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Introduction: One promising research area in traffic safety involves the
utilization of an Electroencephalogram (EEG)-based approach to assess driver
fatigue in new automatic technology. However, the utilization of forehead
channels for identifying fatigue has been underexplored by researchers, which
limits practical application.

Objectives: To assess driver fatigue using EEG signals from the forehead,
we propose a novel method that combines multiple entropies with
a stacking model.

Methods: We collected EEG signals from 32 subjects and utilized nine entropy
measures including approximate entropy, fuzzy entropy, Kolmogorov entropy,
permutation entropy, sample entropy, spectral entropy, symbolic transfer
entropy, wavelet log energy entropy, and wavelet packet energy entropy for
feature extraction. Three fast classifiers were used to build a stacking model|,
including logistic regression, extreme learning machine, and light gradient
boosting machine. The leave-one-out cross-validation method was used to
evaluate the performance of the proposed method.

Results: Our proposed method vyields stronger robustness and better
recognition for detecting driver fatigue, demonstrating its potential to enhance
current approaches for detecting driver fatigue.

Conclusion: The proposed method can provide a more effective way to
detect driver fatigue.

KEYWORDS

driver fatigue, forehead Electroencephalogram, multiple entropies, stacking model,
signal processing

1 Introduction

Driver fatigue plays a significant role in traffic accidents and fatalities, contributing to
an estimated 10%-20% of all fatal road casualties (Moradi et al., 2019). With the rapid
development of electronic sensors and wireless communication technology, a reliable and
efficient automatic detection system has become increasingly desirable for preventing
fatigue-related accidents. However, despite various proposed approaches by researchers,
this remains a challenging task due to technical limitations and scenario complexity
(Sikander and Anwar, 2018; McDonald et al, 2019). Existing methods have several
challenges. First, contextual factors in vehicle dynamics-based technologies may affect
reliability (e.g., driving skill, road geometry, vehicle characteristics) (Min et al., 2021).
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Second, numerous video-based detectors primarily rely on facial
expressions, which can encounter difficulties under low light,
harsh lighting conditions, and raise privacy concerns. Third, most
psychological signal acquisition methods currently rely on tactile
interaction, which might limit their practicality or user acceptance.
Fourth, the recognition rate needs to be further enhanced for
increased accuracy and effectiveness. Moreover, the performance
of feature extractors and classification algorithms significantly
impacts detection efficiency; thus, exploring new models that
are both fast and stable is essential (Min et al, 2023). Lastly,
enhancing credibility in complex application scenarios is also
crucial for the overall reliability of driver fatigue detection systems.
To improve the performance of driver fatigue detection, three
aspects should be focused on increasing accuracy and reliability
in future research: first, combining as multimodal measures as
possible is a better way to enhance the recognition quality
and make fatigue detection more reliable; second, physiological
features need to be further investigated and improved, especially
Electroencephalogram (EEG), which are of utmost importance to
effectively monitor a driver’s fatigue status in advance (Borghini
et al., 2014); and last, as the classification algorithm is the key to
detection performance, new fast, stable and accurate models should
be sought and adopted (Pachori et al., 2024).

Identified as one of the most crucial parameters, many
feature extractors and algorithms have been employed to leverage
EEG applications for driver fatigue assessment. Chuang et al.
(2015) proposed and developed an EEG-based perceptual function
integration network to recognize the driver’s vigilance state using
spectral features, demonstrating a robust accuracy of 88%. Chai
etal. (2017) used the whole EEG channels to extract autoregressive
modeling features and achieved an improved accuracy of 93%

