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There is growing interest in understanding the e�ects of opioid use on the

brain, yet the e�ects of opioid use on the pregnant maternal brain are still

relatively unknown. Pregnant women with opioid exposure during pregnancy

are at high risk for adverse neurological and neuropsychiatric outcomes. Much

of what is currently known about the impact of opioids on the maternal

brain is mainly derived from studies in animal models; however, species-

specific opioid pathways and other socio-environmental factors complicate

the interpretation of results. A few studies in non-pregnant adults have shown

the utility of magnetic resonance spectroscopy (MRS) in risk prediction in

substance exposure. We know that pregnancy alters the pharmacodynamics

and pharmacokinetics of opioid metabolism, and the impact of opioids on

synapses may di�er during pregnancy compared to the non-pregnant state.

We, therefore, aimed to understand the neurometabolic alterations in pregnant

women on medications for opioid use disorder (MOUD). In our multicenter

study, we utilized 1H MRS to analyze metabolic alterations in the dorsal anterior

cingulate cortex (dACC) in pregnant women onMOUD (12 subjects) vs. pregnant

control women (21 subjects) without substance exposure. Using multivariable

linear regression, we identified a positive association between opioid exposure

and choline-to-creatine (Cho/Cr) ratios after correcting for gestational age and

scanner site. We also identified a significant elevation in the Cho/Cr ratio in

pregnant women on MOUD and concomitant polysubstance exposure when

compared to pregnant women on MOUD without exposure to other substances

and control pregnant women. These altered metabolite concentrations that

we identified in the dACC may provide a mechanistic understanding of the

neurobiology of MOUD and insights for better management and outcomes.
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Introduction

Opioid use in pregnancy has been reported as 12% in a large

population-based cohort study and as high as 21% in Medicaid-

enrolled women (Desai et al., 2014; Nechuta et al., 2022). From

2017 to 2020, opioid use in pregnancy was associated with higher

maternal mortality (Bruzelius and Martins, 2022), especially with

fentanyl, rather than prescription opioids or heroin.

Opioid use disorder (OUD) in pregnancy is associated with

several comorbidities, such as polysubstance use and mental

health disorders, which may be superimposed on the psychological

changes in pregnancy, including mood disturbances, stress,

and anxiety (Bjelica et al., 2018). A study found that 89%

of US women of reproductive age with non-medical opioid

use reported additional substance use (Jarlenski et al., 2017).

In a retrospective primary care study of over 7,000 women,

∼86% of women with opioid use disorder had comorbid

mental health disorders (Braciszewski et al., 2022). Depression,

anxiety, attention-deficit/hyperactivity disorder (ADHD), and

post-traumatic stress disorder (PTSD) were commonmental health

conditions (Braciszewski et al., 2022; Huhn and Dunn, 2020) in

pregnant women with opioid use disorder. Comprehensive care,

in addition to medications for opioid use disorder (MOUD), is

essential for these women (Center for Substance Abuse Treatment,

2005).

Methadone and buprenorphine are opioid medications and

first-line therapy options for pregnant women with OUD (Center

for Substance Abuse Treatment, 2005; Committee of Obstetric

Practice, 2017). These medications reduce cravings and subsequent

consequences such as withdrawal, relapse, overdose, lack of

prenatal care, and preterm birth (Committee of Obstetric Practice,

2017; Suarez et al., 2022; Winklbaur et al., 2008). These benefits

outweigh the small potential risks of such opioid therapy impacting

brain plasticity (Thompson et al., 2021; Upadhyay et al., 2010).

Altered brain structure and functional connectivity have been

demonstrated in the setting of opioid use. Opioids have been

shown to induce dendritic changes in the nucleus accumbens

and decrease dendritic spine density (Liao et al., 2007, 2005;

Thompson et al., 2021). Additionally, significant decreases in

functional connectivity were observed in regions including the

amygdala and nucleus accumbens (Upadhyay et al., 2010).

