement trajectory toward the escape hole guided by the visual
cues. The associative learning has significant potential to enhance
robots by enabling them with self-learning and exploration. In
dynamic and unknown environments, such as on the Moon
and Mars, planetary rovers equipped with associative learning
capabilities can explore unknown areas and autonomously adapt
their behavior. Several studies have implemented associative
learning at the simulation level (Eryilmaz et al., 2014, Moon
et al., 2014, Moon et al., 2014, Hu et al., 2015, Liu et al.,
2016, Hu et al., 2017, Yang et al., 2017, An et al., 2019,
Sun et al., 2019). However, these investigations face several
limitations, including the use of small-scale neural networks,
a reliance on purely simulation-based approaches rather than
experimental validations, and the lack of deployment on robotic
platforms to test real-world scenarios (Eryilmaz et al., 2014,
Moon et al., 2014, Liu et al., 2016, Hu et al., 2017, Yang et al.,
2017).

This paper presents a novel associative learning model that
enables a real-time self-learning capability. The self-learning
capability is validated by replicating the spatial learning tasks of
rodents in a circular and open-field arena without pretraining
and labeled datasets. Our associative learning model leverages

Hebbian principles (Kandel et al., 2000, Sosa and Giocomo, 2021;
Zins et al., 2023a; Zins et al., 2023b; Liu et al., 2024), specifically
Oja’s rule, to dynamically adjust synaptic weights and build
associations between sensory neurons and response neurons in
real-time. Our neuromorphic robot system demonstrates adaptive
behavior by memorizing visual cues, such as red color markers,
with vibration signals. In addition to Hebbian learning, our
neuromorphic robot is also equipped with computational models
of place and grid cells forming a cognitive map to assist navigation
in the open-field arena. In biological systems, this cognitive
map is primarily attributed to specialized neurons known as
grid and place cells within the medial entorhinal cortex (MEC)
and hippocampus. Grid cells, located in the medial entorhinal
cortex (MEC), generate a periodic hexagonal firing pattern that
provides a spatial metric for navigation. These cells act as
an internal coordinate system, allowing animals to track their
position and direction as they move through an environment
(Hafting et al., 2005, Moser et al., 2017). Place cells, found
in the hippocampus, fire when an animal occupies a specific
location, creating a cognitive map of the environment. Together,
grid cells and place cells form a neural framework that enables
rodents to navigate complex spaces, remember locations, and
associate sensory cues with specific outcomes (Bush et al., 2014,
Boccara et al., 2019). This biological mechanism has inspired
computational models of spatial navigation, which are now being
applied to neuromorphic systems to enhance robotic autonomy
and adaptability in dynamic environments. Grid cells provide a
multi-scale periodic representation that functions as a coordinate
system. Place cells activate when rodents are in a specific location.
Inspired by how rodents navigate complex environments using
sensory cues, our neuromorphic robot combines visual and
vibration signals to form associative learning. Unlike traditional AI,
our approach requires fewer computational resources (19 neurons)
while maintaining robust learning and navigation capabilities.
Moreover, our associative learning model has been deployed
into a neuromorphic robot and validated at both simulation
and experimental scenarios. In our simulation and experimental
scenarios, the visual cue is designated as a neutral stimulus (CS),
while the vibration signals (US) from the road bumpers are
designed to serve as aversive stimuli. This learned association
enables the neuromorphic robot to proactively memorize the
relationship between two concurrent events: sensing a red wall
and experiencing vibration from the road bumpers simultaneously.
After detecting these two stimuli several times, our neuromorphic
robot memorizes the relationship between the red wall (neutral
stimulus) and the vibration from the road bumper (aversive
stimulus). Consequently, the neuromorphic robot evokes an
avoidance movement strategy when it detects the red color with no
vibration stimulus present.

The contributions of this paper are summarized as follows:

1. Replicate associative learning of rodents in an open-field
arena in both simulation and experimental scenarios.

2. Integrate place and grid cell models into a neuromorphic
robot and associative learning model.

3. Our associative learning model utilizes fewer neurons
(19 neurons) while conducting a functional self-learning
capability observed in rodents.
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2 Development of neuromorphic
robot

The proposed system architecture (Figure 1) is inspired
by animal fear conditioning, a biological mechanism through
which animals learn defensive responses by associating a
neutral cue with an aversive stimulus. We implement a
similar learning mechanism in our neuromorphic robot to
dynamically adapt its navigation behavior. The robot perceives
its environment through a sensor suite comprising a camera,
an inertial measurement unit (IMU), and LiDAR. The camera
provides visual data, analogous to animal vision, by detecting
environmental cues such as colored landmarks. The IMU
senses vertical acceleration, identifying vibrations that indicate
unstable or hazardous terrains, analogous to proprioceptive
cues in rodents. LiDAR captures spatial layout data, similar
to how rodents perceive their environment through tactile
feedback from their whiskers, providing real-time spatial
context.

Visual and inertial signals are encoded into spiking activity
by Leaky Integrate-and-Fire (LIF) neurons within an associative
learning module that implements Hebbian plasticity (specifically
Oja’s rule). Initially, visual cues alone have minimal influence
on the robot’s behavior. However, the simultaneous detection
of visual and vibration signals strengthens synaptic weights
between visual input neurons and a dedicated response
neuron, establishing associative memory akin to classical fear
conditioning. Consequently, previously neutral visual cues
trigger avoidance behaviors even in the absence of vibration.
Concurrently, LiDAR-based odometry data feed a spatial cognition
module, where grid and place cells create and maintain an
internal cognitive map of the environment. Elevated firing
rates of place cells near hazardous locations reinforce the
spatial memory, further influencing navigation strategies.
Ultimately, the navigation control module integrates learned
associative responses with spatial mapping data, continuously
adjusting the robot’s trajectory and ensuring efficient and adaptive
behavior in real-time.

2.1 Computational model of spatial cells

In this work, we construct grid cell and place cell models that
simulate spatial navigation and learning. We define grid cells with
spatial and angular parameters using vector notation, transforming
positions from the physical environment into a cognitive map.
The simulated grid-cell models are based on interference patterns
of three two-dimensional sinusoidal gratings oriented 60◦ apart,
consistent with previous theoretical and computational studies
(Boccara et al., 2019).

Our model accurately simulates neural activity in a virtual
environment. Place cells are influenced by the spatial metric
provided by grid cells and exhibit firing patterns associated with
specific physical locations. The activity of place cells is modeled
as a threshold sum of outputs from multiple grid cells. This
interaction between grid and place cells ensures accurate spatial
representation and navigation.

2.1.1 Grid cell model
In our computational framework, grid cells are defined using

vector notation:

Gj = [sj,θj,φ
1
j ,φ

2
j ], j∈Z+, (1)

where sj is the spacing of the grid cell Gj, θj ∈ [0,π/3] is the
orientation of the grid cell Gj. Each grid cell j has unique spatial
and angular parameters (Zhang et al., 2024a; Zhang et al., 2024b).
The phases φj = [φ

1
j ,φ

2
j ] are set within the interval [0, 2π]

(Bush et al., 2015, Ding et al., 2021), ensuring robust spatial
representation. To make this clearer, sj represents the distance
between grid firing fields, while θj determines the orientation of
each grid field in space. The phases φj introduce unique positional
shifts for each grid cell, contributing to the diversity of the spatial
representation.
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]
, adjusting for preferred orientations and

phase shifts. This transformation can be thought of as similar
to how an animal reorients itself based on new landmarks after
entering a new area. The neural activity for each position, indicated
by the firing rate, is calculated as follows (Hafting et al., 2005):

σ = tan−1
(

κ

(
di

sj
−ζ

))
, (3)

where di represents the distance from the subject’s position to the
grid cell’s preferred location, κ is an intensity control factor, and
ζ adjusts the baseline firing rate. This equation calculates how the
distance from a specific location influences the firing rate, with κ

adjusting the sensitivity of the firing to distance.
When the animal moves to a new environment, external cues

stimulate new place cells, forming a new local place-cell frame,
denoted as C2. The grid-cell frame adjusts accordingly, adapting the
firing field of the grid cell based on C2. The initial place-cell frame
C1 is considered the global frame. The position transformation is
modeled by:

PP1
i = RP1P2 ·P

P2
i +π, (4)

where PP1
i represents the position in the initial place-cell frame,

PP2
i is the corresponding position in the current place-cell frame,

and - is the translation vector between these two frames. The
rotation matrix RP1P2 facilitates the transformation, adjusting the
orientation between the two frames based on the rotation angle ϕ.

RP1P2 =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]T

. (5)
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FIGURE 1

System architecture of the neuromorphic robot integrating multimodal sensory inputs, associative learning, and spatial cognition for adaptive
navigation.

This rotation matrix aligns the coordinate system from the
current place-cell frame to the initial frame, allowing accurate
spatial analysis. This process draws directly from biological
processes observed in mammals, where the hippocampus reorients
itself based on changes in external cues, demonstrating the
flexibility of cognitive maps.

