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Introduction: In the past decade, artificial neural networks (ANNs) have

revolutionized many AI-related fields, including Speech Enhancement (SE).

However, achieving high performance with ANNs often requires substantial

power and memory resources. Recently, spiking neural networks (SNNs) have

emerged as a promising low-power alternative to ANNs, leveraging their inherent

sparsity to enable e�cient computation while maintaining performance.

Method: While SNNs o�er improved energy e�ciency, they are generally more

challenging to train compared to ANNs. In this study, we propose a three-

stage hybrid ANN-to-SNN fine-tuning scheme and apply it to Wave-U-Net

and ConvTasNet, two major network solutions for speech enhancement. Our

framework first trains the ANN models, followed by converting them into their

corresponding spiking versions. The converted SNNs are subsequently fine-

tuned with a hybrid training scheme, where the forward pass uses spiking signals

and the backward pass uses ANN signals to enable backpropagation. In order

to maintain the performance of the original ANN models, various modifications

to the original network architectures have been made. Our SNN models operate

entirely in the temporal domain, eliminating the need to convert wave signals into

the spectral domain for input and back to thewaveform for output. Moreover, our

models uniquely utilize spiking neurons, setting them apart from many models

that incorporate regular ANN neurons in their architectures.

Results and discussion: Experiments on noisy VCTK and TIMIT datasets

demonstrate the e�ectiveness of the hybrid training, where the fine-tuned SNNs

show significant improvement and robustness over the baseline models.

KEYWORDS

spiking neural network (SNN), Wave-U-Net, speech enhancement, Conv-TasNet,

ANN-SNN conversion

1 Introduction

Speech enhancement (SE) is a fundamental problem in speech signal processing, aimed
at separating noise from speech to produce a cleaner and more intelligible audio signal. SE
plays a critical role in various applications, including hearing aids, speech recognition, and
telecommunications. In recent years, deep artificial neural networks (ANNs) have emerged
as the dominant solution for SE tasks, producing state-of-the-art results.

However, the advancements of ANNs come at the cost of increased power
consumption, primarily due to the complexity of models with deeper learning layers, which
limits their applications in many power-constrained scenarios. Spiking neural networks
(SNNs) offer a promising solution to this issue. The spiking neurons in SNNs are designed
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to emulate the temporal and spiking behavior of biological
neurons (Bouvier et al., 2019). Unlike traditional neurons, spiking
neurons consume energy only when emitting spikes, resulting
in a significant reduction in the overall power consumption of
the network.

Compared to training ANNs with digital values, training
SNNs with binary values is significantly more challenging. Various
approaches have been proposed recently to tackle this issue.
One common approach is to train SNNs from scratch using
surrogate gradients (Lee et al., 2016), which approximate gradients
by replacing spike activation function with a smooth curve
to overcome the non-differentiability issue of spikes. While
widely used, this approach can be inefficient due to vanishing
gradient problems and error accumulation that results from
gradient approximation, which often resulting in slow convergence,
particularly in networks with deep complex architectures (Shrestha
and Orchard, 2018; Wu et al., 2018; Rathi et al., 2020;
Li et al., 2021). Moreover, training SNNs from scratch on
large datasets, such as ImageNet or LibriSpeech, remains a
substantial challenge.

An alternative approach to obtaining a trained SNN is through
ANN-SNN conversion, where an ANN is first trained and then
transformed into an equivalent SNN. Early works such as Diehl
et al. (2015) highlighted the issue of performance degradation in
converted SNNs due to improper neural activation and introduced
weight normalization to adjust firing rates by scaling ANN
weights accordingly. To further improve conversion accuracy,
Rueckauer et al. (2017) proposed the Max-Norm algorithm, which
scales weights based on the maximum activation within each
layer, alongside a reset-by-subtraction mechanism to mitigate
performance loss. In addition, Sengupta et al. (2019) developed
SpikeNorm, which improves SNN performance through threshold
rescaling, ensuring better alignment between ANN activations
and SNN firing rates. More recently, Ho and Chang (2021)
introduced a method that incorporates clipping layers during ANN
training to reduce quantization errors before conversion, leading
to improved accuracy in converted SNNs. A major limitation of
the aforementioned ANN-SNN conversion methods is the need for
a large number of time steps to achieve accuracy comparable to
the original ANN. This constraint significantly impacts efficiency,
making these approaches less suitable for dense, continuous data
such as speech, where low-latency processing is critical.

More recent conversion methods aimed to improve SNN
accuracy with low-latency. Bu et al. (2022) proposed training
an ANN with quantization clip-floor-shift activation to replace
ReLU that aims to reduce the clipping error during SNN
conversion. Similarly, Wang et al. (2023) proposed a two-stage
conversion method involving training an ANN with a clipping
activation in the first stage to reduce the clipping and quantization
errors, and performing a layer-wise calibration of weights and
membrane potentials in the second stage to reduce residual
error. While these methods are effective for sparse prediction
tasks such as classification—where some degree of information
loss from clipping can be tolerated—they fall short in dense
prediction tasks like segmentation or speech denoising. These
tasks require predictions at every spatial or temporal location,
making them far more sensitive to information loss, particularly

in preserving fine-grained temporal details critical for accurate
speech prediction.

