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Synthesizing intelligible
utterances from EEG of imagined
speech
Wenjing Xiong, Lin Ma and Haifeng Li*

Faculty of Computing, Harbin Institute of Technology, Harbin, China

Decoding natural language directly from neural activity is of great interest

to people with limited communication means. Being a non-invasive and

convenient approach, the electroencephalogram (EEG) offers better portability

and wider application potentiality. We present an EEG-to-speech system

(ETS) that synthesizes audible, and highly understandable language by EEG of

imagined speech. Our ETS applies a specially designed X-shape deep neural

network (DNN) to realize an End-to-End correspondence between imagined

speech EEG and the speech. The system innovatively incorporates dynamic time

warping into the network’s training process, using actual speech EEG data as a

bridge to temporally align imagined speech EEG signals with speech signals. The

ETS performance was evaluated on 13 participants who pretraining four Chinese

disyllabic words. These words cover all four tones and 40% of the phonemes in

Chinese. Our synthesized utterances’ average accuracy across all subjects was

91.23%, the average MOS value was 3.50, and the best accuracy was 99% with

an MOS value of 3.99. Furthermore, a partial feedback mechanism for DNN and

spectral subtraction-based speech enhancement are introduced to improve the

quality of generated speech. Our findings prove that non-invasive approaches

can be a significant step in regaining verbal language ability.

KEYWORDS

brain-computer interface, deep neural network, dynamic time warping, partial
feedback, spectral subtraction

1 Introduction

Language and cognition are separate and closely related mechanisms of the mind
(Perlovsky, 2009). For people who are unable to speak due to physical or neurological
impairments, the significance of synthesizing natural speech through brain-computer
interfaces is enormous (Pandarinath et al., 2017; Brumberg et al., 2018; Koch et al., 2019). In
particular, non-invasive and highly reliable signal acquisition and synthesis techniques are
more significant to patients (Wöstmann et al., 2017). In this paper, we tried to explore the
technology based on electroencephalogram (EEG) to synthesize imagined Chinese speech.

The brain processes information about one’s own speech from three different sources
(Hickok and Poeppel, 2004): (1) overt speech, which is directly vocalized speech. (2) silent
articulation, which refers to vocal organs such as the mouth, tongue, and throat that
are involved in movement but do not produce sound. (3) covert speech, also known as
imagined speech or inner speech, in which the vocal organs do not move and are silent.
The speech-processing cortical network of the brain consists of ventral and dorsal neural
pathways that process semantic and articulatory representational information, respectively
(Panachakel and Ramakrishnan, 2021). Several studies based on different neuroimaging
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data have shown that the bilateral superior temporal gyrus is an
important locus for speech information processing (Klein et al.,
2001; Gu et al., 2013; Ge et al., 2015; Kwok et al., 2017). Combining
the surface impoverished hypothesis proposed by Oppenheim and
Dell (2008), Brocklehurst and Corley (2011) research on the inner
speech of people who stutter, and the monitoring results of brain
activity by different BCI (Bocquelet et al., 2016; Cogan et al., 2014;
Huang et al., 2002; Stephan et al., 2020), showed neural correlates
of three self-speech, that they are shown to activate overlapping
brain regions. Previous studies have shown that overt speech, covert
speech, and silent articulation activate overlapping brain regions,
particularly in the motor and premotor cortices. However, the
extent to which these processes rely on a shared neural network
versus distinct pathways remains a topic of ongoing debate, with
some studies suggesting graded activation differences while others
propose separate mechanisms.

In recent years, there have been several studies that applied
neural activity signals to synthesize natural speech. Guenther
et al. (2009) synthesized imagined speech by implanting a single
Neurotrophic electrode in the aphasic patient’s left precentral
gyrus, synthesizing five English vowels. Anumanchipalli et al.
(2019) were the first to synthesize fluent natural language from
neural activity signals, successfully using ECoG to construct a
mapping between overt speech neural activity and vocal motor
trajectory based on LSTM and HMM methods. And achieve an
average word error rate (WER) (Ali and Renals, 2018) of 3%.
Angrick et al. (2019) also used the ECoG signal to construct a
mapping from overt speech neural activity to the Mel-spectrogram
of speech based on the CNN method, and then the Mel-
spectrogram can be converted to speech by a WaveNet (Oord et al.,
2016) vocoder. It was the first to achieve the synthesis of high-
quality audible speech. Two other latest studies applying imagined
speech neural activity to synthesize natural speech are both
from implanted electrodes. Angrick et al. (2021) applied Stereo-
Electroencephalography (sEEG) to synthesize silent articulation
and imagined speech in real-time . Moses et al. (2021) developed
a neural prosthesis device to filter suitable words based on a
speech detection model and a word classifier, while a long sentence
was decoded based on the Viterbi algorithm (Forney, 1973), and
finally, the speech was synthesized from the brain activity of a
paralyzed patient who could not vocalize. However, considering
that the target group for applying measured neural activity to
synthesize natural speech is aphasic patients, it is strongly necessary
to apply silent articulation or imagined speech neural activity
to synthesize natural speech. Nieto et al. (2022) proposed an
experimental paradigm based on silent articulation and imagined
speech, and opened the EEG dataset of the Dutch language
collected under this experimental paradigm, hoping to promote
research on the synthesis of natural speech based on EEG and
other non-invasive brain-computer interfaces. Radford et al. (2018)
based on the fMRI signal from the subject’s listening task which
combined with a large language model (LLM) to predict the
subject’s brain activity from the perspective of semantic decoding
(Tang et al., 2023). fMRI temporal lag was effectively solved by
LLM, but there was a discrepancy between semantic accuracy
and lexical accuracy. It could not accurately decode the speech
and could not cross-subject. Firstly there is a lack of research on
synthesizing speech directly from neural activity, and secondly,

