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Introduction: In 2012, potassium and sodium ion channels in Hodgkin-

Huxley-based brain models were shown to exhibit memristive behavior. This

positioned memristors as strong candidates for implementing biologically

accurate artificial neurons. Memristor-based brain simulations o�er advantages

in energy e�ciency, scalability, and compactness, benefiting fields such as soft

robotics, embedded systems, and neuroprosthetics.

Methods: Previous approaches used current-controlledMottmemristors, which

poorly matched the voltage-controlled nature of ion channels. This study

employs volatile, oxide-based memristors that leverage electric-field-driven

oxygen-vacancy migration to emulate voltage-dependent channel behavior. We

selected candidate WOx and NbOx memristors and modeled their dynamics to

verify performance as Hodgkin-Huxley potassium channels.

Results: The device exhibits sigmoidal gating and voltage-dependent time

constants consistent with the theoretical model. By scaling the passive circuitry

around the memristors, we show that they capture the essential mechanisms of

potassium ion-channels, although spike height is reduced due to strong non-

linear voltage-dependence. Still, by cascading multiple compartments, typical

spike propagation is retained.

Discussion: This is the first demonstration of a voltage-controlled memristor

replicating the Hodgkin-Huxley potassium channel, validating its potential for

more e�cient brain simulation hardware.

KEYWORDS

realistic brain models, memristors, brain machine interfacing, neural networks,

simulations

1 Introduction

Neuroscientific research requires efficient and accurate simulations of the

brain (Einevoll et al., 2019; Colombo, 2017; De Garis et al., 2010; Yamazaki et al.,

2021). Efficiency entails low power consumption, minimal physical size and performance

approaching biological speeds. Accuracy, on the other hand, requires fidelity to biological

processes, specifically at the biophysical level. This is widely recognized as adherence to

the well-validated Hodgkin-Huxley (abbrv. HH) model and its extensions, which simulate

voltage-gated ion channels like those of sodium and potassium (Catterall et al., 2012;

Hodgkin and Huxley, 1952). Consequently, there is a critical need for solutions that enable

such simulations with both efficiency and precision.
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The HH model stands as the standard model for accurate

brain simulations, replicating neural spiking at the biophysical

level (Figure 1A). At a high level, it is described as a circuit

model with two ion channels (Figure 1B). The potassium channel

operates in line with equations that capture its slow-moving

nature (Figures 1D, E), while the sodium channel is modeled

with equations that reflect both a slow-moving component

and a fast negative differential resistance behavior. These

components are key to replicating the dynamics of biological

neurons. However, no classical electrical device accurately matches

these biophysical ion-channel behaviors, resulting in inherently

inefficient implementations in existing hardware.

Existing implementations of the HH model rely on digital,

analog and memristor-based approaches, each with specific

limitations. Digital implementations are inefficient due to the

overhead of numerical discretization (Abi Akar et al., 2019;

Carnevale and Hines, 2006; Panagiotou et al., 2022; Miedema et al.,

2020; Landsmeer et al., 2024), while analog (CMOS) designs suffer

from large component-count and die-area requirements (Alvado

et al., 2004). Existing physical Mott-memristor based solutions

(Pickett et al., 2013; Yi et al., 2018; Yang et al., 2024), though

efficient, currently lack accuracy and do not represent HH models

at the equation level (Lim et al., 2015; Nabil et al., 2022; Landsmeer

et al., 2025). In a memristor-based solution, one memristor should

represent one ion channel. Due to this one-to-one representation,

memristors are the only type of solution that offers a high level

of efficiency, setting them apart from digital- and analog-based

solutions (Chua et al., 2012; Chua, 2013; Sah et al., 2014). As such,
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FIGURE 1

(A) The Hodgkin-Huxley model explains action potentials in neurons from the interplay between the transmembrane flux of sodium and potassium

ions. The hyperpolarization phase is the main e�ect of a flux through the potassium ion channel. (B) Study setup: Currently, digital simulation is

required for accurate simulation of the HH model. Memristors o�er a much more e�cient alternative but are not accurate yet. (C) Parameters and

formulae describing potassium ion channel dynamics. (D) Steady-state gate behavior of the potassium ion channel. (E) Time-constant of the

potassium ion gate. (F) A sinusoidal input voltage over the isolated potassium channel will evoke the typical hysteresis loop associated with

memristor devices. (G) A pulsed input will lead to gradual increase in channel conductance, while absence of bias will lead to a decay into the

high-resistance state, showing the volatile, voltage controlled nature of the channel.

there is a need for memristor-based, ion channel replacement that

is both efficient and accurate.