Combining the direct training and ANN-SNN conversion
approaches, Baltes et al. (2023) proposed a hybrid SNN fine-tuning
pipeline to achieve comparable performance in SNNs. Similar
to the ANN-SNN conversion method, this approach begins by
transferring the weights from a fully trained ANN to an equivalent
SNN architecture. The converted SNN is then fine-tuned through
a hybrid forward-backward training process. In this fine-tuning
phase, the forward pass consists of standard SNN inference, while
the backward pass uses conventional backpropagation to update the
SNN weights. This fine-tuning process helps recover information
lost during the conversion, allowing the SNN to regain performance
that may have degraded due to quantization errors, or clipping like
the aforementioned ANN-SNN conversion techniques.

The focus of this study is to develop SNN solutions for speech
enhancement. Numerous ANN models for SE have been proposed
over the years. Wave-U-Net (Stoller et al., 2018) and Conv-Tasnet
(Luo and Mesgarani, 2019) are among the most popular solutions,
demonstrating competitive performance on various datasets and SE
tasks. Wave-U-Net is a Fully Convolutional Network (FCN) that
employs an encoder-decoder architecture. Conv-TasNet features a
more advanced encoder-separator-decoder architecture compared
to Wave-U-Net, where the separator is designed to estimate a
noise mask, allowing the model to capture long-term long-term
dependencies while maintaining efficiency.

Very limited research has been conducted to address the SE
problem using spiking networks, with the exception of Riahi and
Plourde (2023), Sun and Bohte (2024), and Hao et al. (2024).
However, these approaches either operate in the frequency domain

or rely on hybrid architectures that combine ANN and SNN

neurons, which leads to increased latency and energy consumption.

In this work, we build upon the approach proposed by Baltes

et al. (2023) and propose a three-stage SNN training scheme for

speech enhancement. ANN models are first trained before being

converted into their corresponding spiking versions. The converted

SNNs are then fine-tuned using a hybrid training scheme, where

the forward pass employs spiking signals, while the backward

pass utilizes ANN signals to enable backpropagation. We apply

thie approach to two major SE netwroks solutions: Wave-U-Net

and Conv-TasNet. The contributions made in this work can be

summarized as follows:

1. We propose a novel application of a three-stage SNN training
scheme, originally developed for image classification tasks, to
the regression-based speech enhancement task. We apply our
pipeline to two major SE networks, Wave-U-Net, and Conv-
TasNet.

2. To the best of our knowledge, this is the first SNN
implementation of Conv-TasNet, which is considered one of the
state-of-the-art convolutional architectures.

3. Unlike other SNN SE networks, our models operate directly on
raw waveform speech signals, eliminating any overhead from
pre- and post-frequency domain processing.

4. Both of our SNN models are composed exclusively of spiking
neurons with no involvement of conventional ANN neurons,
ensuring a fully spiking architecture throughout the networks.
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2 Background and related work

2.1 ANNs for speech enhancement

Numerous models have been developed to address the SE
problem. Some operate in the frequency domain, requiring
additional overhead of pre- and post-processing steps to transform
audio frames between the time and frequency domains. Other
models operate directly in the time domain, differing in complexity
and architectural design. In this work, we focus on two time-
domain architectures, Wave-U-Net and Conv-TasNet, which have
demonstrated competitive performance.

Wave-U-Net (Stoller et al., 2018) is a fully convolutional
architecture that employs an encoder-decoder design with equal
depth in the encoder and decoder, connected by skip connections
linking corresponding layers. The encoder functions as a multi-
scale feature extraction pipeline, capturing speech information
through a series of downsampling blocks that progressively reduce
the input dimensions. The decoder is responsible for reconstructing
the signal and generating an enhanced speech frame. Skip
connections further enhance the decoding process by transferring
information between the encoder and decoder. At each decoding
level, the encoded feature map is concatenated with the output of
the corresponding decoder level, helping to preserve finer details
that may have been lost during the downsampling process.

Conv-TasNet (Luo and Mesgarani, 2019), a more complex
architecture than Wave-U-Net, adopts an encoder-separator-
decoder design, with the separator serving as the core of the model.
The encoder consists of a convolutional layer that encodes the
speech frame into a two-dimensional spectral-like feature map.
This feature map is passed to the separator, which comprises a
series of dilated depthwise separable convolutional blocks with
progressively increasing dilation factors. These expanding dilations
enable the model to capture long-term dependencies in the signal,
while the depthwise separable convolutions enhance computational
efficiency. In speech enhancement tasks, the separator’s primary
role is to estimate a noise mask within the signal. This estimated
mask is applied to the encoded feature map from the encoder,
which is then passed to the decoder to reconstruct the predicted
enhanced signal.