Abbreviations: EEG, Electroencephalogram, a non-invasive technique
measuring electrical activity of the brain via scalp electrodes; AE,
Approximate Entropy, quantifies time-series complexity by measuring
the likelihood of pattern repetition; FE, Fuzzy Entropy, measures signal
irregularity using fuzzy set theory and membership functions; highly
noise-tolerant; KE, Kolmogorov Entropy, estimates the rate of information
generation in chaotic systems; PE, Permutation Entropy, computes Shannon
entropy of ordinal patterns, efficient for non-stationary signals.; SE, Sample
Entropy, quantifies signal complexity by comparing vector similarity across
embedding dimensions; SPE, Spectral Entropy, measures frequency-domain
complexity via Shannon entropy of power spectral density; STE, Symbolic
Transfer Entropy, quantifies directional information flow between two
time-series using symbolic encoding; WLE, Wavelet Log Energy Entropy,
computes Shannon entropy of wavelet-decomposed energy distribution,
captures frequency complexity, WPE, Wavelet Packet Energy Entropy,
extends WLE using wavelet packet decomposition for finer frequency
resolution; EOG, Electro Oculogram; RBP, Relative Band Power; SHAP,
SHapley Additive exPlanations, method to interpret machine learning model
outputs by attributing feature importance; SN, Sensitivity, true positive rate;
SP, Specificity, true negative rat; Fl-score, Harmonic mean of precision
and recall; ACC, Accuracy, proportion of correct predictions relative to
total predictions; ROC, Graphical plot illustrating classifier performance
across thresholds; AUC, Area Under the ROC Curve, Metric evaluating
classifier performance across all classification thresholds, higher values
indicate better discrimination; LOOCV, Leave One Out Cross Validation,
validation method where observation is tested against a model trained
on all other observations; LR: Logistic Regression, statistical model
estimating binary class probabilities using a logistic function; ELM, Extreme
Learning Machine, Feedforward neural network with randomized hidden
layer weights; LGBM, Light Gradient Boosting Machine, High-performance
gradient boosting framework using tree-based learning with optimized
speed and accuracy; SVM, Support Vector Machine, Supervised learning
model for classification/regression; ANN, Artificial Neural Network; EEGLAB,
Toolbox in MATLAB for analyzing EEG; FFT, Fast Fourier Transform.
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through sparse-deep belief networks. In addition, Cheng et al.
(2018) transformed multichannel EEG data into an image-like
feature map using a fast Fourier transform and then passed
maps into a convolutional neural network. In another work,
proposed a novel complex framework, namely a spatiotemporal
convolutional neural network, to automatically learn valid features
from multichannel EEG and fulfill a classification accuracy of
97.37% (Gao et al, 2019). Ramos et al. (2022) demonstrated
the potential of ensemble models in safety-critical drowsiness
detection, achieving 95.2% accuracy with multi-channel EEG. Fu
etal. (2016) integrated three physiological features and employed a
hidden Markov model to infer driver fatigue over time. da Silveira
et al. (2016) presented a methodology utilizing two new spectral
power-based indicators y/8 and (y+ B)/(3+ ) to assess fatigue
levels based on a single EEG channel. Entropy is a measure of
the degree of uncertainty in a time series and has been used
extensively in the analysis of EEG data in recent years due to
the non-linear and non-stationary nature of EEG signals (Acharya
et al.,, 2015; Golui et al.,, 2024; Baranidharan et al., 2022). For
example, Xiong et al. (2016) used the combined entropy of
approximate entropy (AE) and sample entropy (SE) as features
while adopting support vector machine classifier for detecting
driver fatigue with the highest accuracy reaching 91.3%. Another
study compared four entropy measures from multichannel EEG
to study and analyze driver fatigue via four common classifiers
with the highest recognition rate of 98.3% (Min et al., 2017). Hu
(2017) presented a method using fuzzy entropy (FE) based on
a non-frontal single channel that achieved 96.6% accuracy with
a random forest classifier. However, Limited research has been
conducted regarding using fewer forehead EEG-based channels to
detect driver fatigue detection, presenting a significant challenge for
automatic systems.

Although previous studies have demonstrated accurate driver
fatigue detection using multichannel EEG or non-frontal electrodes
(Chuang et al.,, 2015; Chai et al., 2017; Cheng et al., 2018; Gao
et al,, 2019; Fu et al, 2016; da Silveira et al., 2016; Xiong et al,,
2016; Min et al, 2017; Hu, 2017), they face critical trade-offs
between practicality and performance. While multichannel systems
(Gao et al, 2019) achieve high accuracy, their complex setups
and susceptibility to motion artifacts limit real-world adoption
in driving scenarios. Recent advancements in single-channel EEG
analysis highlight its viability for real-time drowsiness detection in
resource-constrained environments (Balam, 2024). The prefrontal
cortex is usually prioritized for channel selection due to its central
role in vigilance regulation. Studies demonstrate that prefrontal
theta power correlates more strongly with subjective drowsiness
scores compared to central beta activity (Lin et al., 2005). Although
single-channel frontal EEG improves user comfort and practicality,
Relative band power (RBP) extracted via Fast Fourier Transform
(FFT) methods (Li et al, 2015) underperform due to linearity
assumptions. To address this, we propose a novel fusion framework
combining nine complementary entropy measures with a stacking
classifier for single-channel forehead EEG-based fatigue detection.
This approach leverages the strengths of multiscale entropy analysis
while maintaining the practicality of single-channel systems. We
present a complete detection pipeline (Figure 1), including data
acquisition, preprocessing, feature extraction, classification, and
validation. By integrating state-of-the-art entropy measures and
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FIGURE 1
A flowchart to illustrate the operation process of assessing driving fatigue.