Memristors—as characterized by Chua’s seminal insight (Chua

et al., 2012; Sah et al., 2014)—are inherently aligned with the

behavior of ion channels, suggesting that ion channels are, in fact,

memristors. This is exemplified by the typical pinched-hysteresis

loop that these channels exhibit under oscillatory bias (Figure 1F).

To accurately represent HH ion channels, memristors must

exhibit specific characteristics: volatility, analog behavior, voltage

control and first-order dynamics. Additionally, they must capture

the approximate time constants and dynamics unique to each

channel. Despite this conceptual alignment, existing approaches

to memristive HH implementations fall short either due to device

limitations or an inability to replicate the nuanced biophysical

properties of ion channels. These challenges underscore the need

for refined memristor models tailored to this purpose.

We identified two candidate memristors for modeling the

potassium channel, a tungsten oxide (WOx, Du et al., 2017) and

niobium oxide (NbOx, Ju and Kim, 2024) memristor, by searching

literature for existing devices showing the same pulse response as

the potassium ion channel (Figure 1G). These materials exhibit

properties that align with the requirements for HH ion-channel

simulations, such as volatility and voltage-controlled behavior. This

is most visible by comparing the pulse-response plot in Figure 1G

with the potentiation-decay plot (Figure 2A); applying bias makes

the device gradually more conductive, while the absence of external

potential allows for a decay in conductance. While promising,

these devices have no systematic evaluation within the specific
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context of HH channels. Such an evaluation is crucial for candidate

memristors to determine their suitability and for advancing their

application in accurate, efficient neural simulations.

The evaluation of such oxygen-diffusion dynamics in

memristors for HH channels involves simulating the underlying

physics of these devices. This approach builds on models such

as those proposed by Du et al. (2015, 2017), which explain

memristor behavior from interface-mediated Schottky effects. In

our simulations, we allow for scaling in time, current and voltage,

as these adjustments correspond to scaling of the remaining

passive elements.

The potassium ion-channel can be modeled as a first-order,

volatile, voltage-controlled memristor. While oxygen-vacancy-

migration memristors have been used for simulating reservoir

computing or synaptic functions, they were not demonstrated

to correspond to the potassium channel or exhibit any direct

relation to neuronal behavior (Du et al., 2017). The authors of that

work propose a first-order system to capture memristor dynamics,

incorporating contributions from both Schottky and tunneling

mechanisms. They define the current i as the result of a modulated

Schottky-barrier and tunneling at the insulator-electrode interface.

The state variable w captures oxygen migration due to voltage

biasing and decay over time. w is constrained between wmin

and wmax via the window function W(w). The state equations

describing this implementation are shown next:

i =(1− w)α
[

1− e−βV
]

+ wγ sinh (δV) (1)

ẇ =W (w) λ sinh (ηV) −
w− wmin

τ
(2)

w ∈ [wmin,wmax] (3)

W (w) =1−
exp(w)

exp(3)
(4)

In this work, we aim to provide an efficient

and accurate memristive implementation of the HH

potassium ion channel (Figure 1C). As such, we make the

following contributions:

• Identify WOx and NbOx devices as potential candidates for

potassium-channel emulation.

• Model the memristor behavior of NbOx using the oxygen-

migration model due to Du et al. (2017).

• Show that the modeled devices can replace the potassium

channel in the Hodgkin-Huxley model, with both high

efficiency and accuracy.

This manuscript is organized as follows: Section 2 details

the materials and methods, including how the memristor model

is parameterized given the available data, the tuning of scaling

parameters to emulate the HH potassium channel, and the software

and hardware used. Section 3 presents results, covering theoretical

grounds for using the memristor model for potassium channel

emulation, parameter tuning for the NbOx-memristor model, HH

model scaling, system simulations, and energy usage, while also

assessing WOx’s suitability. Section 4 discusses memristors for HH

emulation, comparisons with Mott-insulator neurons, potential

future designs, and model validity.

2 Materials and methods

2.1 Memristor model

In contrast to the WOx model of Du et al. (2015), the selected

NbOx candidate memristor lacks an established model for its

behavior, but is known to operate via a similar oxygen-vacancy

migration mechanism. Ju and Kim (2024) subjected the memristor

to a series of pulse stimuli, which can be used to parameterize the

model of Du et al. (2015). The oro (Ju and Kim, 2024) provide a

detailed potentiation and decay curve for a single, fixed voltage, and

current measurements after each pulse for varying voltage pulses.