2.2 SNNs for speech enhancement

The shift of research attention towards using SNNs for SE
is very recent, resulting in limited studies in this area. Riahi
and Plourde (2023) proposed a spiking U-Net encoder-decoder
architecture for SE, which incorporates skip connections between
corresponding encoder and decoder layers. This model operates
in the frequency domain, where the input audio frame undergoes
a Short-Time Fourier Transform (STFT) to produce its spectral
representation, followed by a fully connected conventional ANN
layer for signal masking.

Spiking-FullSubNet, developed by Hao et al. (2024), is
also designed to operate in the spectral domain. This model
incorporates Gated Spiking Neurons (GSNs), which dynamically
adjust membrane potentials using a variable decay factor that

adapts to variations in the noise levels of the audio signal. The
architecture employs both full-band and sub-band processing.
The full-band model processes the noisy input spectrogram,
capturing global dependencies and partitioning frequencies. These
partitioned frequencies are then processed by sub-band models,
which capture intra-band dependencies within specific frequency
bands. The outputs from the sub-band models are further filtered
before generating an enhanced spectrogram, which is transformed
back into an enhanced audio signal using the inverse STFT.

Sun and Bohte (2024) proposed DPSNN, a time-domain
masking method with an encoder-separator-decoder architecture.
The encoder transforms audio frames into 2-D feature maps, which
are processed temporally by the separator. The separator uses
spiking neurons in convolutional and recurrent layers to generate a
spiking mask, later converted into a binary mask by a conventional
ANN layer. This mask refines the encoded features to reconstruct
enhanced audio frames. It should be noted that DPSNN uses
non-spiking neurons in its encoder and decoder, which may pose
limitations in hardware implementation and energy efficiency.

2.3 SNN training

Training SNNs can be approached in several ways. They can
be trained from scratch through supervised learning. However,
the non-differentiable nature of spikes makes conventional
backpropagation inapplicable. To address this, surrogate gradient
algorithms (Li et al., 2021; Neftci et al., 2019) were developed. These
algorithms address the differentiability issue by approximating
the activation function with a differentiable alternative
during backpropagation.

SNNs can be trained through unsupervised learning based
on Spike-Timing-Dependent Plasticity (STDP) (Masquelier and
Thorpe, 2007; Diehl and Cook, 2015; Lu and Sengupta, 2024). This
learning rule follows the principle: “neurons that spike together,
wire together.” Synaptic weights of the neurons are adjusted based
on spike timing, which allows temporal learning of the network
from the input. However, STDP is computationally expensive
and achieving a stable weight convergence remains a significant
challenge.

SNNs can also be obtained through converting fully trained
ANNs. This approach began with early methods by Pérez-
Carrasco et al. (2013), who used ANN weights to optimize SNNs
with leakage and refractory periods. Cao et al. (2015) advanced
this by removing these periods and linking ReLU to spiking
activation. Diehl et al. (2015) further improved the approach with
weight normalization and reset-by-subtraction, achieving strong
performance on MNIST.

Alternative methods introduced temporal coding, with
Rueckauer et al. (2017) refining SNN modeling through enhanced
weight normalization, biases, batch normalization, max pooling,
and static rate input encoding. Sengupta et al. (2019) focused on
iterative threshold updates for deeper residual networks, achieving
reduced conversion loss but requiring longer simulations. Ho and
Chang (2021) contributed by developing Trainable Clipping Layers
(TCL) to directly train thresholds, improving activation control
and overall performance.
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FIGURE 1

3-stage SNN fine-tuning pipeline.

FIGURE 2

An illustration of the forward and backward passes during spike-aware training.

3 Method

The speech enhancement problem can be perceived as
removing unwanted background noise and other distortions from
a recorded speech signal. The goal of SE is to produce a cleaner
version of the speech signal that is either more comprehensible
to human listeners or more suitable for further processing
by automatic systems. Mathematically, the input signal can be
expressed as follows:

y(x) = s(x)+ v(x)

where y(x) is the observed noisy speech signal, s(x) is the clean
speech signal, and v(x) represents the additive noise, which can
originate from various sources such as environmental sounds
(e.g., traffic, background conversations), imperfections in recording
equipment, or acoustic reverberation. This noise degrades the
clarity of the speech signal, posing significant challenges for systems
reliant on clean audio inputs, such as speech recognition and
speaker identification systems.

The primary objective of speech enhancement model f (·) is
to estimate or reconstruct the clean speech signal s(x) from the
noisy observation y(x). The enhanced signal ŝ(x), representing the

estimated clean signal, can be expressed mathematically as:

ŝ(x) = f (y(x))

3.1 Proposed three-stage hybrid ANN-SNN
fine-tuning for SE

In this work, we adopt a three-stage framework to speech
enhancement, similar to the model we previously proposed for
image segmentation (Baltes et al., 2023). As illustrated in Figure 1,
the first stage of our framework involves training an SE ANN to
convergence, ensuring it achieves peak performance. In the second
stage, the trained ANNweights are used to initialize a baseline SNN.
This baseline SNN is created as an equivalent spiking version of the
ANN, ensuring that each layer in the ANN is accurately mapped to
a corresponding layer in the SNN. Serving as a robust starting point,
this baseline SNN undergoes fine-tuning of its weights to further
enhance performance.