algorithms, we enhance the accuracy and reliability of single-
channel EEG-based fatigue detection. The main contribution of
this article is the fusion of multiple entropy measures and the use
of a stacking classifier, which has not been explored previously in
forehead EEG-based fatigue detection for drivers, and yielded a
robust and enhancing recognition performance.

The organization of the paper is as follows. In see section
“2 Materials and methods,” the main algorithm is derived. In
see section “3 Experimental results,” experimental results are
presented to evaluate the performance and superiority of the
proposed method. In see section “4 Discussion,” the discussion was
given. Finally, a summary of this work is given in see section “5
Conclusion.”

2 Materials and methods

2.1 Data acquisition

A total of 35 subjects (age 18-24 years old; 25 male and 10
female) were recruited to perform a simulated driving task on
a static simulator. All subjects held valid C1 drivers licenses
with > 1 year of driving experience (mean: 2 years; range:
1-4 years), representing a young, high-risk demographic for
fatigue-related accidents. Before experiment, subjects were
required to quit stimulants such as alcohol, coffee, or tea for
24 h and maintain a regular sleep schedule (> 7 h/night for
3 days prior). Each subject received detailed instructions on the
experiment task and procedures. Written informed consent was
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obtained from all participants. The subjects who participated
in this work were approved by the institutional research ethics
committee in accordance with the declaration of Helsinki.
During the experiment, subjects wore a 40-channel EEG cap
(10-20 international system with two mastoid references) while
seated in an acoustically shielded chamber. Although full scalp
(Fp1/Fp2)
(1) Neurophysiological

coverage was implemented, prefrontal channels
were prioritized for three reasons:
relevance: Prefrontal theta activity shows stronger correlation with
drowsiness scores than central beta activity (Lin et al., 2005); (2)
Motion robustness: Forehead electrodes exhibit lower impedance
variability (AZ = £ 10% vs. &= 35% in hairy regions) during head
movements (Looney et al., 2012); (3) Practical feasibility: Single-
channel forehead systems achieve accuracy in driving fatigue
detection comparable to multi-channel setups (Chuang et al,
2018). The skin impedance was adjusted to below 5 kQ by injecting
conductive gel to start the recording process. The electrode cap
included two mastoid reference channels based on the extension
of the international 10-20 electrode placement standard, which
had a sampling rate of 1,000 Hz (Jasper, 1958). The setup of the
cap in the process of data recording is clearly introduced in Gao
et al. (2019). The physical conditions and preparatory works for
subjects were basically like the description in the article (Min et al.,
2017). This simulator was equipped with three 24 inch color Liquid
Crystal Displays and a simulation driving teaching software. The
experiments were conducted on a computer equipped with an
Intel Core i7-7700K CPU @ 4.20GHz, 16GB of memory, and an
NVIDIA GeForce GTX 1080Ti GPU.
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Similar to the experiment described in Min et al. (2017), the
environment selected for this task included a highway with low
traffic density, and the monotonous environment often causes
fatigue. The driving time started around 14:00. Each subject had
10 min to familiarize themselves with the task scene and then
freely rest for 5 min. Then, after a quick check, the subjects
performed a simulated driving task for approximately 2 h. During
the experiment, the subjects wearing an EEG cap performed the
simulated driving task to record the EEG signal. The subjects used
the Caledonian Fatigue Scale and Lee’s Subjective Fatigue Scale
to report their fatigue level every 20 min (Chalder et al., 1993).
Similar to previous studies, this self-reported fatigue questionnaire,
including 25 questions, each with two options, can be processed
quickly with a two-point scale [no (0) and yes (4)], such as
“Are you drowsy?”, “Do you have difficulty concentrating?”, “Are
you irritable?”, and “Are your eyes tired?” etc. In addition,
video monitoring of facial expressions and a practice performance
from the teaching software were also considered to conduct a
comprehensive assessment for fatigue levels. Finally, each 5 min
recorded EEG data in normal and fatigue state was obtained and
labeled, respectively. Not all subjects exhibited signs of fatigue
within the allotted window of time. During the trial, 32 out of 35
subjects were drowsy.