Importantly, the authors provide data for a potentiation-decay

experiment for a fixed voltage, and a varying-voltage potentiation

experiment. As such, we employed a two-step approach, in which

we first obtained the time constant τ from the potentiation and

decay curves, and then the other parameters following analysis of

the experiments with varying pulse voltages.

For the first step, we recovered the conductance over time

G(t) from Ju and Kim (2024), replicating the trace tenfold to

enhance robustness. A pulse-train voltage V(t) was constructed

from the provided methods description by Ju and Kim (2024).

To recover τ , simulations were performed using a reduced model

(see Equation 5), incorporating backpropagation through time for

parameter optimization. This reduced model was constructed from

the original model in Equations 1 and 2 by substituting in the

read and write voltages and collapsing constant expressions into

singular constants.With a fixed write voltage of 4 V, these equations

reduce to

Ġ(t) = −
G(t)− Gmin

τ
+

{

A V(t) = 4

0 V(t) = 0
(5)

where G is the measured conductance for the fixed 0.7 V read

voltage and A is a constant. To estimate the unknown parameters

Gmin, A and τ , the mean-squared error (MSE) loss of the simulated

conductance G(t) was minimized against the recorded data using

the Adam optimizer (Kingma, 2014 via Babuschkin et al., 2020)

with a learning rate of 10−2 for 10,000 steps, ensuring alignment

between the simulated and target behaviors. This led to the tuning

result presented in Table 1, which—in the context of the full

model—led to a set of constraints for the next optimization round.

For step two of the memristor model definition, we used

the measured varying-voltage pulse experiment from Ju and Kim

TABLE 1 Parameter tuning of the simplified model on the potentiation

and decay experiment.

Parameter Value Unit Constraint

τ 11.7 ms τ = 11.7

A 1.28 uS/ms –

Gmin 2.18 uS (1− wmin)α
(

1− e−0.7β
)

+

wminγ sinh (0.7δ) = 0.7 · 2.18

These give rise to two constraints in the second tuning step on the full model. The decay time

constant τ is used directly in the final model. Gmin does not exist in itself in the full model,

yet we can derive a constraint by filling in the 0.7V read voltage used by Ju and Kim (2024)

in Equation 1.
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TABLE 2 Parameter constraints and their weights, as encoded in the loss.

Weight Expression Rationale

103 (wmin − 0.15)2 w should start low

102
∑

wH (w− 1) w should stay below 1

104 |α| ·H (−α) parameter can not be negative

104 |β| ·H (−β) sup.

104 |γ | ·H (−γ ) sup.

104 |wmin| ·H (−wmin) sup.

104 |λ| ·H (−λ) sup.

104 |η| ·H (−η) sup.

1 (β − 0.5)2 around 0.5 is a right value

H is the Heaviside step function.

TABLE 3 Memristor model parameters.

Parameter NbOx WOx Unit

τ 11.7 0.05 ms

α 0.0271 0.01 uA

γ 11.138 10 uA

β 0.503 0.5 1/V

η 0.739 8.0 1/V

δ 0.739 4.0 1/V

wmin 0.117 0.1 –

λ 0.0155 0.001 –

NbOx-memristor parameterization is the result of our methods, while WOx-memristor

parameters are taken from Du et al. (2017).

(2024). To further constrain the parameters within biological

ranges, we used the list of soft constraints shown in Table 2

for optimization. To prevent overshoot due to the forward-euler

discretization scheme, w was clipped between wmin and 0.99 in

addition to the multiplication of ẇ with the window function.

These parameters were encoded in the loss as a weighted sum. The

main loss was the mean squared error between the model and data

current. The Adam optimizer was used for 1,000,000 steps with a

learning rate of 10−3. This led to the final parameters as shown in

Table 3, Figure 2F.