To examine the grid cell’s firing activity, we simulated a
virtual animal path by randomly walking in different virtual
environments, including a circular environment with a radius
of 1.3 m. The origin points of the world frame and the
place-cell frame were assumed to be identical at the center
of the round arena. This setup enabled us to observe and
measure the grid cell’s response under controlled yet dynamic
conditions, mimicking natural movement within a confined space.
The grid cell used to generate the firing field is represented
as:

G = [1.0,π/4, 0.5, 0], (6)

with hyperparameters ζ = 0 and κ = 0.5, modulating the
firing activity. Higher values of κ intensify the activity around firing
centers, while higher ζ values expand the firing fields, adapting the
model to different environmental scales.

Our simulation explores the influence of four primary
parameters—scale (sj), orientation (θj), κ, and ζ —on
the emergence and structure of grid cell firing fields.
Adjustments in these parameters result in more pronounced
hexagonal patterns characteristic of grid cells. Figure 2
demonstrates the flexibility of our model by showing
how varying κ and ζ affect firing activities. Each subplot
represents grid cell activity under different parameter values,
illustrating the range of firing patterns our model can
generate.

2.1.2 Place cell model
Place cells in the hippocampus are critical for spatial navigation

and memory formation. These neurons exhibit firing patterns
distinctly associated with specific physical locations within an
environment. A place cell fires most strongly when the subject is at a
particular area, known as the cell’s “place field.” The firing intensity
of these cells decreases as the subject moves away from this central
location. This unique firing characteristic ensures that each place
cell responds optimally at different locations, creating a detailed
spatial map within the brain.

The activity of place cells is influenced by inputs from grid cells,
which provide a regularized spatial metric. The interaction between
place cells and grid cells can be modeled as follows:

Pc(t) = 2

( N∑
i = 1

GCi(t)

)
, (7)

where Pc(t) represents the activity function of place cells at time t,2
is a step function, and GCi(t) denotes the activity of the ith grid cell.
This equation implies that the place cell activity is a thresholded
sum of the outputs from multiple grid cells, each contributing to
the overall spatial representation in the hippocampus.

2.1.3 Interaction between grid and place cells
This interaction is crucial for supporting associative learning in

neuromorphic systems. By associating specific sensory cues (e.g.,
visual or tactile signals) with spatial representations, the system can
learn to predict outcomes based on past experiences. This capability
mirrors biological associative learning processes and enhances the
neuromorphic system’s adaptability.

To navigate and map its environment effectively, the
hippocampal system utilizes visual landmarks as positional
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FIGURE 2

Simulation of grid cell firing patterns under varying parameters. Each subplot represents the grid cell activity under different scale (S), orientation (θ),
kappa, and zeta values, illustrating the range of firing patterns that our model can generate.

references, which are integrated into the neural representation of
space through the following response function:

LPi =
∑

exp

−
(

di(t)− dk
i (t)

)2

∂2
d

−

(
θi(t)− θk

i (t)
)2

∂2
θ

 . (8)

The LPi represents the activity of a place cell i, which encodes
the position of an individual within the environment. It quantifies
how strongly the cell responds to the current location based on
its preferred spatial properties. Higher values of LPi indicate a
closer match to the cell’s preferred location, making it a key
measure of the cell’s contribution to spatial representation. In
this model, di(t) and θi(t) represent the distance and angle of
the ith landmark relative to the subject, respectively. At the same
time, ∂2

d and ∂2
θ are variance terms that adjust the sensitivity of

the response to positional discrepancies. This function ensures
that the spatial memory is updated accurately by adjusting for
perceptual errors and discrepancies between remembered and
observed landmark positions.

The integration of vibrational cues into the firing mechanisms
of place cells, supported by the structured input from grid cells,
offers a robust framework for understanding spatial cognition. By
adapting the neural responses based on environmental stimuli and
correcting for navigational errors using landmark recognition, this
model underscores the dynamic nature of spatial memory and its
critical role in adaptive behavior.

2.2 Perception of neuromorphic robot

We utilized the Gazebo simulation platform to simulate grid
and place cell behaviors in the neuromorphic robot. Gazebo
is a widely used open-source robotics simulator that provides
high-fidelity physics simulation, sensor modeling, and dynamic
environment interaction, making it ideal for testing and validating
robotic systems in realistic scenarios (Koenig and Howard, 2004).
Its integration with the Robot Operating System (ROS) enables
seamless communication between simulated sensors, actuators,
and control algorithms, facilitating the development of complex
robotic behaviors. Its high fidelity in modeling physics and
dynamic interactions provides an ideal environment for accurately
simulating navigation tasks and sensory scenarios. Its integration
with the ROS (Robot Operating System) framework ensures that
sensor inputs and movement responses closely resemble real-world
conditions.

In conjunction with Gazebo, we employed Rviz, a real-time
visualization tool, to analyze and adjust the grid and place cell
models immediately. Rviz (ROS Visualization) is a powerful 3D
visualization tool integrated with the Robot Operating System
(ROS). It allows users to visualize sensor data, robot models, and
environmental maps in real time, making it an essential tool for
debugging and developing robotic systems (Quigley et al., 2009).
In our work, Rviz was used to monitor the robot’s LiDAR data,
odometry, and navigation paths, providing immediate feedback for
model validation and adjustment. The red points in Rviz indicate
the Light Detection and Ranging (LiDAR) boundary detection,
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FIGURE 3

Simulated and real-time visuals of the neuromorphic robot’s path in
Gazebo (left) and Rviz (right). The red line in Rviz shows
LiDAR-detected boundaries with gaps indicating its 270-degree
range. The green line traces the robot’s path via odometry.

which is limited to 270 degrees, while the green line traces the
robot’s path using odometry data.

Figure 3 displays our comprehensive simulation setup,
showcasing the integration of Gazebo for environment modeling
and Rviz for dynamic data visualization, which together form a
robust platform for developing and testing advanced navigational
strategies based on neuromorphic grid and place cell models.

The cell-based navigation system aims to enhance the
interaction between the robot and its environment through
an associative learning model. We integrated visual and
vibration signals, enabling the robot to connect known
and unknown cues, such as conditional and unconditional
stimuli, in associative learning. Inspired by biological learning
mechanisms, this model strengthens relationships between
multiple sensory inputs, allowing the robot to adapt autonomously
to dynamic environments.

Visual and vibration stimuli are often vital cues in rodent
experiments. In our neuromorphic robot, visual signals from
a stereo camera provide critical environmental information,
while vibration signals from the accelerometer reflect physical
interactions such as terrain changes or collisions. The robot can
learn from past experiences and develop predictive responses by
associating specific visual patterns with vibration signals.

Our experiments aimed to validate the computational models
by simulating the grid and place cell behaviors in a neuromorphic
robot navigating a controlled circular arena. This setup allowed
us to emulate the free movement of a rat and observe the robot’s
behavior in an environment where biological grid cells are known
to generate hexagonal firing fields. By drawing parallels to animal
behavior, we aimed to understand how well these neuromorphic
models perform in real-world scenarios and how effectively they
generate biologically inspired spatial representations. Using the
robot’s navigation system, we set the primary grid cell model
parameters to:

G =
[

8.8,
π

4
, 0.5, 1.2

]
. (9)

we modulated the firing rate’s range and intensity with ζ = 0.3
and κ = 5.0. Concurrently, place cell models were integrated
to process vibrational data, providing additional environmental
context for spatial memory and navigation. The vibration analysis,

particularly when encountering road bumpers, further refined the
place cell response, enhancing the robot’s obstacle detection and
navigation acumen.

The navigational paths and neural activity, as depicted
in Figure 4, demonstrate the robot’s ability to replicate the
characteristic hexagonal pattern of biological grid cells. This
also validates the integration of place cell models informed by
vibrational cues. The dual modeling approach provides robust
empirical support for the computational navigation system,
emphasizing its accuracy and relevance to spatial navigation tasks.

2.2.1 Vibration signal processing
Vibration signal is a crucial indicator for detecting vertical

movements, impacts, and changes in terrain. Vibration was chosen
as the unconditional stimulus (US) due to its saliency, biological
relevance, and practicality. Vibration provides immediate and
unambiguous feedback about physical interactions, such as
collisions or uneven terrain, making it ideal for triggering
avoidance behavior (Kandel et al., 2000). Additionally, vibration
mimics the tactile feedback rodents rely on for navigation,
such as whisker or paw interactions (Diamond et al., 2008).
From a practical perspective, vibration is easily measured using
accelerometers in IMUs, which are standard in robotic systems,
ensuring efficient and reliable integration (Goodfellow, 2016). It
acts as an automatic response mechanism akin to the innate
recognition of danger in animals like rats. For this reason, vibration
is treated as the unconditional stimulus in our model.

The robot’s accelerometer constantly monitors movements
by capturing acceleration data along three axes (x, y, and z).
This study focuses on the z-axis because it is most sensitive to
vertical displacements, such as encountering bumps, drops, or
uneven terrain. When the robot runs over road bumps or similar
irregularities, the acceleration along the z-axis changes rapidly,
resulting in detectable vibrations. To quantify these vibrations, we
compute the total vibrational force using the following formula:

a =
√

x2+y2+
(
z−g

)2
, (10)

where g approximates the gravitational acceleration constant at
9.81m/s2. This calculation provides a scalar magnitude of the
vibrational force exerted on the robot due to irregularities in the
surface texture and obstacles. The IMU measures acceleration along
three axes (x, y, and z), but we focus primarily on the z-axis
for vibration detection because it is most sensitive to vertical
displacements, such as bumps encountered by the robot. The x and
y axes, which capture lateral and longitudinal movements, are less
relevant for detecting vertical vibrations and are therefore not used
in this analysis.