2.2 Data preprocessing

The main steps of data preprocessing were performed using
Neuroscan Scan 4.3 software and MATLAB software EEGLAB
toolbox after collecting raw EEG signals. As seen from Figure 1
(top right), we just selected FP1 and FP2 electrode on the
forehead to preprocess. Wavelet denoising with soft thresholding
was applied to suppress muscle artifacts (8-40 Hz) and eye blink
components, followed by ICA-based ocular artifact removal (Jung
et al., 2000). Baseline drift and electro-oculogram artifact removal
was first applied to calibrate EEG data. Next, a 50 Hz notch filter
and a 1-50 Hz band pass filter were performed to remove the
artifacts. Electrode contact stability was monitored via amplitude
variance thresholds (< 50 wV?). In addition, minimum-maximum
normalization was applied to standardize the data to ensure that the
model was not affected by amplitude differences. Then 5 min EEG
signals were divided into 1 s epochs without overlap. As a result, an
approximate 19,200 units for 32 subjects were produced.

2.3 Feature extraction

After the acquisition and preprocessing of EEG data, a suite
of entropy measures was employed for feature extraction. The
measures include: AE, FE, Kolmogorov entropy (KE), permutation
entropy (PE), SE, spectral entropy (SPE), symbolic transfer entropy
(STE), wavelet log energy entropy (WLE) and wavelet packet energy
entropy (WPE). These measures were selected based on their
complementary abilities to capture non-linear dynamics, spectral
shifts, and network interactions in EEG signals, which are critical
for detecting driver fatigue. AE and SE quantify signal regularity by
measuring the probability of similar patterns recurring in EEG time
series. Reduced regularity in frontal EEG during fatigue correlates

Frontiers in Neuroscience

10.3389/fnins.2025.1567146

with cognitive decline and attentional lapses, as demonstrated in
driver fatigue studies (Min et al, 2017; Wu et al, 2012). An
extension of AE/SE, FE improves robustness to EEG noise by
incorporating fuzzy membership functions (Chen et al., 2009).
For consistency, the embedding dimension was set to 2, and
the tolerance parameter was defined as 0.7 times the standard
deviation (SD) of the time series. PE evaluates complexity by
analyzing ordinal patterns in EEG signals. A scale factor s = 2,
embedding dimension m = 5, and a delay time t = 4 were chosen to
capture fatigue-induced shifts in long-range temporal correlations
(Min et al., 2017). SPE quantifies the flatness of the EEG power
spectrum, reflecting fatigue-related increases in theta/delta power
and decreased beta activity (Jap et al, 2009). Unless otherwise
specified, the optimal parameters for these entropy measures in this
paper were determined through a grid search method. KE, on the
other hand, often serves as an indicator with values that are zero
for non-chaotic signals and greater than zero for chaotic signals. In
this study, we employed the second-order KE for feature extraction
purposes (Grassberger and Procaccia, 1983). The KE estimation is
deemed both straightforward and unambiguous, as supported by a
maximum-likelihood method described in Schouten et al. (1994).
Through our grid search optimization, the embedding dimension
m was set to 6. In accordance with the guidelines provided by
Daw et al. (1995), the specific distance parameter ry was defined
as Equation 1:

Y YRR M
where N denotes the number of data points, s; denotes a
given N-point time series. Furthermore, to furnish energy-related
information associated with EEG frequency bands, we also
incorporated WLE and WPE, where the decomposition coeflicients
for each layer are derived through wavelet transform and wavelet
packet transform. The definition of the i-th iteration of WLE can be
expressed as follows Equation 2:

WLEi = Zj log(ci %) 2

where ¢;; denotes the wavelet decomposition coefficient of the
i-th leaf node in the wavelet tree. It is important to emphasize
that for WLE construction, each individual leaf node was utilized,
consequently yielding Equation 3:

WLE = [WLE_1, WLE_2, ..., WLE_i] (3)

It can be observed that the value of i is the number of
decomposition stages plus 1. Similarly, WPE is also founded upon
Shannon entropy and can be defined as follows Equation 4:

WPE = — > pilogypi (4)

where p; is defined as the percentage of energy attributed to
the wavelet packet decomposition coefficient of the i-th leaf
node in the wavelet packet tree structure. These two wavelet
entropies rests upon the selected wavelet basis function and
the specified number of decomposition levels. In this study, we
opted for the db3 wavelet as our basis function and set the
layer count to 2. Lastly, Transfer Entropy serves as a parameter
to gauge the complexity between a pair of sequences (Vicente
et al,, 2011). Often, a technique involving symbolic representation
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is employed to estimate it. For our research, we transformed
EEG data into a straightforward binary sequence by marking an
increment in adjacent amplitude values as “1,” while all other
cases were designated as “0.” This simplification allowed us to
compute STE effectively. Ultimately, we leveraged a powerful
existing transfer entropy toolbox to calculate STE from the derived
binary sequence (Lizier, 2014). Driver fatigue manifests through
diverse EEG phenomena: temporal complexity changes (captured
by AE/SE/FE/PE/KE), spectral dynamics (SPE/WLE/WPE), and
network interactions (STE). The rationale for employing multi-
entropy fusion lies in addressing the limitations of single-entropy
approaches, which often fail to capture the heterogeneous nature of
fatigue-induced EEG patterns.

2.4 Classification model

The entropy features extracted from each EEG epoch were
input into a stacking classifier following the elimination of highly
correlated attributes using Pearson’s correlation coefficient, with
a stringent threshold set at 0.98. A hierarchical fusion model
represents an efficacious strategy for bolstering both accuracy
and robustness in regression or classification tasks. The results
of different classifiers can be directly used for fusion, or the
predictive result of one model can be used as the feature of
another model for training and then obtain new prediction
results. In this study, the stacking model was constructed as
depicted in Figure 1 (central bottom panel), which integrated
three fundamental classifiers: Logistic Regression (LR), Extreme
Learning Machine (ELM), and light gradient boosting machine
(LGBM). LR is a straightforward yet highly efficacious learning
algorithm (Hosmer et al., 2013), employing the sigmoid function
to map predicted values into probabilistic outcomes. ELM, on the
other hand, constitutes a single-hidden layer feed-forward neural
network, wherein input weights are randomly assigned and hidden
layer biases only determine the output weights analytically (Huang
etal,, 2006). This characteristic endows it with rapid learning speed
and commendable generalization capabilities. LGBM, as a gradient-
boosting framework, resorts to tree-based learning algorithms,
often utilizing traditional gradient boosting decision trees as its
boosting component (Ke et al., 2017). It has been established
as an outstanding classifier due to its numerous advantages (Ma
et al, 2018). Notably, the high efficiency, inherent amenability
to parallel processing, and capacity for online learning that are
common to all three base classifiers render them particularly
suitable for contemporary large-scale data analysis tasks. The three
fundamental classifiers can be conveniently implemented through
the utilization of publicly available Python libraries.

2.5 Evaluation method

The leave-one-out cross-validation (LOOCV) approach is
widely used to assess performance and adopted to assess the
detection quality for driver fatigue in this study. The well-known
performance indicators, including accuracy (ACC), sensitivity
(SN), specificity (SP), F1-score and area under ROC curve (AUC)
were also used to provide an easier-to-understand method for
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TABLE 1 Optimal performance of different entropy features based on
two forehead channels using Logistic Regression (LR) classifier.

Entropy ACC SN SP F1-score
features

AE 0.698 0.688 0.709 0.693

FE 0.850 0.844 0.856 0.849
KE 0.690 0.710 0.669 0.694

PE 0.660 0.650 0.670 0.655

SE 0.697 0.687 0.707 0.692
SPE 0.680 0.648 0.711 0.666
STE 0.698 0.673 0.724 0.688
WLE 0.862 0.823 0.901 0.851
WPE 0.712 0.722 0.701 0.714
Mean£SD | 0.727+0.07 | 0.716+0.07 | 07394008 | 0.723 +0.07

assessing the classification quality (Huang and Ling, 2005). At the
same time, in order to get an overview of which entropy features
are most important for a model, SHapley Additive exPlanations
(SHAP) values were used to show the distribution of the impacts
each entropy had on the model output (Scott and Su-In, 2017).

3 Experimental results

The optimal performance of different entropy features based on
two forehead channels using the LR benchmark classifier is shown
in Table 1, which presented the performances using the four metrics
mentioned above. It can be seen intuitively in Table 1 that each
measure of all entropy indices was close to 0.72, implying that a
single entropy for fatigue detection performed well. In addition, FE
and WLE had a better overall ability to distinguish the driving states
and a stronger robustness for individual differences; that the ACC
and F1-scores of the former were 0.850 and 0.849, while the latter
was 0.862 and 0.851, which outperformed the averages a lot. Thus, it
is very suitable for using FE and WLE to study single-channel EEG
data for driver fatigue detection.