2.2 Scaling the HH model

The goal of this study is to find out whether oxygen-vacancy

migration memristors are suitable for the emulation of the

potassium ion channel in the Hodgkin-Huxley model. Using the

parameterized model of the WOx and NbOx memristors, we can

now simulate these in a full HH simulation. As such, we performed

simulations of the neuron model, in which the potassium channel

was replaced by our memristor model (Figure 3A). This, however,

corresponds to different scales in voltage and current, i.e., the

HH model deals in mV-order voltages, while the memristor

responds to V-order voltages. The capacitance of the HH model

is expressed in capacitance per membrane area, while real-world

capacitors use units of capacitance. Voltage- and time-scaling

factors correspond to varying the passive components of the model,

i.e. having a different membrane capacitance and leak resistor, but

do not otherwise present more difficulties. Current scaling could

correspond to either similar passive-device scaling or an increase

of the area of the memristor device. In general, the scaling factors

should affect the passive components (membrane capacitance Cm,

reversal potentials Ex and resistor RL) as:

C′
m =

Tscale

VscaleIscale
Cm (6)

E′x = VscaleEx x ∈ {Na,K, L} (7)

R′L = VscaleIscaleRL (8)

Thus, a design-space exploration over potential voltage, time

and current scaling factors was performed. Of highest importance

were the voltage and time scales: the time constant in thememristor

should match that of the potassium ion channel.

2.3 Memristor-model tuning to fit HH
potassium channel

To adapt the memristor model as a replacement for the HH

potassium channel, we employed the following procedure. First, an

HH simulation was conducted using noisy input generated with

Ornstein-Uhlenbeck (OU) noise (θ = 0.1/ms, σ = 0.7, iapp =

ou4(nA) ), and the resulting trace was saved as the ground truth.

Next, the potassium channel was removed from the model and

replaced with either the NbOx or WOx memristor model. For

both simulations, the Euler-Maruyama method (normal samples

originating from a PRNGKey(seed=0) split for the number of

timesteps) with a timestep of 0.005 ms was used for integration.

Time (Tscale), current (Iscale), and voltage (Vscale) scaling were

allowed. Initial conditions w(0) = wmin and V(0) = −60mV were

used. These correspond to scaling of the passive components in the

circuit. Instead, during optimization, the HH model was simulated

using default units, while the memristor model was implemented in

the HHmodel by scaling Equations 1 and 2 with the scaling factors:

ẇ =
W (w)

Tscale

[

λ sinh (η · Vscale · (v− EK)) −
w− wmin

τ

]

(9)

iK =Iscale ·
[

(1− w)α
(

1− e−Vscale·βV
)

+ wγ sinh (δ · Vscale·

(v− EK))] (10)

A search was performed over Tscale, Iscale Vscale ranging

from 10−3 to 103 to identify optimal parameters via the CMA-

ES algorithm by Hansen et al. (2024). A randomized search

was performed to understand the effect of varying the scaling

parameters. The MSE, after removing the 25 ms initial transient,

was calculated for each configuration and the parameter set

yielding the minimum MSE was selected. Finally, the R2 score was

computed over a fivefold longer simulation to evaluate the fidelity

of the fitted model. This led to the final parameters as shown in

Table 4, including CMA-ES seeds.
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FIGURE 2

(A) NbOx experimental data (Ju and Kim, 2024). (B) Training loss during fitting and parameter sensitivity range for 10% MSE decrease. (C) Data vs

model conductance. (D) Memristor model as explained by Lin et al. (2023) and Ju and Kim (2024). (E) Voltage-pulse experiment from Ju and Kim

(2024). (F) Model reproduction.

Besides, energy usage was calculated for both the emulated ion-

channel and the full-HH circuit by integration over power, while

applying the scaling from the tuning methods.

EK =

∫ t2

t1

|VK (t)| |iK (t)| dt (11)

EHH =

∫ t2

t1

∑

x∈{K,Na,L}

|Vx (t)| |ix (t)| dt (12)

2.4 Simulation setup

Libraries used include JAX 0.6.0 (Bradbury et al., 2018), optax

0.2.4 (Babuschkin et al., 2020), CMA-ES 4.0.0 (Hansen et al., 2024),

scipy 1.15.1 (Virtanen et al., 2020) and numpy 1.26.4 (Harris

et al., 2020). Simulations were performed on a workstation with

AMD Ryzen Threadripper PRO 3955WX CPU and NVIDIA

RTX6000 GPU.

3 Results

3.1 Equation similarity

To accurately emulate the potassium ion channel as a

memristor, the memristor’s switching mechanism should, to a large

extent, have the same steady-state and transient dynamics as the

HH model. When we calculate the steady state of the memristor

model from Equation 2, ignoring the windowing function for

simplicity, we find that in the steady state; w is wmin for V = 0 and

w = wmax for V ≥ sinh−1
(wmax/τλ) /η. For intermediate voltage

values, w is monotonically increasing for voltages in between,

thus visually resembling the required sigmoidal steady-state of the

potassium n gate (Figure 1D).