The fine-tuning process employs a hybrid ANN-SNN training

strategy, also known as Spiking aware training, which involves
alternating forward and backward passes as illustrated in Figure 2.
The forward pass performs SNN inference and computes the
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Input : xt

State : vt

Output: yt

s← vt−1 + f(xt)× ω

k← ⌊s⌋

vt ← s− k

yt ← k/ω

Algorithm 1. Spiking neuron quantization for an arbitrary activation

function.

loss between SNN outputs and the ground truth, while the
backward pass uses conventional backpropagation to update the
weights of the network. During the backward pass, the spiking
activations are replaced with their non-spiking equivalents to
facilitate gradient computation. The ANN backward pass ensures
an efficient weight updates and a smooth gradient flow due to
avoiding the non-differentiability issue that SNNs have due to
undefined spike derivations.

3.1.1 Spiking neuron model
Hybrid ANN-SNN follows a spiking quantization algorithm

(Voelker et al., 2020) that translate arbitrary activation functions
into their spiking equivalents as described by Algorithm 1. For a
time-step t, let xt be the input to an arbitrary activation function,
where xt is the neuron input multiplied by the synaptic weight, such
that the spiking output rate is yt = f (xt) in a specific time window
ω with static state vt , where t > 0. The output spiking rate yt is
determined by the Algorithm 1.

Following Algorithm 1, the neuron type is determined by the
activation function f (xt). For example, Leaky-Integrated-and-Fire
(LIF) neuron can be implemented by setting f (xt) to the time-
averaged response curve. Furthermore, the algorithm is equivalent
to the Integrate-and-fire neuron (IF) without a refractory period
when f (xt) = max(x, 0) and i.e., ReLU and ω = 1, with
membrane voltage vt normalized to [0, 1). The ω parameter allows
the neuron model to have multiple spikes per time-step, which can
be interpreted as a quantization rate-based neuron.

In our work, we used IF neuron for all convolutional
operations, and f (xt) = xt , i.e., linear activation, for the output
layers in each model. Spiking neurons with linear activations
provides a direct, proportional relationship between input and
spiking activity, making it suitable for tasks where a linear mapping
between input and output is needed.

3.2 Proposed SNN models for SE

In this work, we apply the proposed three-stage and hybrid
ANN-SNN training framework toWave-U-Net (Stoller et al., 2018)
and Conv-TasNet (Luo and Mesgarani, 2019), two well-established
architectures for speech enhancement tasks that operate directly
in the time domain. We name our models SNN-Wave-U-Net and
SNN-ConvTasNet, respectively.

3.2.1 SNN-Wave-U-Net
Our SNN-Wave-U-Net is a variation of the ANN-based Wave-

U-Net. As illustrated in Figure 3, it adopts an encoder-decoder
architecture that employs IF neurons for all layers within the
encoder and decoder. Notably, the neurons do not have a refractory
period, allowing them to spike multiple times within a predefined
time window (ω). The spikes generated during (ω) are collected
and processed by the subsequent layer. These neurons are referred
to as quantization rate neurons. The output readout convolution
layer consists of spiking neurons with a linear activation function.
The network uses direct input encoding (Diehl and Cook, 2015) to
convert the noisy input mixture into spikes within the first layer
of the encoder. This layer functions both as a spike generator and
as a feature extractor. Direct input encoding has been employed
in various SNN applications, including image classification and
speech enhancement (Diehl and Cook, 2015; Rathi and Roy, 2021;
Riahi and Plourde, 2023).

The encoder of SNN-Wave-U-Net uses multi-scale
downsampling blocks to extract speech features. Each block
has a 1D-convolution layer for feature extraction and a strided
convolution with a stride of 2 to halve the input size, improving
efficiency and allowing deeper networks. The output of each
block is a 2D feature map with encoded spike sequences. The
final downsampling block’s output is refined by a bottleneck 1D-
convolution layer before decoding. The decoder uses upsampling
blocks with 1D-transpose convolutions for signal reconstruction
and strided transpose convolutions (stride of 2) to gradually double
the feature map size, restoring the signal’s original dimensions.

The skip connections between the encoder and decoder are
implemented by concatenating the 2D feature maps from both
at each level. These connections provide additional information
that helps the decoder reconstruct the signal more accurately,
resulting in a cleaner signal prediction. Finally, the decoder’s output
is processed by a 1D-convolution readout layer, where each point in
the reconstructed audio signal is generated by counting the spikes
emitted by the corresponding neuron in this layer.

To describe the model parameters, our SNN-Wave-U-Net has
eight downsampling blocks in the encoder and eight upsampling
blocks in the decoder. The encoder’s 1D-convolutional layers use
a kernel size of 15, while the strided convolutional layers have a
kernel size of 2. The number of filters in these layers increases in
multiples of 24 as the network goes deeper. Similarly, the decoder’s
upsampling blocks use strided transpose convolutions with a kernel
size of 2 and a stride of 2, followed by transpose convolutions
with a kernel size of 5. The number of filters in the upsampling
layers also follows multiples of 24, increasing as the network moves
up through the decoder. Finally the readout convolutional layer
utilizes one filter of size 3.