there is no synthesis of imagined speech through non-invasive
brain-computer interfaces.

In terms of the linguistic aspects, for a tonal language like
Chinese (Duanmu, 1990), different pitch patterns will represent
different lexical meanings. In contrast, in non-vocalic languages
such as English, pitch changes are not complex and do not convey
lexical information (Cheng, 1968). And Chinese contains more
homophones compared to English, which makes Chinese more
dependent on pitch and context when conveying information. Also,
considering the differences in processing patterns of phonology
in the brain across languages creates migration barriers in the
application of brain activity signals to synthesize Western speech
and Chinese speech methods (Ge et al., 2015). Lopez-Bernal et al.
(2022) summarize the advancements in using EEG for decoding
imagined speech, focusing on the classification of imagined
articulation of English words or morphemes, while highlighting the
absence of direct end-to-end synthesis of speech.

We applied imagined speech EEG to generate Chinese speech,
the obstacle is that EEG has the natural disadvantage of insufficient
spatial resolution and temporal accuracy compared to sEEG, ECoG,
and fMRI (Bookheimer et al., 1995). However, the biggest challenge
is the EEG is highly susceptible to a variety of noise and artifacts:
ocular artifacts (Croft and Barry, 2000) and myogenic artifacts
(Muthukumaraswamy, 2013). So the EMG artifacts caused by the
oral movements of the subject due to open speech and unavoidable
blinking can form a highly intrusive and complex noise. If only the
EEG signal of the subject’s imagined articulation is collected, how
to align the signal with the subject’s actual articulated speech is a
challenge urgent to be solved (Schultz et al., 2017).

This paper designed an experimental paradigm to separate
the articulation task from the imagined articulation task, which
compensates for the disadvantage of EEG being susceptible to
myoelectric interference. We proposed an EEG-to-speech system,
achieving the application of imagined articulation of EEG to
synthesize audible and intelligible Chinese speech, which has strong
exploration significance.

2 Material and methods

2.1 Experimental design

We provided an experimental paradigm for the asynchronous
capture of imagined speech EEG and speech. The experiment
corpus contains the following four words: “ /nao3 dian4/,”
“ /he2 cheng2/,” “ /zhong1 wen2/,” and “ /yu3 yin1/.”

There were 15 blocks in every experiment, separated by a 10-
s pause. Each block contains 2 × 4 (corresponding to four words)
trials, the stimulus presentation duration was two seconds. That is,
there are 15 trials for each word, for a total of 60 trials for each
subject. In a single trial, we designed three tasks, which were: the
resting task, the reading task, and the imaging reading task. For
each task, we prompted the subjects to complete the corresponding
task through different colored circles, and the flow of the trial using
the term “nao dian” is shown in Figure 1. Moreover, since the
primary visual cortex (V1) contains two types of color-sensitive
neurons that are responsive to different wavelengths of visible
light in the spectrum, the processing of traffic light stimuli can
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FIGURE 1

The flow chart of a single trial. The above flow chart shows the screen images that the subjects could see in a trial in chronological order, and the
subjects will complete the corresponding tasks according to the stimulus content (different colored circles). The description and duration of each
screen are shown at the bottom of the picture.

be completed without requiring further processing in higher-level
visual areas (Shapley and Hawken, 2011). The subjects were given
instructions and took pre-training before the experiment started.
Subjects were instructed to look at the “+” symbol in the middle of
the screen, maintain focus, and respond rapidly after the stimulus
was presented in each block.

This color-coded design was essential for clearly defining
task conditions and ensuring better control over participants’
cognitive and neural activities. Additionally, presenting the
prompt before the signal light ensured that participants
always viewed the same visual stimulus during both overt
and covert speech tasks, thereby minimizing interference from
the visual cortex and improving the precision of auditory cortex
activity localization.