The potassium gate dynamics can be rewritten in the form

τ (v)ṅ = n∞(v) − n, to clarify the steady-state and time-constants

for a given voltage.We can, to some approximation, do the same for

the memristor model. Depending on the input, around w ≈ wmin,

one of two time-constants (in square brackets) is dominant:

[

τ

]

ẇ =
(

wmin + τλ sinh (ηV)
)

− w

for τλ sinh (ηV) < 1 (13)
[

1

τλ sinh (ηV)

]

ẇ ≈ wmax − w

for τλ sinh (ηV) ≫ 1 (14)

Now, by expanding the i(V) characteristic around V = 0 (i.e.

Vm = VK) for ηV≪1 and βV≪1, we obtain a linear term in w for

the conductance, and a persistent Schottky leak conductance αβ :

i(w,V) ≈ w [γ δ − αβ]V + αβV +O
(

V2
)

(15)

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2025.1569397
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Landsmeer et al. 10.3389/fnins.2025.1569397

FIGURE 3

Suitability of NbOx-memristor for emulation of the Hodgkin-Huxley potassium ion-channel. (A) Hodgkin-Huxley with potassium ion channel

replaced by memristor model. B) Design space exploration over required scaling of voltage, time and current. Score is calculated using the mean

squared error. (C) Correlation between scaling factors for di�erent scores. Best refers to the best found solution in the grid search from (B), while

grayscale corresponds to di�erent thresholds. The scaling value corresponds to the di�erent voltage, time and current re-scaling of the passive

components. (D) Action potential shape comparison. Memristor-emulated Hodgkin-Huxley channel has lower peak amplitude, and slower

repolarization phase. (E) Desired Hodgkin-Huxley trace. (F) Best NbOx-memristor emulated trace with corresponding di�erent voltage and time

scales. (G) WOx-memristor results. (H) Distribution of energy consumption through the memristor in the n = 13 spikes. (I) Similar to H, but for the

entire HH circuit in the same unit scaling as the memristor. (J) Action potential shape comparison as in (D), but against a simulated WOx memristor

with 5x lower τ time-constant.

Thus, we find that—beyond being a first-order, volatile, voltage-

controlled memristor—the memristor model equations also show

a voltage-dependent sigmoidal steady-state, voltage-varying time-

constant and contain a linear conductance-state relation just as the

potassium ion channel would. We also find a non-ideal Schottky

leak conductance, which can hopefully be minimized. This makes

the oxygen-vacancy diffusion memristor a very suitable candidate

for implementing the potassium ion-channel in the HH system.

3.2 Memristor-model tuning to fit NbOx

Given that the memristor model itself seems appropriate

for potassium-channel emulation, we should now obtain a

parametrized model corresponding to the actual WOx and NbOx

candidate memristors, such that we can verify the suitability of

these memristors in HH simulation. A two-phase approach was

used to fit theNbOx-memristormodel to the available experimental

data (Figures 2A, E). First, a detailed potentiation/decay curve was

used to recover the timeconstant τ in the model (Figures 2B, C).

Secondly, to recover the constants of the full model (Figure 2D),

varying pulse voltages were used (Figures 2E, F). We found that

this allowed for too much freedom in the constants, so we forced

some of the constants to stay close to reasonable physical ranges

(seeMethods section). For example, a first optimization would lead

to a Schottky β of 10 volts, which seemed unnatural. This led to the

set of parameters in Table 3. Comparing the results to the known

WOx memristor from Du et al. (2015), we found similar values for

most model parameters, with the biggest difference observed in η

and δ, which became a factor 10x lower for the NbOx-memristor.

This corresponds to the smaller difference between potentiation

and decay rate observed in NbOx.
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TABLE 4 Memristor model parameters.

Parameter NbOx WOx Unit

Seed 507062 592095 –

V-scale 0.11 0.013 volt/mV

T-scale 1.26 0.186 ms/ms

I-scale 1.91 6.317 uA/(uA/cm2)

NbOx-memristor parameterization is the result of our methods, while WOx-memristor

parameters are taken from Du et al. (2017). Scaling values found to fit passive components

to HH model.