Since opioids predominantly affect neuronal function through

their actions on opioid receptors and neurotransmitter release,

understanding the underlying neuro-metabolite changes in the

brain is crucial for getting a comprehensive picture of their

impact on the brain. MR spectroscopy (MRS) is a magnetic

resonance modality that captures certain metabolite levels in

a small, predefined volume. MRS has provided insight into

Abbreviations: ADHD, Attention deficit hyperactive disorder; CRLB, Cramer

Rao lower bounds; dACC, Dorsal anterior cingulate cortex; FWHM, Full width

half maximum; MOUD, Medications for opioid use disorder; MRI, Magnetic

resonance imaging; MRS, MR spectroscopy; NAcc, Nucleus accumbens;

OUD, Opioid use disorder; PRESS, Point resolved spectroscopy; PSU,

Polysubstance use; PTSD, Post-traumatic stress disorder; SNR, Signal-to-

noise ratio; TE, Echo time; TR, Repetition time.

neuro-metabolite changes in the setting of opioid use and

concurrent comorbidities such as polysubstance use and mental

health disorders.

Opioid exposure, both illicit use and opioid maintenance

therapy, may alter brain metabolite levels in several brain regions

as studied in non-pregnant populations (Greenwald et al., 2015;

Hermann et al., 2012; Murray et al., 2016; Yücel et al., 2007),

with the anterior cingulate cortex being the most consistently

affected. Glutamate has been a widely studied metabolite in

addiction (Gass and Olive, 2008). Glutamate, a major excitatory

neurotransmitter and mediator of synapse plasticity, may be

chronically destabilized in addiction and contribute to relapse

(Gass and Olive, 2008; Kalivas, 2009). This may be reflected

as decreased glutamate in the setting of substance use (Yücel

et al., 2007; Hermann et al., 2012). The glutamatergic system

is also shown to prompt the rewarding effects of opioids that

form opioid memories (Heinsbroek et al., 2021). In addition to

glutamate, elevated brain choline is also suggested as a sign of

synaptic adaptation to substance exposure (Hermann et al., 2012;

Upadhyay et al., 2010). Other substances, such as cocaine and

marijuana, have also been linked to metabolite changes in the

anterior cingulate cortex in non-pregnant subjects (Newman et al.,

2020; Prescot et al., 2013; Yang et al., 2009). Along with substance

use, brain metabolite levels have been investigated in mental

health disorders, a known comorbidity in pregnant women with

opioid exposure.

Current literature on MRS in the setting of mental health

disorders shows a mixed picture. For example, the association

between depression and brain choline levels has been variable

(Riley and Renshaw, 2018), and overall brain metabolic changes in

MRS in ADHD have been inconsistent (Firouzabadi et al., 2022).

However, choline levels in the anterior cingulate cortex (ACC) tend

to be increased in PTSD, bipolar disorder, and ADHD, though few

mechanistic assertions are made (Colla et al., 2008; Kong et al.,

2023; Perlov et al., 2007; Scotti-Muzzi et al., 2021; Swanberg et al.,

2022). Additionally, to our knowledge, these associations have not

been studied in a pregnant human population.

Brain metabolite levels in pregnancy have been studied to

a limited extent (McEwen et al., 2021; Rutherford et al., 2003).

One study found a decrease in total choline in pregnancy

2–3 weeks prior to delivery compared to non-pregnant women

(McEwen et al., 2021). To our knowledge, brain metabolite

changes in substance use during pregnancy have not been

studied. Since physiological changes in pregnancy can affect opioid

pharmacokinetics and pharmacodynamics, extrapolating results

from studies in non-pregnant adults to pregnant populations may

be challenging.

Our study aimed to assess alterations in brain metabolite levels

in the dorsal anterior cingulate cortex (dACC) in pregnant women

on medication for opioid use disorder (MOUD) compared to

healthy control pregnant women without opioid exposure, using

H1MR spectroscopy. We hypothesized that on MRS, glutamate

levels would be lower in women on MOUD, and choline levels

would be elevated in women onMOUD when compared to control

pregnant women. Our secondary goal was to assess the impact of

polysubstance use and other mental health comorbidities on these

brain metabolites.
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Materials and methods

Subjects

Pregnant women >16 weeks of gestation were recruited as

part of a prospective, IRB-approved, multisite study. The two

study sites were Indiana University School of Medicine and

the University of Pittsburgh Medical Center. Informed consent

was obtained. Two groups of pregnant women were enrolled

in this study: one group of pregnant women was prescribed

MOUD, either buprenorphine or methadone, while the control

group had no opioid exposure. Exclusion criteria included MRI

contraindications, seriousmaternalmedical illness, HIV/AIDS, and

major fetal congenital abnormalities.