Regarding potential EEG influences, primary visual cortex (V1)
neurons are known to respond selectively to different wavelengths
of visible light, allowing participants to process the signal lights
rapidly without deeper visual processing. This design enhances
task clarity while reducing visual processing interference in speech-
related neural activity.

2.2 Subjects

16 individuals in all were enrolled. All subjects were right-
handed according to the Sharpshooter Scale test (Snyder and
Harris, 1993). Due to the disorganized spontaneous brain waves of
some subjects, data were finally collected from 13 valid subjects (5
females and 8 males, all aged 22 to 28). They had good health, no
neurological or mental illnesses, and spoke Chinese as their native
language, and English as their first foreign language, according to
the questionnaire results. Both their corrected eyesight and hearing
are normal.

2.3 Data preprocessing

The EEG recordings used a Neuroscan Synamps2 Amplifier
with a bandpass filter ranging from 0.05 Hz to 150 Hz,
sampling at 1,000 Hz. Electrodes were placed according to
the international 10/20 system, using a 64-channel Electro-Cap
(Compumedics Neuroscan) with scalp impedance under 5 k�. The
speech was concurrently recorded via a separate microphone at

FIGURE 2

Electrode positions for the 45 channels screened in the experiment.
Relative positioning of the 64 electrode channels on the scalp, with
the 45 channels selected for analysis encircled by the red line.

44,100 Hz, down-sampled to 16,000 Hz, and pre-processed with
a frame of 400 ms and frame-shifting of 80 ms, employing a
Hamming window function. All EEG recordings were conducted
in a controlled laboratory environment with minimized external
auditory and electromagnetic noise.

Before analysis, EEG data underwent noise reduction and
the selection of 45 electrode channels, distributed across the
scalp as depicted in Figure 2. A Chebyshev bandpass filter (1–
45 Hz) was then applied. We selected 45 electrodes based on their
relevance to speech-related brain regions, primarily covering the
frontal, central, and temporal areas to maximize signal quality
while reducing redundancy. Additionally, the 1–45 Hz frequency
range was chosen to eliminate 50 Hz power line interference and
capture key neural oscillations associated with cognition and motor
processes.

EEG segmentation was based on the stimulus presentation
event onset, resulting in 120 segments per subject. The first
1,000 ms post-event served as baseline correction, followed by
framing and windowing operations similar to those applied to
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FIGURE 3

Constructing temporally aligned speech and EEG based on the XI model. The data set is identified by the curly brace, and time-aligned data pairs are
identified by the parenthesis. (1) Union the overt speech EEG and the imagined speech EEG by the XI model for denoising. (2) Using DTW to align the
timing of the imagined speech EEG and the denoised overt speech EEG. (3) Based on the overt speech EEG (before denoising) and speech is
naturally aligned in timing, aligning imagined speech EEG with speech by overt speech EEG. (4) Judging whether the altered overt speech EEG
quality meets the required level. If not, repeat steps 1–3, otherwise, output the paired data. The assessment of altered overt speech EEG quality was
based on an empirically determined loss threshold.

speech data. It is pertinent to note that the inputs to our network,
whether derived from speech or EEG signals, are characterized by
their temporal waveform amplitudes.

2.4 System modeling

We constructed an EEG-to-speech system abbreviated as ETS
to implement the application of EEG to synthesize imagined
speech. The system consists of two X-shaped neural network
models for data preparation and multimodal representation

learning, respectively. Notably, the network incorporates
specialized fusion modules at different stages, optimizing
performance through the integration of dynamic time warping,
spectral subtraction, and other machine learning algorithms during
both training and testing phases. The proposed X-shaped model is
an adaptation of standard fully connected networks, incorporating
a crossover structure to enhance feature integration. While similar
architectures exist in other domains, this design is tailored for
EEG-based speech synthesis. Its main advantage lies in its ability
to effectively combine features from different processing pathways,
potentially improving representation learning for EEG signals.
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FIGURE 4

Network structure diagram of the XI model. It consists of two encoders, a fusion block, and two decoders. The non-fusion modules (individual
encoders and decoders) compress and expand features with a ratio of 30%, while the fusion block applies a more aggressive 75%
compression-expansion ratio to enhance cross-modal feature integration. The fusion block, designed as a symmetric structure, iteratively
compresses and reconstructs multimodal features, promoting greater information exchange between network paths.

FIGURE 5

Comparison of noise reduction performance between XI model and ICA. Graph (a) is the spectrogram of imagined speech EEG. Graph (b) is the
spectrogram of overt speech EEG denoised by the XI model. Graph (c) is the spectrogram of overt speech EEG denoised by ICA.