3.3 HH fit via system simulation

After accounting for the scaling factor, we concluded that

the NbOx memristor could be a suitable replacement for the

potassium channel, as in our total system simulation the traces

turned out to be generally the same (Figures 3E, F). Indeed, the

spikes occurred at the same time-points. We found an optimal

effective reduction of decay constant τ of ≈ 26% (Figures 3B, C,

F), making the memristor-emulated HH model run an equivalent

amount faster than biological time. For voltage, we found that

the memristor optimally responds as a potassium ion channel

by scaling the cell voltages by a factor of 0.11 volt/mV. This

relatively high multiplication factor is due to the very low mV-

order biological voltages, which are not high enough to trigger

switching in the NbOx-memristor. The WOx memristor exhibited

substantially lower performance, operating 5x slower than the

biological potassium channel and requiring much lower operating

voltages than usual (Figures 3E, G). The role of the potassium

ion channel, in biology, is mostly to create the hyperpolarization

phase of an action potential, i.e. often reflecting the inhibition

of inputs directly after a spike. This is replicated well with the

NbOx-memristor model. While the WOx memristor does not

align well with the HH model, when reducing the decay time-

constant five-fold, it does recreate this hyperpolarization phase

quite well (Figures 3I, 4E). The slight 26% increase over real-time

is suitable for brain simulation, but might lead to problems in real-

time applications, as the simulated model would run faster than

biological time.

3.4 Relation between spike height and
Schottky tunneling

We find that the spikes are now effectively 40% lower

(Figure 3D). The extent to which this might be a problem

depends on the application at hand. We hypothesized that this

is due to the Schottky-tunneling contribution scaling nonlinearly

as sinh with the bias voltage. This is made more clear when

comparing the steady states of the potassium ion-channel and

the NbOx memristor model (Figure 4C). To investigate this

further, we also simulated a hypothetical memristor where the

conductance scales linearly with the internal state variable w

(Supplementary Figure S1). Indeed, now we obtain both good

hyperpolarization as well as similar peak height for the action

potentials. However, in certain occasions, we find that this linear

memristor model is more susceptible to spikes, leading to a slightly

higher spiking rate.

3.5 WOx suitability

While the underlying switching mechanisms between the

WOx-memristors of Du et al. (2017) and Ju and Kim (2024) seem

to be the same, the time-scales at which potentiation and decay

happen are different. Firstly, the decay constant τ of Du et al.

(2017) is 50 ms, while the decay constant in our model of the

NbOx-memristor of Ju and Kim (2024) is 11 ms. At the same time,

potentiation is much faster in the WOx-memristor. As such, WOx

is a much slower replacement for the potassium ion channel, as

can be seen in Figure 3E. However, when we artificially decrease

the decay constant to 10 ms, the performance improves beyond

that of the NbOx memristor (Figure 3J), and matches biological

speeds (Figure 4E). As such it seems like that, while the existing

WOx design is not suitable for potassium channel emulation,

a fabrication method tuned to the HH-simulation task should

perform much better.

3.6 Energy usage

Memristors are introduced as an efficient alternative to current

digital-based simulation of the HH model. To assess the efficiency

of the memristor device, the power through the memristor-

emulated potassium channel was integrated during one biological

second of simulation. For the NbOx-emulated circuit, an energy

expenditure of 0.46 µW through the emulated potassium channel

was found, while producing spikes at 51 Hz (Figure 3H). This

would correspond to an average of 9.0 nJ per spike (including

failed initiations). The total energy usage, by including the leak

and sodium channels, was estimated to be 0.54 µW, or 11

nJs/spike (Figure 3I). For a very coarse estimate, multiplying this

with the 86 billion neurons in the brain would lead to a total

power usage of 40 kW for the potassium channel or 46 kW for the

entire system.

3.7 Circuit emulation and frequency
response

The HH equations derive much of their value from the

composability to the model, allowing different channels to be

inserted or the connection of multiple compartments to model a

spatially extended axon. To test the composability of the emulated

HH system, we simulated a full 30-compartment axon, as an

electrical circuit (Figure 4B). The same OU noise as in the other

experiments was applied to the first axonal compartment. Despite

the reduced spike amplitude, it remains sufficient to trigger a

propagating spike wave in the axon model (Figure 4A), for both

NbOx andWOx tuned neurons. Another property of the Hodgkin-

Huxley model is the all-or-nothing firing response to varying input

current, and an increase in firing rate with increase in applied

current. We show the f-I plot in Figure 4D.
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FIGURE 4