Demographic and clinical data collection

Demographic and clinical data were obtained by patient

interview and chart review and electronically stored on REDCap

(Harris et al., 2019, 2009), hosted at each university site. Clinical

data collected included details of substance use and mental health

disorders. Pregnant women on MOUD were being followed by a

physician. Tobacco use and polysubstance use were determined

by a patient interview and urine drug screen. Polysubstance use

included active use of any of the following substances: non-

prescribed opioids, marijuana, cocaine, benzodiazepines, alcohol,

and/or amphetamines. Maternal education was assessed through

patient interviews. The presence of mental health disorders

was extracted from chart reviews or through patient interviews.

Depression was defined as either the subject currently being

on medication for major depressive disorder (MDD) or scoring

as moderate or severe on the Hamilton Depression Scale or

Patient Health Questionnaire-9 (PHQ-9). Anxiety was defined as

either the subject having a diagnosis of general anxiety disorder

(GAD) or scoring as moderate or severe on the Hamilton Anxiety

Scale or the General Anxiety Disorder-7 (GAD-7) scale. ADHD,

bipolar disorder, and PTSD diagnoses were obtained from the

medical history.

1H MR spectroscopy acquisition

A brain MRI, which included anatomic scans and single-

voxel 1H MR spectroscopy, was performed during the second

or third trimester. All women at the Indiana University site

underwent the same imaging protocol on a 3T Siemens Vida Fit

scanner (Erlangen, Germany) with a 64-channel head coil. At

the University of Pittsburgh site, enrolled women underwent the

same imaging protocol on a 3T Siemens Skyra scanner (Erlangen,

Germany). We utilized single-voxel point-resolved spectroscopy

(PRESS) sequence with the following parameters: TR = 2,000, TE

= 30, 128 averages. Spectra were obtained from the dorsal anterior

cingulate cortex (dACC) (15× 20× 15 mm3) positioned above the

genu/anterior body of the corpus callosum and tilted to match the

curvature of the corpus callosum in the sagittal plane. Figure 1 is a

depiction of this placement.

Metabolite concentration quantification

Metabolite concentration ratios were derived using LCModel

software (Provencher, 2001). We utilized the LCModel basis

spectra 3T, PRESS, TE30. We visually inspected the spectral

quality, and spectral fits were accepted if CRLB was <20%

(Hermann et al., 2012; Li et al., 2020), which was true

for all spectra, with one spectrum displayed in Figure 2.

The following metabolite concentrations were obtained with

creatine plus phosphocreatine (Cr) as the denominator in the

ratio: N-acetylaspartate and N-acetylaspartylglutamate (NAA +

NAAG), choline (Cho) compounds, glutamate (Glu), glutamate +

glutamine (Glx), and myo-inositol (Ins). For our study, we focused

on Cho/Cr and Glx/Cr.

Statistical analysis

Statistical analysis was performed in R (https://www.R-project.

org/) (R Core Team, 2024), including Cohen’s f2 (Cinelli et al.,

2024) and ggplot2 for plots (Wickham, 2016).

FIGURE 1

Voxel placement at the dorsal anterior cingulate cortex on a T1-weighted image in the following planes: (A) sagittal, (B) axial, and (C) coronal.
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FIGURE 2

LCModel fitted spectrum from our study.

Independent, multivariable regressions were performed with

Cho/Cr and Glx/Cr as outcome variables. MOUD, gestational

age, and scanner site were used as predictor variables, with

MOUD and gestational age as variables of interest. We did

not use maternal age in our analysis, as all our subjects were

young adults in the reproductive age group. This age range is

consistent with the age group (younger group cohort: 21–39 years

old) chosen as a single age group in a previous AJNR study

intended to study brain metabolite levels in normal aging (Angelie

et al., 2001). Glx/Cr was chosen over Glu/Cr, given the overlap

of the glutamate and glutamine peaks at 3T. Cohen’s f2 was

calculated to determine the partial effect size in our multivariable

regression (Cohen, 1988; Selya et al., 2012). Metabolite ratios

significantly associated with MOUD were evaluated using a

robust linear regression comparing three groups: MOUD with

polysubstance use (PSU), MOUD without PSU, and controls.