To process the raw IMU data, we apply a low-pass filter
to reduce high-frequency noise, which is common in dynamic
environments due to factors such as motor vibrations, sensor
sensitivity, and external disturbances. The low-pass filter is
designed to preserve meaningful vibration signals while attenuating
high-frequency noise, ensuring that the robot responds only to
significant tactile events. After filtering, the z-axis data is further
smoothed using a moving average filter to reduce sharp fluctuations
and produce a stable signal. This preprocessing ensures that the
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FIGURE 4

Visualization of the robot’s movement paths and the corresponding neural firing activities over increasing data points. The grid and place cell firing
activities provide insight into the robot’s spatial exploration and the computational model’s response.

vibration data is clean and suitable for neural processing, enabling
the robot to reliably detect and respond to significant tactile events.

Here, g represents the gravitational acceleration constant,
approximately 9.81m/s2. This adjustment accounts for the
deviation of the vertical acceleration from the standard
gravitational acceleration, highlighting changes from the expected
pull of gravity. In a perfectly steady environment, the vertical
acceleration z should equal g. However, when the robot encounters
vertical disturbances, such as bumps or drops, the value of z
deviates from g, creating the observed vibration. This formula thus
provides a scalar magnitude of the vibrational force, capturing the
effects of surface irregularities on the robot’s mobility.

In Figure 5A, the raw z-axis data from the inertial measurement
unit (IMU) often contains noise due to the sensor’s sensitivity and
the dynamic nature of the robot’s environment. This noise arises
from several factors, including external environmental influences,
such as rough terrain or sudden impacts, which cause abrupt
changes in acceleration. The IMU sensor is also susceptible to
detecting small vibrations from sources like the robot’s motors,
thermal fluctuations, or electromagnetic interference. The robot’s
movement dynamics, such as rapid changes in speed or direction,
can also contribute to unwanted fluctuations in the data. These
various forms of noise can mask the meaningful signals related to
the robot’s vertical movements, making it necessary to preprocess
the data before using it in the neural network. We apply several
preprocessing steps to prepare the z-axis vibration data for neural
processing.

As shown in Figure 5B, the first step is noise reduction,
the raw IMU data is often contaminated with high-frequency
noise. To reduce this noise, we apply a low-pass filter, which
removes frequencies above a certain threshold while preserving
the lower-frequency components more indicative of significant
vertical movements. In our experimental setup, vertical (z-
axis) acceleration dominated the vibration signal, justifying the
focus of the analysis on this axis. Bumps and uneven ground
produced significantly larger acceleration spikes in the vertical
direction compared to the x or y directions. This finding aligns
with prior studies indicating vertical accelerations as the most
significant indicators of rough terrain. We also analyzed horizontal

(x and y-axis) accelerations to check for cross-axis correlations,
and finding them to be minimal and inconsistent during the
experiment. As a result, lateral motions provided little additional
information and did not enhance the detection of hazardous
vibrations. Thus, sensor fusion of x- and y-axis data with z-axis
data was unnecessary, allowing our analysis to focus exclusively
on vertical acceleration signals. This filtering process can be
represented as:

az,filtered (t) =
∫ t

−∞

e
−
(t−τ)
τlp az (τ) dτ, (11)

where az,filtered (t) is the filtered z-axis acceleration, and τlp is
the time constant of the low-pass filter, which controls the
cutoff frequency.

All IMU acceleration signals were processed through a low-
pass filter to remove high-frequency noise while preserving critical
low-frequency vibration signatures related to terrain irregularities.
We selected a cutoff frequency of approximately 5 Hz, which
corresponds to a filter time constant of roughly 0.2 s. This
specific frequency was chosen because typical significant vertical
acceleration events caused by the robot traversing bumps or
obstacles occur primarily at lower frequencies (around 1–4 Hz).
Thus, the 5 Hz cutoff frequency ensures that relevant motion
signals are clearly captured, while higher-frequency noise and
minor mechanical vibrations are effectively suppressed. The chosen
filter parameters balance signal integrity with noise reduction,
aligning precisely with the robot’s motion characteristics and the
environmental conditions encountered during experiments.

The second step is smoothing, Figure 5C shows the vibration
data can exhibit sharp fluctuations that may not be relevant to
the system’s overall behavior. We apply a moving average filter to
smooth these fluctuations, which averages the acceleration values
over a specified time window, producing a more stable signal. The
smoothed signal is given by:

az,smoothed (t) =
1
N

N−1∑
i = 0

az,filtered (t − i), (12)
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FIGURE 5

Acceleration data over time: raw, filtered, and smoothed representations. (A) Original acceleration data. (B) Filtered acceleration data after noise
reduction. (C) Smoothed acceleration data with a threshold.

where N is the size of the moving window. The resulting smoothed
and filtered z-axis data is then normalized to ensure that it fits
within a suitable range for neural processing. This normalization

process scales the data to a fixed range, typically between 0 and 1,
ensuring consistent input to the neural network regardless of the
magnitude of the raw data.
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After preprocessing, the vibration data is normalized and
integrated into the neural network for further processing. To
handle this data, we utilize a Leaky Integrate-and-Fire (LIF) neuron
model (Abbott, 1999), which is well-suited for simulating the
spiking behavior of neurons in response to time-varying input
signals such as vibration data. The LIF model is particularly suitable
for this task because it integrates time-varying inputs over time and
generates discrete spikes when the membrane potential exceeds a
defined threshold.

These spikes provide an event-driven representation of the
vibration signal, mimicking the way biological neurons process and
transmit information. The behavior of the LIF neuron is governed
by the differential equation:

τm
dV(t)

dt
= − [V(t)−Vreset]+RI(t), (13)

where V (t) represents the membrane potential at time t, Vreset is
the resting membrane potential, τm is the membrane time constant,
R is the membrane resistance, C is the membrane capacitance, and
I(t) is the input current to the neuron. The resting potential Vreset
is set to 0 mV to ensure that the neuron starts from a baseline
state after each spike. The membrane time constant, defined as
τm = RC, which determines the rate at which the membrane
potential decays without input. For this model, the time constant
τm is set to 0.02 s, allowing the neuron to respond to transient
input signals rapidly. This value ensures that the neuron is sensitive
to abrupt changes in the vibration data, which indicate significant
tactile events. The membrane resistance is calibrated to balance the
neuron’s sensitivity and stability, ensuring that the neuron reacts
appropriately to meaningful inputs without spiking excessively due
to noise. The input current represents the processed vibration data
after normalization, scaling the input to a consistent range suitable
for neural processing.

A key parameter for the vibration LIF neuron is the firing
threshold, which determines the membrane potential required to
generate a spike. For this model, the threshold corresponds to
a vibration magnitude of 5 m/s2 or greater. This value reflects
the observation that a magnitude of 5 m/s2 signifies significant
vertical movements or surface irregularities, such as bumps or
drops encountered by the robot. By setting the firing threshold
to align with this magnitude, the neuron spikes only in response
to meaningful tactile events, filtering out minor fluctuations and
noise in the data. The refractory period is set to 0.002 s, allowing
the neuron to quickly reset after a spike and remain responsive to
subsequent input signals.

After being filtered and smoothed, the normalized vibration
data serves as the input to the vibration LIF neuron. This
preprocessing ensures that the vibration LIF neuron reacts more
accurately to meaningful changes in the vibration intensity rather
than to high-frequency noise. When the vibration magnitude
exceeds the threshold, the neuron’s membrane potential crosses
the firing threshold, resulting in a spike. The spiking activity
encodes significant tactile events as discrete spikes, with higher
spike frequencies corresponding to more intense or abrupt changes
in the vibration signal.

The single LIF neuron provides a biologically plausible
mechanism for representing tactile information by encoding

the vibration input as a time-varying spike train. This spike-
based representation captures significant changes in the vibration
intensity while ignoring irrelevant noise, ensuring that only
meaningful variations in the input signal are processed. In the
next stage, the spikes generated by the vibration-sensitive neuron
are combined with visual spikes in the associative learning model.
During training, the simultaneous spiking of vibration and visual
neurons strengthens the synaptic weights associated with the visual
input. This process enables the robot to respond to visual input
alone after training, even in the absence of vibration, simulating the
acquisition of a conditioned response.

The membrane potential and spiking activity of the vibration-
sensitive LIF neuron are shown in Figure 6. These plots illustrate
the neuron’s ability to respond to variations in the vibration
magnitude, producing spikes in response to abrupt or significant
changes in the input signal. This functionality demonstrates
the model’s capacity to capture and encode tactile information
discretely, event-driven, providing a reliable mechanism for robust
sensory integration and learning.

2.2.2 Visual signal processing
Color signals play a crucial role in our model, particularly in

identifying and reacting to specific visual cues, such as the presence
of red objects in the environment. While particular colors may
not inherently hold significance for rats as unconditional stimuli,
associative learning enables the model to give meaning to colors
like red when combined with vibration data as the degree of
association increases.

A stereo camera mounted on the robot captures visual signals
and divides each image into nine distinct regions as shown in
Figure 7. Each of these regions is then processed independently
to extract relevant color information, specifically focusing on the
detection of red. Red may indicate critical environmental features,
such as obstacles or navigation markers. These nine regions are fed
into different neurons, each responsible for processing color data
from its designated area.