Biological plausibility and integration. (A) Simulated axon traces. (B) Simulated axon circuit. (C) Comparison of steady-states between HH potassium

channel (black) and memristor replacement (blue). Approximate operating range of voltages is shown in gray, left side corresponding to the resting

potential and right side to the spike height. The sinh tunneling term leads to a large surge in current when the spike get too large, limiting the spike

height in the memristor-based HH implementation. (D) Frequency-current (F-I) plot shows how increasing current leads to increase in firing rate. (E)

Artificially decreasing the decay time constants from 50ms by factors between zero and ten, leads to di�erent solutions in the final time-scale

solution. For a decrease factor of 5x, correspondings to a 10 ms decay, the WOx memristor should execute the potassium channel dynamics at

biological speeds (realtime).

4 Discussion

4.1 Mechanism of memristor operation
and model validity

NbOx memristors have shown a wide variety of switching

behaviors with putative underlying mechanisms. The stable oxides

of NbOx are metal-like NbO and insulators NbO2 and Nb2O5.

NbO2-based memristors can be divided into threshold-switching

Mott-memristors and analog, volatile, oxygen-vacancy-operated

memristors. Driven by current-controlled Joule heating, the

crystalline metal-oxide will have a Mott transition at 1081K,

creating the typical threshold-switching S-NDR behavior. Below

this temperature, certain device configurations will show the

voltage-controlled volatile behavior as shown by Ju and Kim

(2024). For accurately emulating the HH potassium channel, the

device needs to be operated in the latter’s regime. Another NbOx

device in literature showing such behavior is OKelly et al. (2016),

with the decay occurring at timescales in the order of 100’s of

seconds, underscoring that switching is most likely independent

of temperature.

Du et al. (2015) claim that the operation is due to filament

growth leading to interfacial modulation of the Schottky barrier.

A later investigation by Lin et al. (2023) with in-situ transmission

electronmicroscopy and electron energy loss spectroscopy revealed

that the WOx memristor follows a shifting oxygen-vacancy

concentration gradient. In both cases, switching is mediated

through Schottky-barrier modulation at the interface instead of the

bulk material, leading to the same observable electrical behavior.

These studies are based on WOx memristors. Ju and Kim (2024)

write that the volatile-switching is driven by the same oxygen-

vacancy mechanism but they do not provide explicit proof. As can

be seen in our results, the model indeed matches the data well. Still,

no direct evidence for interface-mediated Schottky modulation is

available for volatile NbOx memristors.

We found that the existing WOx memristor model was too

slow for real-time brain simulation. To make WOx a more suitable

replacement for the HH potassium ion channel, its decay constant

needs to be lowered. In general, decay is mediated by diffusion

and device geometry. The diffusion coefficient is often expressed

as D = D0 exp(Ea/RT). The oxygen diffusion action energy Ea is

higher in WO3 (1.30 eV, Sikka and Rosa, 1980) than in amorphous

Nb2O5 (1.2 eV, Tsukui et al., 2014) and NbOx (1.17 eV, Hossain

et al., 2019), which can partly explain the difference, but the baseline

diffusion coefficient D0 is also higher in WOx (0.0683 cm2/s) than

in NbOx (0.0212 cm2/s). Still, this suggests a diffusion coefficient in

NbOx that is ≈56x times higher than in WOx. To overcome this

limitation, doping could be used to tune oxygen diffusion speed

(Kilner, 2000; Pyo et al., 2022; Bae et al., 2024), as well as altered

device structure with intermediate layers (Bae et al., 2024; Pan et al.,

2024).

Beyond fitting a single device, memristor device-to-device

variation presents a major challenge for the integration of

memristors in end-user applications (Li et al., 2018). However,

variability in biological systems is well-known and—according to

many studies—even desirable (White et al., 2000; Faisal, 2012;

Waschke et al., 2021). Therefore, any device-to-device and cycle-

to-cycle variability among memristors in our study is welcome,
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assuming that it closely matches (or is at least within the range)

of the (scaled) biologically observed variability. The considered

memristor devices show very low cycle-to-cycle variability (Du

et al., 2017; Ju and Kim, 2024), well within tolerable channel noise

in biological systems (White et al., 2000). Similar devices have

reported device-to-device coefficient of variation of 22% (Roldán

et al., 2023; Park et al., 2024), which is much less than biological

neuronal variability (Waschke et al., 2021; Goaillard and Marder,

2021).