In addition, for investigating multiple entropy fusion applied
in predicting driver fatigue, relevant features were identified by the
Pearson correlation coefficient and then removed if the coefficient
was greater than a specified value before feeding to different
classifiers. Figure 2 demonstrated a heatmap of all coefficients,
which listed one highly correlated entropy, namely WLE_2_FP1,
from all entropy pairs with a blue box for one subject. This
indicated that there were common characteristics among different
entropies, and the variability of entropies over time should be
focalized to EEG application (Porta et al., 2001).

As shown in Figure 3, we can also plot the SHAP values of
every feature to exploit the impacts of different entropies on the
model output. Corresponding to Figure 2, among these selected
entropies, the size of the features represented by different colors
was still distinguishable enough to approximate the normal and
fatigue states. That of the last few, such as AE_FP2, KE_FP2,
FE_FP2, SE_FP1, SPE_FP1, and WLE_3_FP2, was not evident, but
the distribution of the features was a little different, with low feature
values being the majority while FE_FP1, WPE_FP1, and AE_FP2
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FIGURE 2

A heatmap of all coefficients above the threshold to various entropies for one subject.

were the opposite. In particular, the entropy values from the top
few FP2 channels had quite a bit of differentiation. For example,
the high values of PE_FP2 could have a positive influence on driver
fatigue detection, implying that the PE increased during the driving
state change from normal to fatigue. This means the ordinal pattern
could lead to an increased complexity of the EEG time series during
the fatigue period. For increasing WLE_1_FP2 and WLE_2_FP2,
the energy has an enhancement change to maintain the driving
task and help fight fatigue from normal to fatigue (Zhang and
Chen, 2012). In addition, some entropies showed a decreased
phenomenon, such as SPE_FP2, KE_FP1, PE_FP1, WLE_1_FP1,
and STE_FP1, in accordance with many previous studies related
to entropy-reducing feedback mechanisms (Gao et al., 2018; Chen
et al,, 2015). However, the mechanism for analyzing the difference
between FP1 and FP2 needs further study.

To rigorously evaluate the feature selection paradigm,
we compared the multi-entropy fusion framework against
Relative FFT-RBP served
as baseline inputs for both logistic regression and stacked

conventional FFT-based methods.

ensemble classifiers. As empirically validated in Table 2, the
entropy integration strategy demonstrated statistically superior
classification accuracy (93.9% =+ 5.6%) over spectral methods
(71.4% =+ 11.4%), with a 22.5% absolute improvement.

Frontiers in Neuroscience

The proposed stacking model was designed to detect fatigue
states for each subject, and its performances were was assessed
using the LOOCV approach on EEG data sourced from the
forehead channels of 32 subjects. Upon comparing the results with
those obtained by the three base classifiers, Table 3 and Figure
4 presents the average recognition rates, Sensitivity, Specificity,
Fl-scores, Precision, Recall and their corresponding SD as
determined by the stacking classifier during validation. In this table,
while ELM’s performance metrics were somewhat commensurate
with those of the LR benchmark classifier, it displayed a
notably enhanced computational efficiency and consistently lower
SD values compared to LR, thus indicating strong predictive
capabilities in detecting driver fatigue with the ELM classifier.
Moreover, LGBM also emerged as a highly capable detector,
outperforming ELM across all six evaluation measures. However,
the data in Table 3 definitively show that the stacking classifier
consistently achieved the best classification performance coupled
with the lowest standard deviation. Notably, when employing
the two forehead channels, FP1 and FP2, the optimal average
accuracy reached 93.9% with a standard deviation of 5.6%, the
optimal average precision and recall rates reached 94.1% and
93.6%, respectively, which demonstrates the high reliability of the
stacked model in identifying the positive class. Table 4 presents
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TABLE 2 Comparison of model performance with different feature extraction methods.

Feature

FFT

Classifier

LR

ACC

0.702 £ 0.117

Sn

0.705 £ 0.117

Sp
0.700 £ 0.137

F1-score

0.704 = 0.115

Precision

0.705 % 0.120

Recall

0.705 4 0.117

FFT

Stacking

0.714 £ 0.114

0.718 £ 0.113

0.710 £ 0.133

0.716 &£ 0.112

0.716 = 0.118

0.718 +0.113

Entropy

Stacking

0.939 £ 0.056

0.939 £ 0.060

0.939 £ 0.055

0.939 & 0.057

0.941 & 0.054

0.936 4 0.059

TABLE 3 Results and performance using a Comparison stacking model based on two forehead channels.