We used gestational age and scanner site as covariates in the

group analysis. We calculated Tukey’s p-value for multiple testing

corrections. A p < 0.05 was considered significant. We also

calculated Cohen’s d for effect size in the robust regression group

comparison [t/square root (total N)]. Additionally, using the

above covariates (MOUD, gestational age, and scanner site), we

independently assessed the psychiatric comorbidities of depression,

anxiety, ADHD, PTSD, and bipolar disorder. We performed

a Bonferroni multiple comparison test for the psychiatric

comorbidity p-values using R, which yielded adjusted p-values.

These adjusted p-values were then compared to a significance level

threshold of 0.05.

Results

Demographics and clinical characteristics

Demographics and clinical data are provided in Table 1.

Subjects on MOUD showed exposure to other substances and

tobacco. All mental health comorbidities except bipolar disorder

were significantly greater in our MOUD group than in our

control group. Supplementary Table 1 shows a further breakdown

of clinical characteristics within the MOUD group. Tobacco use

and mental health comorbidities were not significantly different

between MOUD with PSU and MOUD without PSU.

MOUD and Cho/Cr

MOUD was positively associated with Cho/Cr when

controlling for gestational age and scanner site (t = 2.96,

p= 0.006). This result should be interpreted as opioid exposure

in the context of our study population (concurrent tobacco use,

polysubstance use, and mental health comorbidities). The Cohen’s

f2 partial effect size was 0.302, indicating a medium effect. Boxplots
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TABLE 1 Demographic and clinical data.

MOUD Control p-value

Number 12 21

Demographic

characteristics

Age+/–SD (years) 28+/−4.8 32.4+/−4.8 0.015∗ ∧

Gestational age+/–SD

(weeks)

29.8+/−4.7 29.1+/−4.4 0.26 ∧

IU scanner site (%) 4 (33%) 9 (43%) 0.719 ∧∧

Maternal education

Incomplete high school 1 (8%) 1 (5%)

HS diploma/GED 7 (58%) 8 (38%)

Some college 4 (33%) 4 (19%)

College

graduate/advanced

degree

0 (0%) 6 (29%)

Unknown 0 (0%) 2 (10%)

Polysubstance use (%) 7 (58%) 0 (0%) 1.85e-04∗ ∧∧

Tobacco use (%) 10 (83%) 0 (0%) 7.13e-07∗ ∧∧

Clinical characteristics

Depression (%) 8 (67%) 5 (24%) 0.027∗ ∧∧

Anxiety (%) 10 (83%) 7 (33%) 0.01∗ ∧∧

Bipolar disorder (%) 4 (33%) 2 (10%) 0.159 ∧∧

PTSD 7 (58%) 3 (14%) 0.016∗ ∧∧

ADHD 6 (50%) 1 (5%) 0.005∗ ∧∧

∗Denotes significance.

∧Independent t-test.

∧∧Fisher’s exact test.

FIGURE 3

Cho/Cr boxplots of the MOUD and control groups.

of MOUD and controls are displayed in Figure 3. Better seen in

Figure 4, gestational age in both groups was negatively correlated

with Cho/Cr, although this was not statistically significant (t =

−1.87, p= 0.072).

FIGURE 4

Scatterplot with regression lines showing the di�erence in Cho/Cr

vs. gestational age (weeks) in our MOUD and control groups.

FIGURE 5

Group comparison of Cho/Cr ratios in pregnant women with MOUD

with and without polysubstance use and controls after adjusting for

gestational age and scanner site. MOUD with PSU is significantly

greater (denoted by the *) than the other two groups.

MOUD and Glx/Cr

Although Glx/Cr ratios in the dACC were lower in pregnant

women on MOUD compared to control pregnant women when

controlling for gestational age and scanner site (t = −1.495, p =

0.146, Cohen’s f2 = 0.077, small partial effect), this association did

not reach our threshold of statistical significance.

Group di�erences

Cho/Cr ratio on the dACC was significantly higher in the

MOUD with polysubstance use (PSU) group (n = 7) compared to
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both the MOUD without PSU group (n = 5) and control group

(n = 21) (t = 2.391, Tukey’s p = 0.043; t = 3.861, Tukey’s p =

0.0004, respectively) (Figure 5). Gestational age and scanner site

were controlled in this group comparison. Cohen’s d effect sizes

were 0.730 for the MOUD with PSU to control comparison and

0.690 for MOUD with PSU to MOUD without PSU comparison,

indicating medium effect sizes. There was no significant difference

between the MOUD without PSU group and the control group

(t = 0.507, Tukey’s p= 0.865). Data are displayed in Figure 5.