4.2 Comparison against existing solutions

Multiple attempts exist in the literature to implement the

full HH model with the use of memristors. Notable biorealistic

implementations are the Mott-insulator-based and the double-

relaxation oscillators (Pickett and Williams, 2012; Feali and

Ahmadi, 2017; Yi et al., 2018; Yang et al., 2024). These designs

operate by triggering the oscillators, which together evoke a spike-

like trace. Some notable differences exist to the actual HH model.

For example, a non-biological hyperpolarization can be observed

before each spike. The circuit does not have a membrane capacitor;

instead, capacitors are used to construct the two oscillators. In

general, the mechanism of operation, via relaxation-oscillators,

is very different from the HH-type voltage-controlled opening

and closing of gates. As such, these designs do not present an

accurate implementation of biological neurons (Nabil et al., 2022;

Landsmeer et al., 2025).

Direct comparison against existing CMOS applications is non-

trivial as energy-usage numbers are hardly reported in literature

and models vary between experiments. However, for completeness

we have some comparison points. On FPGA, a detailed 3-

compartmental neuron with 9 ion-channels, without synaptic

connections, requires up to 46.8W for 672 neurons. Extrapolating

this to the two ion-channels of the HH model gives an estimate of

15mWper realtime neuron (Miedema et al., 2020). The samemodel

on a A100 GPU, but with sparse synaptic connections, requires

103.8W for 729 cells, while running faster than realtime at 0.7s/s,

leading to an estimate of 45 mW per realtime neuron (Landsmeer

et al., 2024). Energy reported for a 1000-neuron simulation using a

general purpose brain simulator range from 11W/neuron on CPU

to 6W/neuron on GPU (De Schepper et al., 2022). A very simplified

Izhikevich model using a coarse 0.5 ms timestep and integer

arithmetic on the SpiNNaker system requires 0.2 mW/neuron

(Sharp et al., 2012). These numbers are all orders-of-magnitude

larger than estimated in our study at 0.76 µW/neuron. This shows

the potential of direct emulation of ion channels using a single

device per channel.

4.3 Future designs

To emulate the potassium ion-channel in the HH system more

accurately, new memristor devices should be designed with this

goal in mind, rather than repurposing memristors with different

application goals. As shown both theoretically and via simulations,

oxygen-vacancy migration is the right underlying mechanism

to support both voltage-controlled activation/potentiation and

deactivation/decay when no bias is applied. For example, a version

of theWOxmemristor with reduced decay-time constant performs

already much better. By having a linearized conductance response

as opposed to the sinh dependence, high accuracy can be achieved.

Moving from a pure brain-simulation application to an

implantable neuroprostesis, would require focus on tissue

compatibility. Current operating voltages are too high for

interfacing with real neurons. Various mechanisms have been

explored to obtain memristor in operating the biological mV/nA

regime (Wang et al., 2023; Fu et al., 2020). How this would transfer

to a memristor with the same requirements as the potassium

ion channel has not yet been explored. Another option could be

translating the voltages at the device/tissue interface.

Efficiency-wise, current memristor technology also seems an

order-of-magnitude ahead of current digital solutions. However,

the simulated power consumption in this study is still 2 to 3 orders

of magnitude higher than that of biological brains. This seems to

be largely because of the difference in voltage scales: memristors

respond to voltage-order biasing while biology operates at mV-

order scales. As such, even more efficient designs could try to

leverage this reduction in voltage range.

5 Conclusion

Computational neuroscience is dependent on the simulation of

ever-growing models of the brain. At the same time, applications of

neuroscience models, including neuroprosthesis, soft-robotics and

edge-AI, call for bringing these models to embedded formats. This

creates a requirement for new brain-simulator platforms that are

both efficient and accurate. Memristors, by their theoretical direct

mapping as ion channels in the brain, could be a most suitable

hardware substrate for said platforms.

This work investigated how oxygen-migration memristors,

WOx and NbOx, could function as direct replacements of the

potassium ion-channel in the standard Hodgkin-Huxley model.

We showed that, with some loss of accuracy, an existing NbOx

memristor could be repurposed for that goal, while the WOx

memristor, due to a larger ratio between potentiation and decay

time-constants, was not as suitable for this purpose. By decreasing

the decay constant of the latter five times during simulations,

we could approximate the voltage-curves of the HH action

potential with more accuracy. Future works should focus on device

tuning toward a linearized response, hardware integration, tissue

compatibility and finding the sodium memristor replacement.
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