Classifier
LR

ACC

0.921 £ 0.079

SN

0.914 4 0.087

SP

0.928 4 0.073

Fl-score

0.920 4 0.081

Precision

0.930 4 0.072

Recall

0.923 £ 0.079

LGBM

0.929 £ 0.061

0.928 4 0.063

0.930 4 0.061

0.929 4 0.614

0.938 4 0.055

0.934 £ 0.060

ELM

0.921 4 0.072

0.917 £ 0.076

0.925 4+ 0.070

0.920 +0.073

0.930 % 0.066

0.923 £ 0.070

Stacking

0.939 & 0.056

0.939 4 0.060

0.939 4 0.055

0.939 4 0.057

0.941 4 0.054

0.936 & 0.059

the confusion matrices of the classification results for the four
classifiers. It is evident that the stacked model outperforms the
other models in identifying both positive and negative classes. We
conducted experiments to compare the performance of simple FFT
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feature extraction for logistic regression with that of the fusion
of nine types of entropy for the stacked model. The results, as
shown in Table 2, demonstrate that the stacked model with entropy
fusion achieved an accuracy rate 23.7% higher than the logistic
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TABLE 4 Confusion matrix of four model.

Actual value/ Negative Positive
Predicted value

LR

Negative 8,894 793
Positive 657 8,824
LGBM

Negative 8,957 623
Positive 594 8,940
ELM

Negative 8,890 732
Positive 661 8,831
STACK

Negative 8,980 620
Positive 571 8,943

regression model using FFT features. This outcome underscores the
superior overall performance of our proposed model in the context
of classifier design.

To reach a consensus on the robust stability of the obtained
results, AUC was employed as the elective metric to assess the
performance of driver fatigue detection, as depicted in Figure 5.
As can be observed, the ROC curves corresponding to the stacking
classifier consistently outperformed those of other classifiers by
encompassing them. The classifier achieved AUC scores of 0.954
at FP1, 0.963 at FP2, and 0.983 when combining both channels,
which are considered excellent according to AUC standards.
Regarding individual classifiers, Figures 5a-d demonstrate that
the performance of ELM is comparable to that of LGBM; both
models surpass LR but are less effective than the stacking classifier.
In Figures 5e, f, LGBM exhibits better performance compared to
ELM and LR, albeit remaining inferior to the stacking model at
its optimum threshold. This indicates that the stacking classifier
possesses a higher level of robustness in extracting discriminative
information from forehead EEG signals for detecting driver
fatigue. Table 3 and Figure 5 jointly highlight that the stacking
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model utilizing a combination of forehead channels FP1 and
FP2 achieves stronger discriminatory power compared to models
using a single channel. Both metrics, F1-score and AUC, exhibit
consistent performance across different classifiers when applied to
data from FP1, FP2, or their combined signals. Their favorable
behavior can be attributed to the versatility and robustness of
entropy measures. Specifically, multiple entropy indices effectively
capture the uncertainty changes in brain activity signals during
the transition from normal to fatigue states while driving. Finally,
the classification performance of related studies in recent years is
summarized in Table 5. As observed, there is a dearth of research
focusing on automatic fatigue detection using forehead electrodes
(indicated by bolded accuracy values), and the reported accuracies
from most articles employing frontal electrodes are not notably
high. Compared with FFT-based methods, our approach achieved
11.2% higher accuracy than Li et al. (2015) and 2.6% improvement
over Lietal. (2015), despite using only a single forehead channel. In
comparison to previous studies, the forehead-based EEG entropy
measurement method demonstrated in this study can effectively
identify driver fatigue.

4 Discussion

In this study, we establish a computationally efficient stacking
model that fuses multiple entropy measures to assess driver
fatigue using single-channel frontal EEG signals. The framework
demonstrates three key advantages for real-world deployment:
First, compared with multi-channel EEG systems, frontal channel
(Fpl/Fp2) selection balances neurophysiological relevance and
usability by leveraging the prefrontal cortex’s established role
in vigilance regulation while minimizing motion artifacts. The
observed effectiveness of FE and WLE in fatigue detection
using single-channel frontal EEG (ACC: 0.850-0.862) aligns with
neurophysiological evidence that frontal regions correlate strongly
with drowsiness scores (Lin et al., 2005). Notably, frontal electrodes
are located in the prefrontal region of the brain that lacks hair,
making them easier to access and more comfortable for the
user, while dry electrodes here exhibit 40% lower motion-induced
impedance variability than central scalp regions (Looney et al.
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TABLE 5 Compare with other literature methods.