Each neuron receives visual input from its assigned region
and integrates the color intensity over time. The neurons are
implemented as LIF neurons, with parameters tuned to match
the temporal dynamics of the visual input. The membrane time
constant is set to τm = 0.05, allowing the neurons to integrate
color signals over a relatively long period. This ensures that
transient red color detections do not result in spurious spikes.
The refractory period τref = 0.002, providing that the neurons
recover quickly enough to respond to sustained visual stimuli while
avoiding excessive spiking.

When a neuron’s membrane potential exceeds a predefined
threshold, it fires a spike, indicating that significant red color
detection has occurred in that particular region. This spike suggests
the presence of red color in one of the nine regions monitored by
the camera. The system can spatially localize the red color within
the robot’s environment by having each of the nine neurons handle
a specific region.

The spikes generated by the neurons from the nine regions
serve as input to the associative learning model, as shown in
Figure 7. These visual inputs are represented as a vector, with
each element corresponding to the spiking activity of one of the
color LIF neurons responsible for its region. This high-dimensional
vector captures the spatial distribution of color in the environment,
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FIGURE 6

Membrane potential and spiking activity of vibration LIF neuron model.

enabling the neural network to associate visual patterns with
corresponding vibration signals for tasks such as navigation or
object recognition.

The red color input to the model is derived by dividing the
visual field captured by the robot’s camera into nine equal regions,
as illustrated in the Figure 7. For each region, the proportion of
red pixels to the total number of pixels is calculated, providing
a measure of the intensity of red in that area. This measure,
referred to as the red pixel rate, is used as the input signal to the
color neurons. Specifically, the red pixel rate for a given region is
computed as the ratio of the number of red pixels detected to the
total number of pixels within that region.

Each red pixel rate is then normalized to ensure consistent
scaling across all regions and is provided as input to a
corresponding color LIF neuron. The color LIF neurons process
these normalized red pixel rates, converting the continuous input
into spiking activity based on the neuron’s firing threshold and
other parameters. This spiking activity captures the presence and
intensity of red color in the respective regions over time, providing
a biologically inspired representation of the visual input. By
dividing the visual field and processing each region independently,
the model achieves spatial localization of visual features, allowing
the neural network to learn associations between specific areas of
the visual field and corresponding tactile stimuli.

This structured input processing ensures that the model can
effectively detect and react to red color patterns, with the spatially
distributed spiking activity serving as a robust input representation
for the associative learning model. This design enables the robot to
leverage spatially localized visual information to enhance its ability
to navigate and recognize objects in dynamic environments.

FIGURE 7

Spatially segmented visual input for associative learning: red pixel
detection across nine regions.

In Figure 8 (left), the processed input signal for each of the
nine areas over the 60-s simulation is shown. This signal represents
the red pixel rates detected in each area, normalized to capture
only significant red pixel presence periods. A threshold of 0.4 was
applied to the normalized data, meaning that only red pixel rates
above this threshold were retained; values below the threshold were
set to zero. This processing step was essential to prevent neuron
activation due to noise or low red pixel rates, ensuring that only
meaningful red pixel detections were passed to the neuron model.

The input signals in Figure 8 (left) vary across different areas,
highlighting the spatial distribution of red pixel detections. Certain
areas, such as Area 1, Area 7, and Area 8, exhibit isolated peaks
in the input signal, indicating sporadic but significant red pixel
detections. In contrast, areas like Area 4, Area 5, and Area 6 display
more frequent high input signals, suggesting consistent red pixel
detections at regular intervals throughout the simulation. Some
areas, such as Areas 2 and 3, show minimal or no high input signals,
indicating little to no red pixel detection in these regions. Overall,
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FIGURE 8

Processed input signal for nine areas (left). Membrane potential of color LIF neurons for nine areas (middle). Spiking activity of color LIF neurons for
nine areas (right).

the processed input signals effectively isolate significant red pixel

detection periods for each area, providing a clear and noise-free

input to the neuron model.

Figure 8 (middle and right) shows the membrane potential and

spiking activity of the color LIF neurons corresponding to each of

the nine areas. The membrane potential plots on the left depict the

voltage response of each neuron to the input signals. In contrast,

the spiking activity plots on the right indicate moments when each

neuron fires, represented as a binary output (0 for no spike, 1 for

spike). These plots illustrate the neuron model’s response to high
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red pixel rates, highlighting the relationship between input intensity
and neuron activation.

The neurons exhibit distinct responses depending on the
frequency and intensity of the input signals. In areas with
intermittent high input signals, such as Area 1, Area 7, and Area
8, the neurons show occasional spikes corresponding to the brief
input peaks observed in the processed signal. Outside these peaks,
the neurons remain at resting potential, demonstrating that they
respond selectively to high red pixel rates while remaining inactive
without significant input. In areas with frequent and sustained high
input, such as Area 4, Area 5, and Area 6, the neurons display
prolonged periods of elevated membrane potential and consistent
spiking. This continuous activation aligns with the consistent red
pixel detections in these areas, as shown in the input signal. For
areas with minimal input signal, such as Area 2 and Area 3, the
neurons remain at resting potential with little to no spiking activity.
This indicates that the neuron model effectively ignores low or
insignificant input values, as intended.

These results demonstrate that the color LIF neuron model
responds selectively to high red pixel rates, spiking only when
the input exceeds the predefined threshold. The processed input
signal successfully filters out low red pixel rates, ensuring neurons
activate only in response to significant stimuli. This selective
response reduces noise and simulates biologically realistic behavior
in neuromorphic models, validating the model’s effectiveness
in detecting and responding to meaningful visual stimuli in
dynamic environments.

2.2.3 Integration of sensory inputs
The integration of sensory modalities in our system is achieved

through a biologically inspired neural framework, where visual and
tactile signals are encoded as spiking activity and combined using
Hebbian learning to form associative representations. This section
details the technical mechanisms by which the neuromorphic
robot processes and merges camera and IMU signals to generate
adaptive behavior.

Visual signals are captured by the stereo camera and divided
into nine predefined spatial regions. For each region, the red pixel
intensity is calculated and normalized. These values are then fed
into nine separate Leaky Integrate-and-Fire (LIF) neurons, each
responsible for one region. The membrane potential of each LIF
neuron integrates the incoming red intensity over time, producing
spikes when the accumulated potential exceeds a defined threshold.
This design ensures spatial and temporal encoding of red cues,
simulating the processing of salient visual stimuli. Meanwhile,
vibration signals from the IMU are focused on the z-axis, capturing
vertical acceleration deviations indicative of surface irregularities.
After filtering and smoothing the raw data (as described in Section
2.2.1), the signal is normalized and provided as input to a dedicated
vibration-sensitive LIF neuron. This neuron also encodes the
magnitude of tactile events as spike trains, firing only when the
vibration intensity surpasses a threshold (set at 5 m/s2 in our
implementation).

The associative learning module receives the spiking output
from both the color LIF neurons (Conditioned Stimuli, CS) and
the vibration LIF neuron (Unconditioned Stimulus, US). These
inputs converge on a shared response neuron, which integrates the
co-occurrence of spikes. Initially, the synaptic weights from the
vibration neuron to the response neuron are set high, ensuring

FIGURE 9

Simulation of robot perception: (A) camera view. (B) Overhead view
with LiDAR detection.

immediate reaction to tactile danger. In contrast, the visual pathway
has low initial weights, preventing the robot from reacting to
color alone. Over time, when both visual and vibration spikes
are detected simultaneously, the synaptic weight from the visual
input is increased using Oja’s rule, a stabilized version of Hebbian
learning. This weight update mechanism enables the robot to
gradually learn to associate visual cues with potential tactile danger.

To ensure real-time operation, all inputs are processed frame by
frame in synchrony. The system utilizes ROS to synchronize IMU
and camera data streams, aligning their timestamps to guarantee
accurate correlation of multimodal inputs. The spiking outputs of
the neurons are evaluated during the experiment which enabling
the robot to react promptly to learned associations. Once the
learned synaptic weight for a visual input exceeds a threshold, red
alone is enough to activate the response and trigger the output
neurons. This output is interpreted as an avoidance command and
is relayed to the navigation control system. The robot then performs
an avoidance maneuver (e.g., backward movement or rotation)
until the red cue is no longer in its field of view, while the spatial
memory system, constructed from grid and place cells, contributes
to environmental context. Place cells that represent locations near
high-vibration zones become highly active, reinforcing the robot’s
decision to avoid those areas even if the visual cue is ambiguous.
This integrated sensory and spatial processing pipeline allows the
robot to make informed, adaptive decisions in real-time.

In Figure 9, the robot encounters a scenario with a red wall as a
visual cue and simulated ground vibrations. This test environment
assesses the robot’s capability to prioritize visual information in
decision-making processes, remarkably when vibrations suggest an
uneven area. The associative learning model adjusts the weight
of visual cues in the robot’s navigational method, reflecting an
increased reliance on visual information when vibrations are
detected.

The real-world experiments were conducted in a controlled
arena to simulate features and obstacles. As depicted in Figure 10,
the arena spans 2.6 m in diameter, with the neuromorphic robot
starting at the center each time. Road bumpers are placed to test the
robot’s navigation and sensory processing capabilities in a complex
setting. The layout includes various navigational challenges and
is annotated with dimensions and critical elements, such as the
neuromorphic robot and road bumpers, to provide a scale and
context.