Mental health comorbidities

Partial correlations were independently calculated for the

mental health disorders depression, anxiety, ADHD, bipolar

disorder, and PTSD after accounting for scanner site, gestational

age, and MOUD. ADHD was significantly associated with dACC

Cho/Cr ratios (t = 3.398, p = 0.002), with a partial effect size

of 0.412 (large effect size). Bipolar disorder was also significantly

associated with Cho/Cr ratios (t = 2.837, p = 0.008), with a partial

effect size of 0.287 (medium effect). The statistical significance of

these associations survived multiple comparison tests. However,

depression, anxiety, and PTSD were not significantly associated

with Cho/Cr in the dACC in our analysis.

Discussion

Pregnancy is accompanied by multiple physiological changes.

Our study is the first MR spectroscopy study to analyze neuro-

metabolite changes in substance exposure in the pregnant maternal

brain. We identified a higher choline-to-creatine ratio on H1 MRS

in the dorsal anterior cingulate cortex (dACC) in pregnant women

on MOUD than in control pregnant women, particularly in the

setting of PSU. Our results can help guide future studies and

improve our understanding of the effects of substance use on the

pregnant maternal brain and its effect on pregnancy outcomes.

Choline measured by MR spectroscopy is a combination

of glycerophosphocholine, phosphocholine, and a small amount

of free choline. Classically, total choline measured by MR

spectroscopy representsmembrane synthesis and degradation. This

is most commonly clinically relevant for increased choline in

the setting of tumors, representing rapid cell turnover (Zhu and

Barker, 2011). Our study showed a significant positive association

between Cho/Cr and MOUD, which, we hypothesize, may be a

sign of adaptation and altered synapses (Hermann et al., 2012;

Upadhyay et al., 2010). It is important to recognize, though, that

this result may be driven by concurrent polysubstance use and

psychiatric comorbidities, especially since the presence of PSU was

also associated with higher Cho/Cr levels.

We identified that in pregnant women on MOUD, PSU was

significantly associated with higher adjusted Cho/Cr levels in the

dACC than in pregnant women on MOUD without PSU and

controls. There was no significant difference in the Cho/Cr levels

in pregnant women with MOUD without PSU and controls.

Of note, tobacco exposure and mental health comorbidities

were not significantly different between MOUD with PSU and

MOUD without PSU, as shown in Supplementary Table 1. Overall,

our results suggest that MOUD combined with concomitant

polysubstance use may have a greater impact on neuro-

metabolite concentrations and suggested synaptic changes, and

impact future management. MOUD alone may not significantly

alter Cho/Cr levels. We also investigated another metabolite of

interest, glutamate.

Our study did not find an association between MOUD and

Glx/Cr. Glx is a combination of glutamate and glutamine, with a

strong correlation to glutamate. Glutamate pathways are thought

to be impacted in addiction (Kalivas, 2009), yet studies assessing the

association between Glx and OUD report mixed results. A negative

association between Glx and opioid use has been previously

reported in the literature (Yücel et al., 2007), but another study only

found this trend in individuals below the age of 34 years (Hermann

et al., 2012). Our results may differ from the first study due to

the impact of pregnancy, our limited sample size, or associated

comorbidities. As we had a negative trend with a small partial effect

size, a larger sample size may have shown a negative association

between MOUD and Glx. In the studies mentioned above and

another opioid study (Liu et al., 2017), the ACC has been a region

of interest.

The ACC is an important region in addiction-related neural

networks (Zhao et al., 2020). Additionally, the ACC plays an

important part in human maternal behavior neurocircuits, which

help regulate parental behavior, including stress and anxiety

responses (Swain and Ho, 2023). The ACC is also a region of

interest in relation to the mental health comorbidities, which are

more frequently encountered in pregnant women on MOUD. In

our cohort, there was a positive association between mental health

comorbidities (ADHD and bipolar disorder) and dACC Cho/Cr

ratios, although these associations should be interpreted in the

context of our small sample sizes. However, other studies on

non-pregnant individuals have also previously reported increased

Cho/Cr levels in the ACC in ADHD subjects compared to controls,

hypothesized to be due to altered plasticity (Colla et al., 2008; Perlov

et al., 2007). Similarly, this association of altered Cho/Cr ratios in

the ACC has also been reported in non-pregnant individuals with

bipolar disorder (Kong et al., 2023).