References | Features Classifier Acc (%)
Li and Chung FFT SVM 82.7
(2015)
Mu et al. (2017) FE SVM 85.0
Lietal. (2015) FFT SVM-based 91.3
PPM
Correa et al. Band-based ANN 87.4
(2014) analysis
Hu (2017) FE RF 9.6
Wei et al. (2018) Subband SVM 80.0
logarithmic
power
Ogino and PSD SVM 72.7
Mitsukura
(2018)
Mehreen et al. Hybrid features SVM 92.0
(2019)
This paper Multi- entropies A stacking 93.9
model

The bold values indicate the accuracy of fatigue detection using forehead-mounted electrodes.

2012). The practicality of our forehead EEG approach could further
be supported by the growing availability of low-cost, wireless EEG
headsets optimized for frontal lobe recording (LaRocco et al,
2020). Second, by averaging the output of multiple classifiers
with different structures, the overall risk of individual classifiers
making wrong decisions can be reduced. Compared with individual
classifier model, the proposed stacking model integrating LR,
ELM, and LGBM, obtains more accurate and stable results. This
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aligns with studies demonstrating stacking’s superiority in handling
physiological signal variability (Zhou, 2012), particularly for single-
channel EEG applications requiring robustness to inter-subject
differences (Lotte et al., 2018). Third, nine entropy measures
were used for feature extraction, and the proposed model based
on multi-entropy fusion can significantly improve the detection
quality. Multi-entropy fusion mitigates these issues by emphasizing
local signal complexity rather than global energy distribution
through hybrid time-frequency and ordinal pattern analysis. For
instance, WLE isolates frequency-specific non-linear dynamics via
wavelet-packet decomposition, while PE filters out high-amplitude
artifacts through ordinal pattern analysis. This explains our model’s
22.5% accuracy gain over FFT-PSD (Table 2) and its alignment with
recent studies advocating entropy for wearable EEG (Balam, 2024).

The limitations and future work in this study can be given in
the three aspects. First, although the experiment results verified
the feasibility of the proposed approach with a limited number
of subjects, the significant benefits of this approach need to be
confirmed through further research on more subjects in real-
world driving environments. Second, it is important to recognize
that EEG signals represent a continuous time series with inherent
temporal correlations. When accounting for local relationships
within these sequences, may lead to a significant improvement
in the generalization capabilities of EEG-based methods. In
essence, the effective characterization and quantification of non-
linear patterns in fatigue data, such as variability, sensitivity,
and the evolution of temporal relationships over time, remains a
substantial challenge and a key area for development in harnessing
EEG technology for driver fatigue detection applications. Third,
while this study primarily focuses on EEG signals for detecting
driver fatigue, integrating complementary physiological signals
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such as electrodermal activity could potentially further improve
the accuracy and reliability of fatigue detection system in
future research (Veeranki et al., 2024a; Veeranki et al.,, 2024b).
Beyond driving, our framework also could extend to neurological
rehabilitation (attention tracking in ADHD therapy), supported by
emerging applications in neural engineering.

5 Conclusion

In this paper, we introduce a novel automatic fatigue detection
methodology utilizing forehead EEG signals, which is enhanced
by the integration of multiple entropy measures and a fast-
stacking model. The key advantage of our proposed approach
lies in its ability to efficiently classify fatigue status through the
utilization of entropy features derived from forehead EEG signals,
using a fast-stacking classifier. From the presented results and
ensuing discussions, we can draw several conclusions as follows:
(1) multi-entropy fusion from forehead EEG achieves automotive-
grade accuracy (94% LOOCYV) comparable to commercial driver
monitoring systems; (2) FE and WLE are robust for single-channel
fatigue analysis, as validated by SHAP values > 0.8 for theta-
band entropy features; (3) the stacking model (ELM/LGBM/LR)
improves robustness, with 4.7% higher AUC than individual
classifiers. Practically, this framework could be deployed in real-
time driver monitoring systems to reduce fatigue-related accidents.
These findings also provide a scalable solution for commercial fleets
and aviation safety, advancing road safety.
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