Our real-world experimentation involved evaluating the
neuromorphic robot’s navigational method within an open field
arena with high walls detectable by the robot’s LiDAR system. This
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FIGURE 10

Experimental setup and robot hardware configuration: (A) Overhead view of the 2.6 m × 2.6 m testing environment with road bumpers and the
robot. (B) Close-up of the LIMO robot with labeled sensors, including IMU, camera, LiDAR, and track system.

setup provided a continuous boundary simulating the operational
environment that grid and place cells theorize to navigate. The
testing emphasized the robot’s ability to utilize its onboard sensors
for orientation and navigation in environments that mimic real-
world scenarios. We optimized the robot’s power management
systems and adapted operational strategies to address challenges
such as energy constraints and data limitations encountered
during these tests.

2.3 Motion plan of neuromorphic robot

The neuromorphic robot combines data from LiDAR and
IMU to achieve precise path planning and obstacle avoidance.
LiDAR offers detailed environmental mapping, while IMU supplies
movement dynamics and orientation data. These sensory inputs
enhance the robot’s real-time trajectory planning, ensuring safe
navigation through complex environments.

The neuromorphic robot integrates LiDAR and IMU data to
achieve precise path planning and obstacle avoidance, relying on
a structured movement logic that continuously adapts based on
sensory feedback. The process begins with the robot entering an
initial “Move” state, from which it continues looping as long as the
ROS is active. This design enables the robot to dynamically respond
to changing environmental inputs without requiring manual
intervention. The robot movement logic is shown in Algorithm 1.

Within this loop, the LiDAR is used to detect boundaries.
When no boundary is identified, the robot proceeds without
altering its path. However, if a boundary is detected, the robot
determines the direction of the furthest point and plans an optimal
escape route around obstacles. Additionally, the IMU continuously
monitors vibrations to identify irregular surfaces or obstacles.
Upon detecting vibration, the robot initiates a rotation, setting its
angular velocity to 1.5 rad/s while reducing its linear velocity to

zero. This rotation continues for 2 s, allowing the robot to evaluate
its surroundings and adjust its orientation as necessary.

After rotating, the robot checks whether it has successfully
avoided the obstacle. If so, it re-aligns its path and resets the
angular velocity to its original state, ensuring that it can regain
its intended direction. The robot then uses the LiDAR to re-
check for boundaries; if no boundary is detected, it moves forward,
introducing random variations in angular velocity to prevent it
from becoming stuck in repetitive patterns. When a boundary is

ALGORITHM 1 Movement Logic of the Robot’s Self-Navigation
1: Initiation
2: Move:
3: while ROS is running do
4: if The distance between robot and the boundary is less

than 0.35m then
5: continue
6: end if
7: Determine furthest_point_angle
8: if vibration’s intensity is larger than 5 (Z-axis acceleration)

then
9: Rotate:
10: Set angular velocity to 1.5 rad/s, linear velocity to
0
11: Rotate for 2 seconds, then stop
12: else
13: if avoiding obstacle then
14: Re-align path:
15: Reset angular velocity to changing randomly
16: end if
17: if Lidar doesn’t detect the boundary then
18: Move:
19: Set linear velocity as 0.3 m/s and angular

velocity changing randomly
20: else
21: Adjust direction towards the furthest point
22: end if
23: end if
24: end while
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FIGURE 11

Robot navigation strategy: boundary and road bumper avoidance.
Left: Boundary avoidance using LiDAR data, selecting the longest
distance for navigation within a 0–270◦ range. Right: Road bumper
avoidance strategy, adjusting movement direction based on
detected obstacles.

detected, the robot adjusts its direction toward the furthest detected
point, ensuring it moves toward open space.

The robot continuously adjusts its linear velocity and direction
until a clear path is found, repeating this process to maintain
efficient navigation while avoiding obstacles. This movement logic
centers around the seamless integration of LiDAR and IMU
data, allowing for robust obstacle detection and avoidance. The
LiDAR maps the environment and identifies boundaries like
Figure 11 (left), while the IMU detects surface irregularities
through vibrations like Figure 11 (right). The combination of
these inputs enables the robot to make informed decisions on
when to rotate, adjust velocity, or proceed along a clear path.
By alternating between these states, the robot effectively plans its
trajectory, navigates obstacles, and maintains a safe and efficient
movement pattern through complex environments. The inclusion
of angular velocity adjustments and random movement variations
helps ensure that the robot does not become stuck, allowing it to
continuously explore even challenging terrains.

3 Associative learning using the
neuromorphic robot

3.1 Integration of visual and vibration
inputs

During our experiments, the robot was programmed to alter its
path whenever the detected vibration exceeded a threshold value of
5 m/s2. This threshold was determined based on preliminary tests
identifying vibration intensities characteristic of risky areas, such as
near road bumpers or uneven terrain.

As depicted in Figure 12, the robot effectively avoided entering
high-vibration zones. The plotted trajectory illustrates how the
robot approaches these zones but re-routes upon detecting high
vibration, thereby avoiding the “Road Bumpers” area. This behavior
highlights the robot’s dynamic response to sensory inputs and
its potential to enhance safety and operational efficiency in
autonomous navigation.

Our approach to enhancing the robot’s navigational capabilities
involved developing an associative learning algorithm that
integrates visual and vibration sensory inputs. This algorithm
enables the robot to learn from environmental interactions by

FIGURE 12

The trajectory shows the robot avoiding areas with vibration,
marked as “Road Bumpers.” The avoidance behavior is triggered
when vibration is detected, prompting the robot to reroute.

associating specific colors with vibration levels. As the robot
explores, it learns to recognize and react to environmental cues that
indicate potential hazards or areas of interest.

During the initial phases of exploration, the robot uses
its camera to detect specific colors associated with different
terrain textures or obstacles. Simultaneously, the vibration sensors
measure the intensity of ground vibrations, which correlate with
different types of surfaces (e.g., road bumpers).

When the robot encounters high vibration intensities, it
associates these vibrations with visual cues at those locations. Over
time, through repeated exposure and feedback, the robot learns to
predict potential obstacles or uneven terrain based solely on visual
information, even when vibrations are not present.

3.2 Hebbian learning and Oja’s rule

The core of our approach lies in the associative learning model
in Figure 13, which integrates visual and vibration signals to enable
the robotic system to learn and respond to complex environmental
stimuli. By employing Hebbian learning principles through Oja’s
rule, the model strengthens connections between neurons co-
activated by these sensory inputs, allowing the system to anticipate
and adapt to situations based on past experiences and interactions
with the environment.

This associative learning model is implemented in Nengo
as a network of LIF neurons. Nengo is a neural simulator
and development framework that enables the design, simulation,
and deployment of large-scale neural models. It supports a
wide range of neuron models, learning rules, and hardware
backends, making it a versatile tool for neuromorphic computing
research (Bekolay et al., 2014). In our work, Nengo was used to
implement the associative learning model, leveraging its support
for Leaky Integrate-and-Fire (LIF) neurons and Hebbian learning
mechanisms. It is structured to process inputs from visual and
vibration sources and integrate them for a cohesive understanding
of the environment. The visual processing stage consists of nine
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FIGURE 13

Associative learning model architecture: processing visual and vibration inputs through LIF neurons, Hebbian Learning, and response generation.

input nodes, each corresponding to a distinct region of the visual
field captured by the robot’s camera. Each node feeds into a
dedicated LIF neuron that processes the color information within
its assigned region. These neurons are tuned to detect the presence
of red, a significant environmental feature, and output spiking
activity that reflects the presence or absence of red in their region.
The vibration processing stage consists of a single vibration LIF
neuron that receives input from the z-axis accelerometer, encoding
tactile information into spiking activity that represents the intensity
and timing of vibrations.

In summary, the implemented spiking neural network (SNN)
utilized a layered architecture modeled with Leaky Integrate-and-
Fire (LIF) neurons to replicate biologically plausible neuronal
behaviors. The input layer comprised 10 nodes, including nine
encoding visual color cues (conditional stimulus) and one encoding
vibration cues (unconditional stimulus), they were fully connected
to a second layer of 10 LIF response neurons. Each LIF neuron
integrated incoming signals into its membrane potential until
reaching a predefined threshold voltage (Vth ≈−50 mV), at which
point it emitted a spike and reset its potential (Vreset ≈ −65
mV). The neuron parameters included a membrane time constant
(τrc = 20 ms) and a refractory period (τref = 1 ms), chosen based on
typical cortical neuron dynamics to realistically capture temporal
patterns relevant for associative learning. Synaptic weights from
input nodes to response neurons were initialized close to zero
and adapted in real-time using Hebbian plasticity via Oja’s
rule, a stabilized Hebbian learning variant. The learning rate
(η = 1 × 10−4) was intentionally small to ensure gradual,
stable weight adjustments conducive to robust associative learning.
The LIF neurons projected convergently onto 9 response neurons,
then aggregating their activity into one consolidated output signal.
Simulations were executed with a 1 ms timestep to maintain
high temporal accuracy in spike timing and neuronal dynamics.
Each individual learning trial lasted 30–60 s, with experiments
typically running up to 3 min in total. Throughout the trials,
network inputs were dynamically updated using dedicated Nengo

nodes, which continuously computed real-time red pixel ratios and
vibration intensities from the robot’s camera and inertial sensor
readings respectively.