We train our SNN-Wave-U-Net using the proposed three-
stage hybrid SNN fine-tuning pipeline. As a preprocessing step,
noisy audio tracks are divided into equal-length frames for network
processing. First, an identical ANN Wave-U-Net with the same
layer parameters is trained to convergence. The trained ANN
weights are then transferred to the corresponding layers of the
SNN-Wave-U-Net, creating a baseline SNN. Finally, the SNN-
Wave-U-Net undergoes fine-tuning with spike-aware training to
improve performance. Our SNN-Wave-U-Net utilizes one time
step for input processing.
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FIGURE 3

The encoder and decoder architecture in SNN-Wave-U-Net.

3.2.2 SNN-ConvTasNet
ConvTasNet is an encoder-separator-decoder architecture

(Luo and Mesgarani, 2019). Our SNN-ConvTasNet is developed
as a spiking-friendly adaptation of a modified version of
the ANN ConvTasNet. These modifications were made to
ensure compatibility between ANN and SNN components
while maintaining comparable performance. For example,
PReLU was replaced with ReLU, layer normalization with
batch normalization, and the multiplication operation with an
equivalent synaptic weight multiplication layer. The architecture
of SNN-ConvTasNet, as shown in Figure 4, uses IF neurons for
all layers except the readout layer, which employs spiking neurons
with a linear activation function. None of the neurons have a
refractory period.

Similar to SNN-Wave-U-Net, our SNN-ConvTasNet uses IF
neurons and direct input encoding to convertthe noisy input
mixture into spikes within the encoder layer. The encoder consists
of a single strided convolution layer that produces a 2D feature
map, with each point in the map represented as a sequence of
spikes. This feature map effectively serves as the spectral equivalent
of the input signal. The encoded feature map is then processed by
the separator, which predicts a mask to be applied to the encoded
feature map. The resulting masked feature map is subsequently
used by the decoder to reconstruct the signal.

The separator consists of N convolution blocks repeated R

times. Each block uses dilation factors that progressively increase
as powers of 2, expanding the receptive field to better capture
complex audio patterns and improve mask prediction accuracy. As
shown in Figure 5, each block includes a 1× 1 convolution followed
by a group convolution layer, which reduces computational

complexity while maintaining efficient pattern learning. The group
convolution layer produces two outputs: residual and skip feature
maps, via separate 1 × 1 convolution layers. The residual output is
created by adding the block’s input to the 1× 1 convolution output
and is passed to the next block. The skip outputs from all blocks are
summed together to form a 2D feature map. This combined map
goes through a final 1 × 1 convolution to generate the mask for
the separator.

The resulting mask is applied to the encoded 2D feature
map through point-wise multiplication in the spike multiplication
layer. The masked feature map is then passed to the decoder for
signal reconstruction. The decoder consists of a single spiking
1D-transpose convolution layer with spiking neurons and linear
activation. The neurons’ spike counts are used to reconstruct the
enhanced signal. The same three-stage hybrid SNN fine-tuning
pipeline is utilized to train our SNN-ConvTasNet.

To summarize our SNN-ConvTasNet architecture parameters,
the encoder uses a 1D convolution with a kernel size of 16, 256
filters, and stride factor of 8. The separator contains three blocks
per repetition, with two repetitions, using dilated convolutions
with dilation rates of 2j and an expand ratio of 2. Each block
has residual and skip connections with 256 channels. The dilated
convolutions also utilize group convolutions, where the number
of groups is equal to 512. The separator output is generated using
a 1D-convolution with 256 filters and kernel size 1. As shown in
Figure 4, the separator output is multiplied with the encoder output
using a multiplication layer its detailed structure is presented in
Section 3.2.3. Finally, the decoder reconstructs the waveform using
a 1D-transposed convolution with a kernel size of 16, stride 8, and
a single output filter.
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FIGURE 4

Encoder-separator- decoder of SNN-ConvTasNet architecture. Each color in the separator block represents a dilation factor within the group

convolution layer increasing progressively from 21 to 2N.

3.2.3 Spike multiplication and spike addition
In our SNN-ConvTasNet, point-wise spike multiplication

between feature maps is a challenging task. To address this,
we design a custom convolutional layer inspired by the concept
of synaptic weight multiplication. This layer utilizes a single
convolutional operation with one kernel, where the kernel size
n is configured to match the flattened dimensions of the input
2D feature map. Based on Algorithm 1, the output spike count is
determined by the floor of the membrane potential from the input
layer, scaled by ω, the predefined time interval for spike collection.
To align with this, the kernel weights wi of the multiplication layer
are initialized to the calculated number of spikes generated by the
ith encoder neurons as shown in Figure 6. The output spikes from
the separator are then used as input to the multiplication layer.
This results in generating new spike trains from the multiplication
layer that correlates with the point-wise multiplication of each
point in the input feature map and its corresponding point
in the encoder feature map which is represented as a kernel
weight in the layer. Finally, the resulting spiking feature map is
reshaped back to the original size of the input maps prior to
flattening.