TABLE 1 Mean PCC between denoised overt speech EEG and
imagined speech EEG.

Word ICA
(PCC+Std)

XI model
(PCC+Std)

t-testt-
value,
p-value

Nao dian 0.44 ± 0.05 0.53 ± 0.04 6.93, 5.76e-11

He cheng 0.43 ± 0.04 0.89 ± 0.01 56.90, 2.38e-72

Zhong wen 0.43 ± 0.06 0.57 ± 0.05 10.94, 7.99e-18

Yu yin 0.43 ± 0.05 0.58 ± 0.04 12.41, 1.16e-21

The major goal of the system is to synthesize speech using
imagined speech EEG, but in practice, it is impossible to gather
imagined speech EEG that strictly matches the speech in the
temporal domain. It should be observed, though, that there is a
natural alignment between the synchronous collected speech and

overt speech EEG. Therefore, we propose the first X-shaped model
(named XI model) for aligning overt speech EEG and imagined
speech EEG in the time domain to obtain paired speech and
imagined speech EEG. We designed a novel training method (see
Figure 3) that automatically removes EMG artifacts from the overt
speech EEG while completing the EEG alignment. We pre-trained
the XI model by using the imagined speech EEG added with white
noise to simulate the overt speech EEG. The learning rate and
batch size used during pre-training were the same as those used
in the formal training of the XI model, specifically a learning rate
of 0.001 and a batch size of 420. The signal-to-noise ratio (SNR)
was initially set to 0 during pre-training. This choice was made
to simulate a scenario where the imagined speech EEG is masked
by noise, thus providing a challenging environment for the model
to differentiate weak signals from noise. By setting the SNR to 0,
we encourage the model to focus on extracting features even in
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FIGURE 6

Network structure diagram of the XII model. It consists of two encoders, two fusion blocks, and two decoders. The progressive fusion strategy
operates in a staged manner, incorporating fusion blocks at multiple feature levels. Non-fusion modules (encoders and decoders) apply a 30%
compression-expansion ratio, while the fusion blocks utilize a 75% compression-expansion ratio to maximize cross-modal integration. Data from
both modalities are first fused at the lower-level features, where detailed information is abundant, and subsequently fused again at higher-level
features after compressed encoding. This structure enables early-stage fusion, preserving fine-grained modality-specific details while progressively
aligning higher-level representations. This design supports richer cross-modal interactions, enhancing the formation of comprehensive shared
representations.

the worst-case scenario, which enhances its robustness. The noise
was artificially generated and introduced at the preprocessing stage.
This enables the network to quickly enter the working state in
the formal training process to complete the task of denoising the
overt speech EEG. The construction of the XI model is based on
the Dynamic Time Warping (DTW) algorithm (Dynamic Time
Warping (DTW) 2007), Deep Autoencoder (Lange and Riedmiller,
2010), and Multimodality Fusion Learning (MFL) (Baltrusaitis
et al., 2019). The network structure of the XI deep autoencoder
is shown in Figure 4. The decoder on both sides of this network
expects output were imagined speech EEG (adjusted the frame
sequence according to the DTW every time), and the loss function
is the mean square error.

In terms of model parameter details, the dual input of the XI
model matches the scale of 45-channel, 400 ms EEG data, resulting
in an input layer neuron scale of 18,000. Apart from the fusion

module, the neuron scale decreases by 0.75 proportionally with
network depth. The fusion module also follows a compression-
expansion scheme with a 0.75 ratio. The network comprises 9
layers from input to output, with all activation functions set to
tanh. The loss function is mean squared error (MSE), optimized
using Adam optimizer with a learning rate of 0.001. The batch
size is set to 21∗20 (2 s of EEG data could be segmented into 21
frames with an 80 ms frameshift). To prevent overfitting during
network training, we employed an early stopping mechanism based
on the comprehensive evaluation of two criteria: (1) the number
of training iterations, capped at a maximum of 10,000 epochs, and
(2) the regression mean difference between the network output
EEG and the target imagined speech EEG. Specifically, the training
process was terminated when the regression mean difference failed
to improve for 50 consecutive epochs, indicating convergence.
This approach ensured that the model was trained with optimal
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FIGURE 7

Learning the mapping relationship between EEG and speech based on the XII model. The speech and EEG presented here were created by the XI
model which are temporally aligned. The silent speech and masked EEG are created by zero padding. We sequentially create the following four input
combinations during the training process: EEG and speech, EEG and silent speech, masked EEG and speech, and EEG and silent speech. All of these
four input pairs’ expected outputs are EEG and speech. Zero padding was applied to create masked data, enabling the model to enhance
cross-modal learning by reconstructing both modalities from unimodal input. This step was incorporated during training to improve the mutual
information between EEG and speech representations, thereby strengthening their shared feature space.

performance while avoiding overfitting to the training dataset.
By incorporating this stopping criterion, we achieved a balance
between minimizing training error and maintaining generalization
capability on unseen data.