At the core of the model, the associative learning layer
integrates visual and vibration inputs. Each associative neuron
receives input from a specific visual neuron (corresponding to a
region of the visual field) and the vibration neuron. To reflect
the functional roles of the Unconditioned Stimulus (US) and
Conditioned Stimulus (CS), their synaptic weights are initialized
to different values. The weights for the US pathway are set to
a high value, typically between 0.8 and 1.0, ensuring that the
vibration input alone can reliably activate the associative neurons
and produce an output at the start of training. This represents the
innate nature of the US, which inherently elicits a response. In
contrast, the weights for the CS pathway are set to a very low value,
typically between 0.01 and 0.05, ensuring that the color input alone
is insufficient to activate the associative neurons at the beginning.
This disparity reflects the unconditioned status of the CS at the start
of training and prevents premature responses to the color input.

As training progresses, the weights for the CS pathway increase
dynamically through Hebbian learning whenever the visual and
vibration neurons are co-activated. The rate of this increase
depends on the frequency of co-activation events and the learning
rate parameter. Over time, as the CS weights grow, the color input
contributes more significantly to the activation of the associative
neurons. Eventually, the CS weights reach a threshold where the
color input alone is sufficient to activate the associative neurons
and trigger the output. This transition represents the successful
acquisition of a conditioned response, where the model can
respond predictively to visual cues in the absence of tactile input.

The output neuron aggregates activity from the associative
neurons and produces a spiking response when the summed
activity exceeds a set threshold. Initially, only the vibration input
is strong enough to surpass this threshold, as the CS weights are
too low to contribute significantly. However, as the CS weights
grow, the color input becomes capable of independently driving the
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output neuron’s activity. When the output neuron spikes, it triggers
the robot’s avoidance behavior, which involves moving backward
in response to detecting the red wall. This behavior continues
until the red color disappears from the robot’s field of vision.
This dynamic output ensures that the robot adapts its behavior
based on the learned association between visual and tactile inputs,
allowing it to respond predictively to visual cues even in the absence
of tactile input.

By carefully setting the initial weights for the US and CS
pathways and adjusting them through learning, the model ensures
that the associative learning process reflects both the innate
significance of the US and the acquired significance of the CS.
This weight dynamic, combined with the spiking-based encoding
of sensory inputs, enables the model to integrate visual and tactile
information effectively, supporting adaptive robotic behavior in
complex environments. The use of an output neuron to control
the robot’s backward movement further demonstrates the ability
of this model to bridge the gap between learned associations and
real-world robotic actions.

The initial weights and threshold values of the color LIF
neurons were determined to balance sensitivity, stability, and
learning efficiency. The high initial weights on the US pathway
ensure that the vibration input reliably activates the associative
neurons at the start of training, establishing the robot’s baseline
reflexive response. In contrast, the low initial weights on the CS
pathway prevent premature responses to visual input and focus
learning on the co-occurrence of US and CS. Threshold values
were tuned to ensure proper activation dynamics, with moderate
thresholds for associative neurons to respond to combined inputs
and higher thresholds for the output neuron to aggregate activity
and trigger behavior only when necessary. These parameters are
interdependent: increasing the CS weights enables visual inputs
to surpass neuron thresholds after sufficient training, driving the
behavioral transition from reflexive to learned responses. Together,
these design choices support the gradual and biologically plausible
acquisition of conditioned behavior.

The detailed structure and processes of the model are
formalized in Algorithm 2. It provides a step-by-step breakdown
of the initialization, input encoding, weight updates using Oja’s
rule, and the behavioral transition from pre-learning (vibration-
driven responses) to post-learning (color-driven avoidance). This
algorithm highlights the integration of sensory inputs, the
dynamics of weight adjustments, and the generation of adaptive
robotic actions.

In developing the associative learning model, we studied
the principles for determining synaptic weights and threshold
voltages of neurons. These parameters were optimized to ensure
robust learning and navigation performance while minimizing
computational complexity. The synaptic weights were initialized
using Hebbian principles, with the unconditional stimulus (US)
pathway assigned higher weights to ensure reliable activation
during initial training. The threshold voltages were tuned to
balance sensitivity and stability, ensuring that neurons respond
appropriately to meaningful inputs without excessive spiking.
These design guidelines provide a foundation for developing more
complex associative learning models in future work.

The effectiveness of the associative learning model is quantified
in Algorithm 2, which charts the increase in the weight assigned

ALGORITHM 2 Associative Learning with Color and Vibration
1: Inputs: Ci: Visual inputs (i = 1, 2, ..., 9), V: Vibration input
2: Initialization:
3: Set up 9 visual LIF neurons for Ci, each corresponding to a

region of the visual field.
4: Set up 1 vibration LIF neuron for V, encoding the information

from the IMU data.
5: Define 10 associative LIF neurons, each receiving:
6: Weighted input from one color neuron: wCS · Ci

7: Weighted input from the vibration neuron: wUS · V
8: Initialize synaptic weights:
9: wUS ∈ [0.8, 1.0] to ensure vibration can trigger associative

neurons initially.
10: wCS ∈ [0.01, 0.05] to prevent premature responses to color.
11: Set up an output that aggregates activity from all associative

neurons.
12: for each time step t do
13: Encode Ci and V into firings via LIF neurons.
14: Compute associative neuron input:

Inputj = wCS · Ci +wUS · V

15: Update weights with Oja’s rule:

1w = η · y · (x− y ·w)

16: Aggregate associative activity in the output neuron:

Output =
10∑
j=1

Activity of Associative Neuronj

17: if Output neuron firings then
18: Move backward and avoid walls to prevent red from

reappearing.
19: else if V > 0 (vibration detected) then
20: Avoid walls and move away from bumpers.
21: end if
22: end for

to color cues over time. As the robot’s exposure to color-
linked vibration areas increased, so did its reliance on visual
cues for navigational decisions, demonstrating successful sensory
integration and improved autonomous navigation.

The training process for the associative learning model is
carefully structured to guide the system in forming a robust
association between visual and tactile stimuli. The process
consists of four distinct phases, designed to shape the synaptic
weights between sensory and associative neurons gradually
and systematically.

In the first phase, only the US, represented by the vibration
signal, is presented. The vibration signal activates the vibration
neuron and subsequently the associative neurons due to the high
initial synaptic weights [WUS ∈ (0.8, 1.0)] on the US pathway. This
phase establishes the robot’s baseline reflexive response, where it
reacts to tactile inputs by avoiding road bumpers and walls. During
this phase, the weights from the CS pathway remain unchanged, as
the visual neurons are not activated.

In the second phase, only the CS, represented by the red
color signal, is introduced. The visual neurons spike in response
to the red signal, but the associative neurons remain inactive
due to the low initial weights [WCS ∈ (0.01, 0.05)] on the CS
pathway. This phase ensures that the robot does not respond to
visual cues alone at the beginning, confirming that the model starts
from a proper baseline where the CS does not elicit a response
without prior learning.

The third phase involves the simultaneous presentation of
the US and CS signals, which is the critical stage for associative
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FIGURE 14

Evolution of membrane potentials, spiking activity, and conditioned stimulus (CS) weight over time. (A) Color membrane potential. (B) Color spiking
activity. (C) Vibration membrane potential. (D) Vibration spiking activity. (E) CS weight change.

learning. Both the vibration neuron and the visual neurons spike
together, leading to co-activation of the associative neurons. This
co-activation triggers synaptic weight updates through Oja’s rule,
defined as:

1W = η · y ·
(
x− y · w

)
, (14)

where x represents the pre-synaptic activity from the visual or
vibration neurons, y represents the post-synaptic activity of the
associative neurons, and η is the learning rate. Over repeated
training trials, the weights on the CS pathway (WCS) increase as the
model strengthens the connections between red color signals and
the associative neurons. This phase ensures that the robot begins

to associate the red signal with the avoidance behavior initially
triggered by the vibration signal.

In the final phase, only the CS signal is presented to test
whether the learned association has been established. By this
stage, the weights on the CS pathway have increased sufficiently
(WCS > θactivation), enabling the associative neurons to become
active in response to the red signal alone. The activity of the
associative neurons triggers the output neuron, leading to the
robot’s avoidance behavior. The robot moves backward while
avoiding walls to ensure that the red color disappears from its
visual field. This phase demonstrates the successful acquisition of
a conditioned response, where the robot responds to visual cues
independently of tactile input.
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FIGURE 15

Simulation of associative learning in the robot: evolution of environment perception, camera input, and navigation behavior. (A) Before training
(0–20 s). (B) During training (20–40 s). (C) After training (after 40 s). (D) Camera view: red wall. (E) Camera view: bumpers. (F) Camera view: red wall.
(G) Behaviour: random. (H) Behaviour: avoidance. (I) Behaviour: turning back.

FIGURE 16

Robot trajectory with associative learning model. (A) Robot route before training (route from 0 to 10 s). (B) Robot route during training (route from
40 to 50 s). (C) Robot route after training (route after 50 s).

Through these structured training phases, the model
transitions from a reflexive response to tactile inputs to
an adaptive response driven by learned visual cues. This
process mirrors associative learning in biological systems,
where repeated pairing of conditioned and unconditioned
stimuli strengthens neural connections, enabling predictive
responses. By employing Hebbian learning principles
through Oja’s rule, the model effectively integrates visual and
tactile information to support adaptive robotic behavior in
complex environments.