Moreover, we conclude from Algorithm 1 that the number
of spikes generated by the IF neuron is proportional to the
input xt , establishing it as a rate-based neuron quantizer.
Consequently, the spike addition operation can be achieved
by concatenating the respective spike trains together as
shown in Figure 5. In our SNN-ConvTasNet, we perform
a point-wise addition operation along 2D-feature maps,
where each point in the feature map is represented by
spike trains.

4 Experiments and results

In this section, we conduct experiments to evaluate the
effectiveness of our proposed three-stage hybrid ANN-SNN
fine-tuning framework, based on SNN-Wave-U-Net and SNN-
ConvTasNet. We first describe the datasets, training strategy,
and evaluation metrics. Then, the results of our model and the
corresponding baseline models are compared and analyzed.

4.1 Data

Our experiments are conducted on two datasets: Noisy VCTK
and TIMIT with speech-shaped noises (SSNs). Noisy VCTK dataset
(Valentini-Botinhao et al., 2016, 2017) comprises nearly 400
sentences spoken by 30 different speakers. For our experiments,
we divided the dataset into 28 speakers for training and 2 speakers
for testing and evaluation. The noise signals in the VCTK dataset
are taken from the Demand dataset (Thiemann et al., 2013), which
includes two artificially generated and eight naturally recorded
noise types, each presented at four different SNR levels (0, 5, 10,
and 15 dB). The original audio files have a sampling rate of 48 kHz.
As a preprocessing step, we downsampled all audio tracks to 16 kHz
for our task.

TIMIT with SSNs dataset is modified from the TIMIT dataset
(Garofolo et al., 1993). The SSN noise is generated by taking
broadband noise and filtering it to match the long-term frequency
spectrum of the TIMIT sentences, the noise SNR levels are set to
–6, –3, 0, +3, and +6 dB. TIMIT consists of 630 speakers with
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8 different accents. We split this dataset as 20,790 utterences for
training, 2,310 for validation, and 8,400 for testing. Similar to noisy
VCTK data samples, all utterences have been downsampled to 16
KHz as a preprocessing step.

FIGURE 5

An illustration of a block convolution architecture inside the

separator and how point-wise addition is performed on spike trains

in the feature map.

4.2 Training and evaluation

For SNN-Wave-U-Net, we first trained an ANN Wave-U-Net
with the same layer architecture. The training was conducted using
the ADAM optimizer (Kingma, 2014) with a learning rate of 0.001,
an input size of 1 second, and the SNR loss function. The SNR loss
function penalizes the difference between the enhanced signal and
the ground truth clean signal, aiming to maximize the signal-to-
noise ratio. The SNR loss function is formulated as follows:

SNR Loss = −10 · log10

(

‖sgt‖
2

‖sgt − senhanced‖2

)

where:

• sgt: Clean groundtruth signal.
• senhanced: Enhanced signal produced by the model.
• ‖ · ‖2: Signal energy, typically calculated as the sum of

squares.

After training the ANN model, we established a baseline SNN
by transferring the weights from the ANN to the SNN-Wave-U-Net
architecture. In the final step, SNN-Wave-U-Net is fine-tuned using
hybrid ANN-SNN training with the SNR loss function, the Adam
optimizer with learning rate of 0.0001, input frame size of 16,384
which represents approximately 1s of audio. For hyper-parameter
ω, we performed a grid search over values [0.0001,1] and increase
by a factor of 10 at each step to identify the optimal value. We set
our IF neuron time step window of ω = 0.001. Each audio frame is
processed in a single time step.

A similar approach was used to develop the SNN-ConvTasNet.
First, an ANN-based ConvTasNet with an identical architecture was
trained using the SNR loss function and the Adam optimizer with a
learning rate of 10−4. The baseline SNN model was then initialized
by transferring weights from the trained ANN. Finally, the SNN-
ConvTasNet was fine-tuned using spike-aware training with the

FIGURE 6

An illustration of a multiplication layer in SNN-ConvTasNet model.
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TABLE 1 Evaluations of ANNWave-U-Net, baseline SNN, and fine-tuned

SNN on the VCTK test data.

Metric Noisy Wave-
U-net

Random Converted
SNN

SNN-
Wave-
U-net

SNR 8.45 15.41 0.06 8.37 14.97

SSNR 1.68 7.21 –0.17 –0.30 6.72

SI-SNR 8.45 15.64 –14.24 9.03 15.33

STOI 0.92 0.91 0.71 0.83 0.91

PESQ 1.97 2.04 1.03 1.23 1.85

CSIGS 3.34 3.26 1.86 3.29 3.22

CBAKS 3.12 3.97 2.47 2.41 3.61

COVLS 2.69 2.98 1.44 2.30 2.79

Bold values indicate the best performance model on the corresponding evaluation metric.

SNR loss function, the Adam optimizer with a learning rate of 10−5.
We set the IF neuron time step window of ω = 1, selected via the
same grid search criteria as of SNN-Wave-U-Net. Similar to SNN-
Wave-U-Net, the input frame size is 16,384, and processed in one
time step.