In addition, we compared the noise reduction ability of the XI
model with the Independent Component Analysis (ICA) (Delorme
and Makeig, 2004), and the results are shown in Figure 5 and
Table 1. The source of the data in Table 1 is measured by calculating
the mean Pearson correlation coefficient (PCC) (Benesty et al.,
2009) on the spectrogram between the noise-reduced overt speech
EEG and the imagined speech EEG from the same trial. The
t-value for the word “He Cheng” is notably high (56.90), likely
due to the particularly stable PCC distribution in the XI model,
resulting in lower within-group variance. This stability leads to a
lower variability in the results, reinforcing the robustness of the
model. Despite this high t-value, the significant improvement in
PCC remains statistically valid, consistent with the improvements
observed for other words. The results of the t-test confirm that
the XI model shows a significant improvement in noise reduction
compared to ICA, as evidenced by the low p-values (e.g., 1.16e-21
for “Yu yin”).

After training the XI model and aligning the outputs using the
DWT algorithm, we obtained two types of time-domain aligned
data pairs: speech paired with denoised overt speech EEG, and
speech paired with imagined speech EEG. Next step, we based
on the second X-shaped model (named XII model), to learn the

corresponding relationship between the speech frames and the
EEG frames built by the XI model. Since EEG data contains
both temporal information of speech information processing and
spatial information of the brain, it is richer and more complex
than speech information alone. Simply combining the lowest-
level unimodal features cannot create the appropriate shared
representation of these two modal data. In this paper, a progressive
fusion strategy was proposed to construct The XII model. The XII
model architecture is shown in Figure 6, and the training strategy
is shown in Figure 7. Training and test data were strictly separated
within each participant to prevent data leakage, following standard
within-subject EEG classification protocols.

In the XII model, the dual input corresponds to 18,000 data
points for the 400 ms EEG signal and 6,400 data points for the
400 ms speech signal. Apart from the fusion module, the neuron
scale decreases by 0.75 proportionally with network depth. The
fusion module also follows a compression-expansion scheme with
a 0.75 ratio. The network comprises 12 layers from input to output,
with all activation functions set to tanh. The loss function is mean
squared error (MSE), optimized using Adam optimizer with a
learning rate of 0.001. Batch size is set to 21∗20.

In the training process of the XII model, we refined the
adjustment of the network’s training state by employing different
early stopping strategies for its stages. For the first three stages,
the early stopping mechanism was consistent with that of the
XI network, where a combination of training iterations and loss
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FIGURE 8

Flowchart for applying the XII model from the ETS system to synthesize speech. The XII model receives imagined speech EEG as input and produces
synthesized speech as the final output. (1) Create the silent speech signal, transmit it to the XII model with EEG for prediction, and then use spectral
subtraction to eliminate the noise in the predicted speech. (2) If the denoised predicted speech does not converge with the input speech of the XII
model (Measuring similarity by PCC), send the denoised speech and EEG pairing back to the network for prediction and repeat steps 1–2. If not, the
denoised speech and predicted EEG are delivered to the time matching and frame adjustment module for timing correction. (3) If the corrected
speech’s signal-to-noise ratio is below the threshold, the predicted EEG will be sent to the XII model for prediction along with the corrected speech,
repeat steps 1–3. If the threshold value is reached, the speech is synthesized and output. As for the time matching and alignment module, the
predicted EEG and the denoised predicted speech are first aligned based on DTW by EEG and reference speech, and then the EEG and speech are
aligned according to the frame correspondence after adjusting the timing, respectively.

convergence was used as the evaluation criterion. However, in
the fourth stage, the strategy was adjusted to focus on the signal
quality. Specifically, speech synthesis signal-to-noise ratio (SNR)
evaluations were conducted every 1,000 epochs, for a total of 20
evaluations. The network parameters corresponding to the lowest
average SNR across these evaluations were selected as the final
result, ensuring optimal performance in this critical stage.

In the application stage of the ETS system, we combined
the partial feedback mechanism (Li et al., 2019) with DTW, and
the noise of the reconstructed speech is removed by spectral
subtraction (Boll, 1979), which effectively improves the quality of
the synthesized speech, The specific process is shown in Figure 8.
We assume that the generated speech during the initial and
final 200 ms intervals of the 2-s synthesis comprises silence.
Consequently, we use the signals from these segments of the

synthesized speech as noise signals, estimate their spectra, and then
extend this estimation to the entire 2-s duration. This approach
enables us to optimize spectral subtraction for the synthesized
speech.