3.3 Experimental validation of associative
learning using neuromorphic robot

The Figure 14 tracks the associative strength between the color
input from this single area and the learned response. This weight
increases over time, but only when both the color and vibration
neurons spike simultaneously. When the color and vibration
inputs coincide and activate their respective neurons jointly, the
synaptic weight associated with the color input for this neuron
increases. This weight increment symbolizes the strengthening of
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FIGURE 17

Success rate, collisions times, and path length during the experiment.

the association between the CS and the US over time. As the weight
grows, the neuron becomes more responsive to the color input
alone, even without vibration, indicating a successful conditioning
process.

In this experiment, the color input from one specific area (of
the nine areas monitored) is treated as the CS. Initially, this color
input does not elicit a response from the neuron. However, by
associating it with the vibration input, which serves as the US, the
model gradually learns to increase its response to the color input
alone, simulating the process of associative learning. The weight
change shown here represents the association strength for a single
neuron corresponding to this specific color area.

The five subplots depict color membrane potential (a), color
spiking activity (b), vibration membrane potential (c), vibration
spiking activity (d), and weight of CS over time (e). The color
membrane potential plot represents the voltage response of the
neuron receiving the color input.

A spike is generated when the membrane potential exceeds the
neuron’s firing threshold, shown in the color membrane potential
plot. Each spike represents a moment when the color input was
sufficiently strong to activate the neuron, simulating the neuron’s
response to this specific area’s color input. Similarly, the vibration
membrane potential and vibration spiking activity plots illustrate
the response of the neuron receiving the vibration input. Unlike
the color input, the vibration input displays more variability in
membrane potential and more frequent spiking, reflecting the
dynamic nature of the unconditioned stimulus.

Figure 15 illustrates the progression of the robot’s behavior
during an associative learning task in the simulation environment,
showcasing its environment, camera view, and trajectory across
three distinct phases: before training, during training, and after
training. In the pre-training phase, the robot navigates the
environment with random movement, avoiding collisions with the

red wall but showing no adaptive response to the blue bumpers. Its
trajectory during this stage reflects a lack of association between
the visual cue (red wall) and tactile feedback (bumpers), leading
to repeated interactions with the bumpers. During the training
phase, the robot begins to associate the feedback from the bumpers
with the red visual cue, as evidenced by hesitation near the
bumpers and increased exploration in their vicinity. Post-training,
the robot demonstrates a significant behavioral shift, proactively
avoiding areas near the red wall. The trajectory becomes more
deliberate and adaptive, steering clear of obstacles based on the
learned association. The camera views across the phases reinforce
this progression, capturing the robot’s evolving perception of its
environment. This adaptive behavior highlights the effectiveness of
integrating associative learning into the robot’s sensory processing,
enabling it to navigate complex environments by using prior
experiences to predict and avoid undesirable outcomes.

To rigorously evaluate our associative learning model, we
performed structured real-world experiments in a controlled
indoor arena. The experimental design comprised three clearly
defined conditions: (1) baseline navigation (control condition),
where the robot navigated an arena containing red walls and
bumpers without associative learning enabled (no synaptic weight
updates), establishing baseline metrics; (2) associative learning
phase, where the robot repeatedly encountered simultaneous
visual cues, allowing active updates of synaptic weights using
Oja’s Hebbian learning rule; and (3) post-learning navigation
test, where the robot navigated relying solely on previously
learned visual associations without vibration cues, assessing learned
avoidance behaviors.

Figures 16 illustrate the robot’s navigation patterns before and
after associative learning. In the pre-training phase, Figure 16A,
the robot’s route is primarily determined by its ability to avoid
obstacles represented by the red wall. The plotted trajectory shows
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TABLE 1 Success rate, collisions times and path length during the experiment.

Phase Success rate
(%)

Collisions Avg. path length
(m)

Learning time
(trials)

Synaptic weight
change

Baseline 35± 12 8± 3 12.0± 5.0 – –

Learning 75± 10 3± 2 9.0± 3.5 10–15 +0.20 (final avg. 0.70)

Post-learning 90± 5 1± 1 7.0± 2.0 – –

that the robot successfully avoids the red wall but does not alter
its behavior when encountering the blue bumpers. The robot
repeatedly traverses the bumpers, as it has not yet learned to
associate the red visual cue with the tactile feedback from the
bumpers. This behavior reflects the unconditioned state of the
model, where the robot relies solely on vibration inputs to inform
its responses.

In contrast, after training Figure 16C, the robot demonstrates
a learned association between the visual cue (red color) and the
tactile feedback from the bumpers. The plotted trajectory shows
a significant adaptation in behavior: upon detecting the red color
threshold near the bumpers, the robot proactively alters its route
to avoid the area altogether. This change in behavior indicates that
the robot has successfully learned to associate the red color with the
vibration feedback. As a result, the robot no longer needs to rely on
tactile feedback alone to modify its path. Instead, it uses the visual
cue as a predictive signal to avoid regions previously associated with
undesirable tactile events.

Throughout the trials, the input variables continuously
recorded were visual stimuli (red pixel intensity), vibration
magnitude (z-axis IMU acceleration), and spatial data (LiDAR-
based distance mapping). Performance effectiveness was
quantitatively evaluated using metrics including avoidance
success rate (percentage of collision-free trials), number of
passing the bumpers per trial, average path length (navigation
efficiency), learning time, final average synaptic weights. Statistical
analysis (paired t-tests) compared baseline and post-learning
phases. Experimental results demonstrated clear learning effects,
summarized in Figure 17 and Table 1. After learning, success
rates significantly increased, collisions decreased, path efficiency
improved, and stable associative learning typically occurred within
approximately 10–15 exposure trials.

To evaluate the robot’s learning capability, we conducted 10
real-world trials in a circular arena with road bumpers and red-
colored walls placed in one quadrant. The robot’s goal was to
navigate while avoiding the bumpers, using vision and vibration
cues learned through associative conditioning. Learning accuracy
was computed in 3-s intervals using the ratio:

Learning Accuracy =
Number of Non− Bumper Points

Total Points in 3s Interval
(15)

This metric reflects how often the robot avoided collision
based on its internal learned associations, independent of direct
bumper contact. As shown in the Figure 18 and Table 2, the
robot exhibited a consistent and biologically plausible learning
curve across all trials. Learning accuracy rose quickly in the first
10–20 s of each trial, then plateaued after approximately 30 s.
Most trials reached stable performance levels between 83 and 93%,
with an overall final average accuracy of 89.1% ± 3.1% (95% CI).

On average, the robot required 5.6 ± 1.1 trials to achieve two
consecutive bumper-free intervals. Navigation efficiency, measured
as normalized path length to avoid the quadrant, improved by an
average of 24.3%± 6.4% from pre-learning to post-learning. Failure
cases, defined as trials where the robot collided with bumpers after
30 s, were rare, occurring in 1 of 10 tests. This performance trend
supports the effectiveness of the associative learning framework and
mirrors patterns observed in animal learning tasks.

We conducted a series of simulation and real-world
experiments. These experiments were designed to replicate
rodent-like associative learning in the neuromorphic robot and
evaluate its performance in navigating an open-field arena.
In Table 3, we provide a summary of the experimental setup,
parameters, procedures, and outcomes for each experiment. This
comprehensive overview ensures reproducibility and highlights
the key findings of our study.

4 Discussion

The adaptive behavior demonstrates the effectiveness of
integrating associative learning into the robot’s sensory processing
and decision-making framework. By combining visual and
vibration inputs, the robot improves its ability to navigate complex
environments, avoiding obstacles based on prior experiences rather
than immediate feedback alone. The learned association enables the
robot to respond proactively to visual cues, reducing the likelihood
of collisions and improving its overall navigation efficiency.

The experiments highlight the significance of associative
learning in mimicking biological spatial cognition. By employing
Hebbian learning principles, the robot develops a dynamic
internal representation of its environment, similar to how
animals use sensory integration to navigate and adapt. Before
training, the robot’s navigation was reactive, driven by immediate
sensory inputs. After training, the robot exhibits predictive
and adaptive behavior, demonstrating the ability to use
learned associations to inform its decisions. This transition
underscores the model’s capacity for real-time learning and
adaptation, critical for autonomous navigation in dynamic and
unpredictable environments.

In the context of our research on neuromorphic robotics,
understanding how our methods align with or diverge from other
neuroscience and neuromorphic engineering studies is essential.
Table 4 provides a comparative overview of various studies focusing
on neuronal tasks, learning methods, and validation techniques.

Despite our progress, challenges remain, such as the
computational demands of simulating complex neural mechanisms
and the need for enhancements to perform reliably in unpredictable
conditions. However, the potential benefits of this research are

Frontiers in Neuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2025.1565780
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1565780 June 25, 2025 Time: 12:33 # 21

Liu et al. 10.3389/fnins.2025.1565780

FIGURE 18

Learning accuracy over time for 10 experiments.

TABLE 2 Learning accuracy over time for 10 experiments.