To evaluate our work, we used both perceptual metrics, such as
STOI and PESQ, and objective metrics, including Signal-to-Noise
Ratio (SNR), Segmented Signal-to-Noise Ration (SSNR), and Scale
Invariant Signal-to-Noise Ratio (SI-SNR). In addition, we utilized
the DNSMOS score, which provides three key metrics: speech
signal quality (SIG), background noise quality (BAK), and overall
audio quality (OVRL). In the context of speech enhancement, the
SIG score reflects changes in speech quality due to processing,
though most denoising algorithms typically result in minimal
improvement in this score compared to the unprocessed signal. The
BAK score indicates the level of noise present, where a significant
improvement is expected after speech enhancement. Lastly, the
OVRL score offers a general assessment of audio quality, not simply
an average of SIG and BAK, but rather a holistic evaluation.

4.3 Results and analysis

The models evaluated include the original ANNs, the SNN
models converted from the ANNs, and the fine-tuned SNNmodels.
We performed individualized comparisons for Wave-U-Net and
ConvTasNet, respectively.

Table 1 summarizes the experimental results of the models
applied to the noisy VCTK test data. The Noisy column represents
the statistics of the test data, the Wave-U-Net column presents
the performance of the trained ANN model, the Converted SNN

column shows the performance of converted (baseline) SNN with
ANN weight transfer, and finally, the SNN-Wave-U-Net column
shows the results for the fine-tuned SNN. All SNN predictions are
obtained using one time-step processing.

The items in bold font represent the best performance among
the competing models. A performance gap can be observed
between the converted SNN and the ANNWave-U-Net, indicating
that the converted SNN, obtained through weight transfer, is not

TABLE 2 Wave-U-Net and SNN-Wave-U-Net performance on TIMIT test

data.

Metric Noisy Wave-
U-net

Converted
SNN

SNN-Wave-
U-net

STOI 0.66 0.70 0.63 0.73

PESQ 1.11 1.30 1.10 1.26

SI-SNR 0.0015 3.42 2.98 4.55

SNR –2.94 4.07 3.56 4.82

Segmented-
SNR

–5.62 –0.73 –2.40 –0.27

CSIG 1.79 1.84 1.52 1.91

CBAKS 1.43 2.47 1.80 2.53

COVLS 1.35 1.51 1.28 1.52

Bold values indicate the best performance model on the corresponding evaluation metric.

sufficient on its own. Additionally, we include results from a
random SNN, where weights are assigned randomly. Compared
to the random SNN, our weight transfer approach provides a
significantly better starting point for fine-tuning, outperforming
training from scratch. It is evident that our SNN-Wave-U-
Net outperforms the converted baseline SNN, demonstrating the
effectiveness of the fine-tuning step. Finally, we note that our SNN-
Wave-U-Net achieves performance comparable to that of the ANN
Wave-U-Net.

However, we see the models perform slightly lower in terms of
STOI but still comparable. Furthermore, we see no improvement
over CBAKS scores on this dataset. The reason can be conveyed
to the struggle of CSIG metric with dynamic noises present in the
Noisy VCTK dataset which fluctuates overtime. CSIG primarily
focuses on signal fidelity, comparing the enhanced signal with
a clean reference signal, penalizing any distortion to the signal
that may occur during speech enhancement. Thus, when the
background noise varies rapidly, as is the case in the Noisy VCTK
dataset, even minor artifacts or aggressive noise suppression can
lead to significant penalties in CSIG.

Table 2 summarizes the experimental results of the models on
TIMIT with SSNs dataset. Similar to the noisy VCTK experiments,
a performance gap is demonstrated between the baseline SNN
and the ANN Wave-U-Net. Our fine-tuned SNN-Wave-U-Net,
on the other hand, outperforms the ANN Wave-U-Net in most
metrics except for PESQ. This observation may be explained by
the robustness of spiking networks to gaussian noise present in
our noisy TIMIT dataset (Li et al., 2020). All SNN predictions are
obtained using one time-step processing.

Tables 3, 4 present the performance comparison of SNN-
ConvTasNet on the VCTK and TIMIT test datasets, respectively.
A similar performance gaps are noticed between the baseline SNN
and ANN ConvTasNet on VCTK and TIMIT data evaluations,
which highlights the necessity of the fine-tuning step.

Table 3 shows that our fine-tuned SNN-ConvTasNet performs
considerably well and achieves a superior performance compared
to ANN ConvTasNet over SNR metric variants. However, both
ANN and SNN-Convtasnet did not have an improvement over the
STOI and CSIGS metrics. On the other hand, Table 4 shows the
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TABLE 3 ConvTasNet and SNN-ConvTasNet performance on VCTK test

data.