3 Results

A total of four disyllabic Chinese words were selected for
the experimental material: “ /nao3 dian4/,” “ /he2 cheng2/,”
“ /zhong1 wen2/,” and “ /yu3 yin1/,” which means “EEG,”
“synthesis,” “Chinese,” and “speech.” These words cover all
four tones and 13 phonemes of the total 32 ones in the
Mandarin language.
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FIGURE 9

Comparison of the quality of synthesized speech in spectrogram (A) and MFCC (B) similarity. We plotted separately, for each word, the average
similarity by all subjects of the imagined speech synthesized to the reference speech on the spectrogram and MFCC and the average similarity of the
recorded speech to the reference speech on the spectrogram and MFCC.

Speech synthesis quality evaluation methods are mainly divided
into objective and subjective perspectives (Wagner et al., 2019).
The objective perspective is judged by directly calculating the
similarity between the synthesized speech and the reference speech
in the frequency domain and Mel spectrogram, and the calculation
includes time distortion to align the two speech signals (in the case
of different speech times), based on Euclidean distance, Pearson
correlation coefficient and other distance methods to calculate the
similarity. Reference speech are manually selected from recorded
speech with high quality. The subjective perspective is to evaluate

speech quality by employing questionnaires, explicitly asking
users for their impression of various quality dimensions. Such
as mean opinion score (MOS) (Viswanathan and Viswanathan,
2005) and multiple stimuli with hidden reference and anchor
(MUSHRA) (2015). To present the quality of the synthesized
speech, we first calculated the Pearson correlation coefficients
between the synthesized speech and the reference speech on
the spectrograms and Mel-scale Frequency Cepstral Coefficients
(MFCC). Meanwhile, we compared the speech quality with the
ECoG signal-based synthesized monosyllabic English words by
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TABLE 2 Spectrogram similarity results across subjects.

Class Nao dian He cheng Zhong wen Yu yin Average

Sub 1 Synthesized 0.59 0.69 0.71 0.62 0.65

References 0.60 0.56 0.60 0.63 0.60

Sub 2 Synthesized 0.67 0.72 0.84 0.74 0.74

References 0.63 0.71 0.70 0.65 0.67

Sub 3 Synthesized 0.69 0.64 0.67 0.69 0.67

References 0.61 0.62 0.59 0.61 0.61

Sub 4 Synthesized 0.59 0.59 0.62 0.72 0.63

References 0.66 0.67 0.64 0.66 0.66

Sub 5 Synthesized 0.61 0.65 0.74 0.69 0.67

References 0.60 0.62 0.65 0.64 0.63

Sub 6 Synthesized 0.72 0.69 0.71 0.69 0.70

References 0.67 0.70 0.70 0.63 0.68

Sub 7 Synthesized 0.63 0.57 0.68 0.71 0.64

References 0.65 0.65 0.69 0.67 0.66

Sub 8 Synthesized 0.65 0.68 0.68 0.71 0.68

References 0.53 0.59 0.54 0.62 0.57

Sub 9 Synthesized 0.68 0.67 0.73 0.71 0.70

References 0.62 0.61 0.64 0.61 0.62

Sub 10 Synthesized 0.71 0.70 0.73 0.70 0.71

References 0.65 0.66 0.67 0.65 0.66

Sub 11 Synthesized 0.57 0.69 0.77 0.68 0.68

References 0.66 0.69 0.69 0.67 0.68

Sub 12 Synthesized 0.72 0.75 0.70 0.68 0.71

References 0.73 0.72 0.72 0.75 0.73

Sub 13 Synthesized 0.74 0.76 0.71 0.7 0.73

References 0.75 0.71 0.73 0.76 0.74

Bold text indicates which speech quality is higher for each subject.

Angrick et al. (2019). Then we used the MOS evaluation method
and distributed questionnaires, inviting native Chinese speakers to
score our synthesized speech from a subjective perspective.

We randomly selected six speech recordings from the training
set for each word of each subject and set one of them as the
reference speech, and the other five speech recordings were used to
compare with the five synthesized speech. The speech quality of the
synthesized speech is demonstrated by longitudinally comparing
the recorded speech with the reference speech and the synthesized
speech with the reference speech.

As shown in Figure 9A, our synthesized speech is in significant
agreement with the recorded speech in terms of the spectrogram
distance to reference speech in different words, which reflects
that we effectively maintain the Chinese pronunciation variability
between words. Both have good performance in terms of the mean
and extreme values of the intra-class similarity of the same word,
which indicates that the accuracy gap between the synthesized
speech and the reference speech is consistent with the level of the
recorded speech, with credible accuracy. Additional notes, Since
our reconstructed speech is corrected for frame order with the
reference speech by the DTW algorithm, it performs slightly better

than the recorded speech in terms of direct spectrogram distance.
Table 2 gives the average spectral similarity of each subject across
words. It can be seen that our synthesized speech is significantly
more similar to the reference speech than the recorded speech
(8/13).