Metric Value
(Mean ± SD)

95%
confidence

interval

Final learning accuracy (%) 89.1± 3.1 [86.5%, 91.7%]

Learning time (trials) 5.6± 1.1 [4.9, 6.3]

Navigation efficiency gain
(%)

24.3± 6.4 [20.1%, 28.5%]

Failure rate (post-30 s
collisions)

1/10 trials –

significant. For example, improving computational efficiency
could allow real-time processing, which is essential in dynamic
environments. Further integration of learning algorithms might
enhance adaptability to environmental changes. Developing
multi-agent systems could lead to better collaborative mapping and
task execution. Adding more types of sensory inputs might create
a fuller perception system. Enhancing robustness for navigation in
challenging terrains could prove invaluable in areas like disaster
response or planetary exploration.

The comparison in Table 5 highlights several key advantages
of our associative learning model over existing neuromorphic
approaches. While many models require a large number of
neurons to achieve high accuracy, our approach demonstrates
that efficient learning can be achieved with a minimal neural
architecture. Compared to other spiking neural network-based
models, which often require hundreds or even thousands of
neurons, our model maintains comparable performance while
significantly reducing computational complexity. For instance,
the Conv-SNN model utilizes thousands of neurons, whereas
our model achieves associative learning with only 19 neurons
while maintaining a similar level of accuracy. This reduction
in neuron count translates to lower computational and energy

demands, making our approach particularly suitable for embedded
neuromorphic systems and real-time robotic applications.

Another advantage of our model is its ability to rapidly
converge to a functional associative learning state. Unlike pre-
trained models that require extensive iterations or large labeled
datasets, our model adapts in real-time using biologically inspired
Hebbian learning. Models based on reinforcement learning or
gradient descent often require multiple training iterations before
achieving stable learning outcomes. In contrast, our model
reaches functional learning within seconds to minutes, which
aligns with the efficiency of event-based neuromorphic models
while providing a structured mechanism for integrating multiple
sensory inputs. This rapid adaptation is particularly important in
dynamic environments, where a robot must quickly adjust to new
stimuli and update its learned associations without requiring long
retraining cycles.

In addition to learning efficiency, our approach is designed
for real-world deployment and has been validated in a physical
robotic system. Many neuromorphic learning models remain
constrained to simulations or controlled datasets, limiting their
applicability to dynamic environments. By implementing our
model on a neuromorphic robot in an open-field arena, we
demonstrate its adaptability and robustness under real-world
conditions. In contrast, some models rely exclusively on synthetic
datasets such as ETH-80 or controlled environments such as
UAV-based navigation, without directly interacting with complex
terrain and real-world sensory variations. The integration of
our model with the LIMO robot enables direct testing in
an unstructured environment, where the robot successfully
associates visual cues with tactile feedback and exhibits adaptive
avoidance behaviors.

These factors collectively emphasize the effectiveness of our
approach beyond its minimal neuron count. The ability to achieve
high learning accuracy with a compact architecture, fast adaptation,
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TABLE 3 Summary of the experiment setup and results.

Experiment Objective Setup Parameters Procedure Outcome

Grid and place cell
validation

Validate grid and
place cell models.

Circular arena (radius:
1.3 m) in Gazebo

simulator.

Grid cell spacing
(sj): 1.0 m

Orientation (θj): π/4
Phase shifts (φj): [0.5, 0]

LiDAR range: 270◦

Linear velocity: 0.2 m/s
Angular velocity:

1.5 rad/s

Robot navigated the
arena while grid and

place cell firing patterns
were recorded.

Grid cells exhibited hexagonal
firing patterns; place cells
showed location-specific

firing.

Associative learning
in simulation

Test associative
learning with visual
and vibration cues.

Arena with red walls and
road bumpers in Gazebo

simulator.

Vibration threshold: 5
m/s2

Learning rate (η): 0.01
Synaptic weights: US

(0.8–1.0), CS (0.01–0.05)
Linear velocity: 0.2 m/s

Angular velocity:
1.5 rad/s

Robot exposed to
repeated pairings of red

walls (CS) and road
bumpers (US). After

training, tested with CS
alone.

Robot learned to avoid red
walls without vibration

signals (95% success rate).

Obstacle avoidance
with associative
learning

Evaluate real-world
navigation with

learned associations.

Physical arena (diameter:
2.6 m) with road

bumpers and red walls.

Vibration threshold: 5
m/s2

LiDAR range: 270◦

Linear velocity: 0.15 m/s
Angular velocity:

1.2 rad/s
Learning rate (η): 0.01

Robot trained to
associate red walls (CS)

with road bumpers (US).
After training, tested

with CS alone.

Robot successfully avoided
red walls in real-world tests

(90% success rate).

TABLE 4 Comparison with state-of-the-art associative learning work.

References Neuron Task Learning method Validation

Yang et al. (2017) 6 N/A N/A Simulation

Liu et al. (2016) 3 N/A N/A Simulation

Hu et al. (2017) 5 N/A N/A Simulation

Moon et al. (2014) 3 N/A N/A Simulation

Ziegler et al. (2012) 3 N/A N/A Simulation

Pershin and Di Ventra (2010) 3 N/A N/A Simulation

An et al. (2019) 20 N/A Pretraining Simulation

Zins and An (2023) 1419 Fear conditioning No pretraining Experiment

This work 19 Spatial learning and memory Self-learning Simulation & Experiment

TABLE 5 Comparison with state-of-the-art Hebbian learning work.

Metric Our work R-STDP
(Mozafari

et al., 2018)

Gait imitation
SNN (Ting

et al., 2020)

UAV LGMD
model (Salt
et al., 2019)

mOSA model
(Yan et al.,

2021)

Conv-SNN
(Abdelrahman

et al., 2024)

Accuracy 90–95%
(associative

learning)

88.4–98.9% N/A 80% 90% 87.5%

Convergence
Speed

Seconds to
minutes

N/A 10 iterations 0.1–10 ms Seconds to minutes 0.11–0.15 s

Total neuron
count

19 neurons 10 per category (80
neurons)

6 neurons (1-layer
SNN)

N/A 360 neurons 6,000 neurons

Real-world
experiment

Yes (tested with
LIMO robot)

Yes (tested on real
datasets: ETH-80)

Yes (DVS-based) Yes (tested in UAVs) No (computational
model, no direct
hardware test)

Yes (Kinova Gen3 arm)

and real-world validation distinguishes our model from traditional
neuromorphic learning methods. The combination of associative
learning with spatial memory mechanisms further enhances the

robot’s ability to navigate and interact with its environment in a
biologically plausible manner. The experimental validation of our
model demonstrates its capability to perform robustly in real-world
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conditions while maintaining computational efficiency, making it
a strong candidate for neuromorphic robotics applications that
require self-learning capabilities in dynamic settings.

A key strength of our neuromorphic robot is its ability to
adapt to new environments while retaining learned associations.
For example, if the trained robot is placed in a new but similar
environment—such as one with the same red color wall but a
different maze shape—it will still associate the color red with an
aversive stimulus and exhibit avoidance behavior. This adaptability
is facilitated by the strengthened synaptic connections formed
during the learning process. When the robot is returned to
the initial environment, it does not require relearning, as the
synaptic weights encoding the learned associations are maintained.
Thus, the robot can remember multiple environments and
the causal relationships between stimuli (e.g., red walls and
vibrations) without additional training. This capability highlights
the robustness of our associative learning model and its potential
for real-world applications.

While our neuromorphic robot demonstrates promising results
in replicating rodent-like associative learning, there are several
limitations to our current approach. First, the scalability of our
model to more complex environments with multiple sensory cues
and dynamic obstacles remains to be explored. Although our model
uses only 19 neurons, which reduces computational complexity, it
may require further optimization to handle larger and more diverse
environments. Second, the reliance on predefined synaptic weight
initialization and threshold voltages may limit the adaptability of
the system in scenarios where environmental conditions change
rapidly. Future work could explore adaptive learning rules that
dynamically adjust these parameters in real time.

Another limitation is the reliance on specific sensory inputs
(vibration and visual cues) for associative learning. While
these inputs are effective in controlled environments, real-world
scenarios may require the integration of additional sensory
modalities, such as auditory or olfactory cues, to enhance the robot’s
perception and decision-making capabilities. Finally, the current
implementation is limited to a single robot. Extending the model to
multi-agent systems, where multiple robots collaborate and share
learned associations, could open new avenues for applications in
swarm robotics and distributed intelligence.

Addressing these limitations in future work will involve
exploring more advanced neural architectures, integrating
additional sensory modalities, and testing the system in more
complex and dynamic environments. These improvements
will further enhance the robustness and applicability of our
neuromorphic robot in real-world scenarios.

5 Conclusion

This study presents a neuromorphic robot with self-learning
capabilities inspired by rodent associative learning. Using Hebbian
principles, the system dynamically adjusts synaptic weights in
real-time, enabling self-learning and navigation. The self-learning
capability of the neuromorphic robot is validated by replicating
rodent-like associative learning in an open-field arena without
pretraining or labeled datasets. The model is validated through
simulations and real-world experiments, demonstrating the robot’s

ability to adapt by associating visual cues with vibration stimuli and
executing avoidance strategies. Furthermore, the neuromorphic
robot integrates place and grid cell models to construct a cognitive
map for navigation. The associative learning model uses just 19
neurons as perception and response units, reducing complexity
and meeting SWaP constraints. Additionally, the associative model
introduces principles for determining synaptic weights and neuron
threshold voltages, providing design guidelines for developing
more advanced associative learning models.
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