Metric Noisy ConvTasNet Converted
SNN

SNN-
ConvTasNet

SNR 8.45 15.97 –9.84 16.47

SSNR 1.68 7.96 –5.22 8.19

SI-SNR 8.45 16.00 2.08 16.53

STOI 0.92 0.91 0.77 0.91

PESQ 1.97 2.09 1.15 2.19

CSIGS 3.34 3.10 2.52 3.10

CBAKS 3.12 3.77 1.52 3.84

COVLS 2.69 2.77 1.47 2.80

Bold values indicate the best performance model on the corresponding evaluation metric.

TABLE 4 ConvTasNet and SNN-ConvTasNet performance on TIMIT test

data.

Metric Noisy ConvTasNet Converted
SNN

SNN-
ConvTasNet

STOI 0.66 0.751 0.52 0.747

PESQ 1.11 1.42 1.05 1.21

SI-SNR 0.0015 5.87 –18.96 6.13

SNR –2.94 5.09 –9.68 5.40

Segmented-
SNR

–5.62 0.52 –7.1796 1.08

CSIG 1.79 2.03 1.05 2.05

CBAKS 1.43 3.06 1.13 3.53

COVLS 1.35 1.77 1.04 1.83

Bold values indicate the best performance model on the corresponding evaluation metric.

evaluation performance on TIMIT test data, our SNN-ConvTasNet
performs comparably well compared to ANN ConvTasNet and
it outperforms the ANN on SNR metric variants, and CBAKS
score. The SNN-ConvTasNet achieves a noticeable denoising
improvement on all evaluation metrics compared to the noisy
signal statistics. All SNN predictions are obtained using one
time-step processing.

Furthermore, SNN-ConvTasNet outperforms both ANN and
SNN-Wave-U-Net across most of the evaluation metrics. This
improvement can be attributed to the more complex separator
module in SNN-ConvTasNet, which offers enhanced noise
separation capabilities compared to Wave-U-Net.

In this study, we conducted models energy analysis to evaluate
and compare the efficiency of our proposed SNNmodels with their
corresponding ANN counterparts. The energy consumption results
were obtained using the KerasSpiking energy package. For SNN
models, KerasSpiking estimates energy consumption by simulating
SNN spike activity and assigns a cost per spike. It monitors spikes at
each layer to calculate energy usage and estimates the overall energy
of the model in Joules. On the other hand, ANN energy is estimated
by calculating the number of multiply-accumulate operations
MACs for each layer based on its input, output, and kernel size. The
total MACs are then used to estimate the energy consumption. The

TABLE 5 Energy consumption comparison of ANNWave-U-Net

Conv-Tasnet and our corresponding fine-tuned SNN-Wave-U-Net and

SNN-Conv-Tasnet.

Model Param no. Total energy [Joules/inf]

Wave-U-Net 2.60M 14.6

SNN-Wave-U-Net 4.63

ConvTasNet 2.65M 44.4

SNN-ConvTasNet 6.37

comparison of the average total energy consumption is summarized
in Table 5. The number of parameters for the baseline models
(Wave-U-Net and ConvTasNet) are also shown as a reference.

The results show that SNN-Wave-U-Net consumes 4.63 Joules
per inference, representing a 3.2× reduction compared to Wave-
U-Net, which consumes 14.6 Joules per inference. Similarly, SNN-
ConvTasNet achieves a significant energy reduction, consuming
only 6.37 Joules per inference compared to 44.4 Joules per inference
for ConvTasNet, resulting in a nearly 7× reduction. These findings
underscore the future of SNNs for energy-efficient processing and
potential application on neuromorphic hardware.

5 Discussions and conclusions

In this work, we designed and fine-tuned SNN-Wave-U-
Net and SNN-ConvTasNet, two spiking time-domain speech
enhancement models composed entirely of spiking neurons,
with no reliance on traditional ANN neurons. This design
makes them well-suited for potential implementation on SNN
hardware. Both spiking models demonstrated comparable or
superior performance to their ANN counterparts, particularly on
speech-shaped noise data, highlighting the promise of SNNs for
speech enhancement applications.

We explored IF spiking neurons in this study, which are highly
computationally efficient and simple to implement. While this
model captures the core dynamics of spiking behaviors, it omits key
aspects of biological plausibility, such as the refractory period and
more complex synaptic dynamics (Lapicque, 1907). To improve
biological realism, we plan to explore leaky integrate-and-fire (LIF)
neurons, where the leakage term more accurately represents the
gradual dissipation of charge across a neuron’s membrane.

In future research, we aim to explore the latency of both
models in greater detail and focus on optimizing their latency
performance. Moreover, we plan to investigate variations of Wave-
U-Net and ConvTasNet, paying close attention to design details
that significantly impact latency. Furthermore, we will examine the
implementations of different spiking neuron types to experiment
the performance and efficiency of the models.

Furthermore, since the ultimate applications of speech
enhancement include headsets, hearing aids, and video
conferencing, we will investigate hardware implementation
on portable devices. To this end, we aim to evaluate commercially
available edge platforms, including SynSense (Yao et al., 2024),
BrainChip (Posey, 2022), and Innatera (Ward-Foxton, 2021), as
well as Intel Loihi 2 (Davies et al., 2021), which is accessible for
academic use.
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