The synthesized speech also has extremely high similarity to
the reference speech in MFCC features, and the worst similarity
is higher than 0.95 (see Figure 9B). The similarity distribution
between the synthesized speech and the recorded speech is also
similar, which indicates that the human ear audibility of our
synthesized speech is high. It is worth stating that the monosyllabic
audible speech synthesized by Angrick et al. based on ECoG has
a similarity mean of 0.69 for the same calculation. This provides
additional evidence that the quality of our synthesized speech
from EEG is higher. Furthermore, to directly show the difference
between our synthesized speech and the reference speech, we
plotted the spectrograms of some synthesized speech and the
corresponding reference speech, as shown in Figure 10. Table 3
gives the average MFCC similarity for each subject across words.
It can be seen that the MFCC similarity between our synthesized
speech and the reference speech is not as high as the recorded one,
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FIGURE 10

Spectrogram comparison of synthesized speech (left) and reference speech (right). The left column from top to bottom are the spectrograms of
synthesized speech, the right column from top to bottom are the spectrograms of reference speech in that order.

but the difference between the two is less than 0.2, and they are both
higher than 0.97 overall.

The subjective aspect was carried out in the form of a
questionnaire by inviting 24 native Chinese speakers to select the
words they heard from a list of four words after listening to the
speech scoring the speech according to clarity and intelligibility.
The scoring criteria for MOS value are shown in Table 4. All
the synthesized speech data were presented to the respondents in

a random order, a total of 2,715 pieces of valid evaluation data
were collected and the results of the questionnaires are shown in
Figure 11.

As shown in Figure 11A, the overall average intelligibility of
each word exceeded 90%, and the highest intelligibility was 99%
for subject 9, which indicates the high intelligibility of our Chinese
speech synthesized by imagined speech EEG. The overall MOS
value of each word exceeded the passing line (value three) of speech
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FIGURE 11

The results of synthesized speech in intelligibility (A) and MOS value (B). The left graphs shows the average intelligibility and MOS value of the
synthesized speech of each word. The right graph shows the average intelligibility and MOS value of the synthesized speech of each subject.

FIGURE 12

The onset detection results of synthesized speech (“nao dian”) from the same subject. We show the power spectrograms and audio rhythm graphs
of five synthesized speech and one reference voice from the same subject on the same word. It can be seen that the rhythms of our synthesized
speech are different from each other.
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TABLE 3 MFCC similarity results across subjects.

Class Nao dian He cheng Zhong wen Yu yin Average

Sub 1 Synthesized 0.98 0.97 0.98 0.99 0.98

References 0.99 0.97 0.99 0.99 0.98

Sub 2 Synthesized 0.98 0.97 0.98 0.99 0.98

References 0.99 0.98 0.99 0.99 0.99

Sub 3 Synthesized 0.97 0.98 0.99 0.99 0.98

References 0.97 0.98 0.99 0.99 0.98

Sub 4 Synthesized 0.97 0.96 0.97 0.98 0.97

References 0.98 0.99 0.98 0.98 0.98

Sub 5 Synthesized 0.98 0.98 0.98 0.99 0.98

References 0.97 0.98 0.99 0.99 0.98

Sub 6 Synthesized 0.97 0.95 0.97 0.96 0.96

References 0.98 0.98 0.96 0.98 0.98

Sub 7 Synthesized 0.97 0.97 0.97 0.98 0.97

References 0.99 0.99 0.98 0.99 0.99

Sub 8 Synthesized 0.97 0.97 0.97 0.98 0.97

References 0.98 0.99 0.99 0.99 0.99

Sub 9 Synthesized 0.98 0.97 0.98 0.98 0.98

References 0.97 0.98 0.99 0.99 0.98

Sub 10 Synthesized 0.97 0.98 0.98 0.97 0.98

References 0.96 0.97 0.980 0.99 0.98

Sub 11 Synthesized 0.97 0.98 0.98 0.97 0.98

References 0.97 0.98 0.98 0.99 0.98

Sub 12 Synthesized 0.97 0.97 0.98 0.97 0.98

References 0.99 0.98 0.98 0.99 0.99

Sub 13 Synthesized 0.97 0.97 0.98 0.99 0.98

References 0.99 0.99 0.99 0.99 0.99

Bold text indicates which speech quality is higher for each subject.

TABLE 4 MOS value scoring criteria.