Another interesting relationship in our analysis was between

gestational age and Cho/Cr ratios in the dACC. The negative trend

we identified between gestational age and Cho/Cr could potentially

be related to the increasing fetal choline demand throughout

gestation (Jaiswal et al., 2023). This suggests a potential inverse

relationship between fetal choline need andmaternal choline levels,

as proposed in a previous MR spectroscopy study comparing

pregnant women to non-pregnant controls (McEwen et al., 2021).

There is also some evidence that brain choline increases with

increased dietary choline intake (Stoll et al., 1995), which may

further suggest a link between systemic choline levels influencing

brain choline levels.

Our study had several limitations. First, the sample size

was limited, which reduces the power of our analysis. Although

we used robust linear regression to help address the skewed

sample size in our group comparison, the sample sizes within

the MOUD subgroups were still small. While our results suggest

directionality to alterations in brain metabolites and the presence

of polysubstance use, these should be interpreted with prudence

and be further studied in larger cohorts. Multicenter MRS imaging

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2025.1569558
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Class et al. 10.3389/fnins.2025.1569558

can introduce variability in metabolite concentrations (Považan,

2020). We controlled for the subject site, and the vendor was the

same between the sites. We did not have unsuppressed water peaks

available when creating spectra in the LCModel; therefore, we were

unable to obtain absolute metabolite concentrations and relied

on ratios with creatinine as our normalization. As noted above,

many previous studies report these ratios. Although all women

enrolled were in the childbearing age group, women on MOUD

were on average younger (28 yrs +/−4.8) compared to the control

group (32yrs +/−4.8). Previous studies have considered this age

range as a single group (Angelie et al., 2001). However, older

maternal age is shown to be associated with differences in infant

brain development. The presence of multiple comorbidities, such

as polysubstance use and mental health disorders, is a limitation to

drawing concrete mechanistic conclusions in this study. To avoid

overfitting and multicollinearity in our model, we did not include

these comorbidities in our initial regressions. Tobacco exposure

had a significant correlation with opioid exposure, so inferences of

opioid exposure may be limited because of this and should be seen

in the setting of concurrent tobacco use. As previously mentioned,

these comorbidities are common to pregnant women with OUD,

so our subjects are characteristic of the population we are studying.

Furthermore, MOUD with PSU and MOUD without PSU were

similar in terms of tobacco and mental health comorbidities. We

did not account for the number of prior pregnancies in our analysis.

In addition to the dACC, we attempted to acquire spectra from

the nucleus accumbens (NAcc), a small region (∼1 cm3–2 cm3),

therefore voxel placement was difficult in this region and inevitably

included surrounding structures to achieve a large enough signal-

to-noise ratio (Neto et al., 2008; Steinegger et al., 2021). Although

efforts have been made to improve MR spectroscopy precision for

the NAcc (Engeli et al., 2021; Steinegger et al., 2021), this adds

a substantial amount of scan time. Given that these difficulties

substantially affected our sample size, we did not include this region

in our analysis.

Despite some of the abovementioned limitations, our study

provides novel evidence of the potential impact of substance use on

the pregnant maternal brain in women on MOUD. The ACC has

been shown to play a role in regulating human maternal behavior,

stress, anxiety, and maternal–infant bonding. Although we did

not explore the direct clinical significance of the changes noted

in the Cho/Cr ratio in the ACC in our study, we envision future

research assessing this altered metabolic profile in the context of

treatment adequacy in curbing craving, withdrawal, postpartum

relapse, infant NOWs, and maternal–infant bonding.

Conclusion

In this study, we identified alterations in choline-to-creatine

ratios on H1 MR spectroscopy of the dorsal anterior cingulate

cortex in pregnant women on medication for opioid use disorder

compared to control pregnant women without opioid exposure.

We also identified higher Cho/Cr ratios in pregnant women with

MOUD and polysubstance use compared to pregnant women on

MOUD without polysubstance use and control pregnant women.

Mental health comorbidities—ADHD and bipolar disorder—were

also associated with altered Cho/Cr ratios. This is the first study

analyzing neuro-metabolite levels and substance exposure in a

pregnant population, and our results strengthen the importance

of addressing maternal comorbidities in these women. Our results

can help direct future research in brain metabolite alterations

to understand underlying mechanisms, predict and improve

outcomes, and create personalized treatments for women on

MOUD and with associated comorbidities.
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