Grade Score Listening experience

Excellent 5 Hear clearly, noiseless

Good 4 Hear clearly, a little noise

Fair 3 Can’t hear very well, understandable

Poor 2 Can’t hear very well, Need to repeat
multiple times

Bad 1 Can’t understand

synthesis quality as seen in Figure 11B, and the MOS value of
subject 9 even reached 3.99, which indicates that our synthesized
speech has a good performance in clarity.

Since human pronunciation does not strictly follow
grammatical structures, rhythm is a speaker-specific characteristic
(Scarcella and Oxford, 1994). Rhythm has an important impact
on the naturalness and intelligibility of speech synthesis. It divides
the utterance into segments according to different tones by the
natural breathing of humans, which enhances the rhythm and
fluency of the utterance and also facilitates the elimination of

some ambiguities. We plotted the power spectrogram and audio
rhythm maps of the word “nao dian” synthesized from the same
subject’s imagined speech EEG synthesis (locating note onset
events by picking peaks in an onset strength envelope), as shown in
Figure 12. The variability observed in Figure 12 reflects the subject-
specific pronunciation rhythm, demonstrating that our end-to-end
speech synthesis method effectively preserves the individual
rhythm patterns of imagined speech. The differences are not due
to model inconsistencies but rather an inherent characteristic of
personalized speech synthesis. And considering the integrity of
the syllables of our synthesized speech has been examined from
both objective and subjective perspectives. Therefore, it can be said
that our synthesized speech effectively preserve the rhythm of the
subject’s imaginary pronunciation.

In summary, it can be said that the speech decoded from the
EEG based on imagined Chinese pronunciation evoked in this
paper is objectively consistent with the recorded speech in terms
of accuracy and intelligibility. And the whole framework of the
EEG-to-Speech system is shown in Figure 13.
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FIGURE 13

The framework of the EEG-to-Speech system. (a) EEG waveform of overt speech, (b) EEG waveform of imagined speech, and (c) speech waveform
collected from the same trial. The system is trained in two steps. Step 1: The overt speech EEG is noise-reduced and aligned with the imagined
speech EEG by the XI model. Based on the natural alignment of the overt speech EEG and speech, two time-matched data pairs are obtained:
{imagined speech EEG, speech} and {denoised overt speech EEG, speech}. Step 2: The EEG and speech data pairs are fed into the end-to-end XII
model to learn the mapping relationship between the two modalities. When the system is applied, the imagined articulatory EEG is sent to the XII
model to obtain the synthesized speech.

4 Conclusion

In this study, we accomplish the first time applying neural
activity of human imaginary pronunciation to synthesize high-
quality intelligible natural speech, which is a great breakthrough.
The breakthrough is mainly reflected in (1) We constructed an
end-to-end multimodal model that decodes audible high-quality
imagined speech directly from neural activity. (2) In this paper, we
used the non-invasive EEG as neural activity measurement which
was polluted by lots of artifacts. But it has greater portability and
a wider range of applications. Moreover, the frequency band range
of the EEG signal is much smaller than the frequency band range
of speech, and it is extremely difficult to synthesize speech signals
directly from EEG across modalities. (3) We proposed a novel
experimental paradigm and cross-modal time-domain information
matching method to solve the problem of imagined speech neural
activity that doesn’t have aligned natural speech.

We succeeded in synthesizing four Chinese words containing
seven vowels and eight rhymes, covering all four tones, and
constructing eight different phoneme combinations. Moreover,
the application conditions of our ETS system do not restrict

the language of the synthesis speech, which makes our method
highly scalable. In addition, we introduced partial feedback and
removed redundant information methods in the synthesis process.
This strategy can be applied to multimodal learning to effectively
improve prediction performance.

Our research may facilitate the development of regaining verbal
communication ability in paralyzed patients. The primary aim of
this study is to use solely imagined speech EEG signals for speech
synthesis, catering to applications targeted at individuals with
aphasia. In the synthesis process, any muscular electromyography
(EMG) activity associated with vocalization is excluded, enhancing
the robustness of the approach. This deliberate exclusion poses a
greater challenge, reinforcing the study’s focus on decoding speech
solely from brain activity.

However, it must be said that we still have great room for
improvement. While this study is currently limited to a small
vocabulary of four disyllabic Chinese words, the model’s frame-
to-frame waveform-level conversion mechanism is inherently
independent of vocabulary size or language type. This design
supports scalability to continuous speech and different languages
without modifying the core architecture. Expanding to natural,
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continuous speech may introduce challenges such as phonetic
variability and coarticulation effects, which primarily affect training
complexity rather than the model’s feasibility. Future work will
explore sequence-level constraints and attention mechanisms
to enhance performance under these conditions. The system’s
generalization to unseen subjects remains a challenge due to EEG
signal variability across individuals. Future studies will focus on
adaptive learning techniques and larger participant groups to
enhance robustness and inter-subject consistency.
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