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Neuromorphic computing technologies are about to change modern computing, 
yet most work thus far has emphasized hardware development. This review focuses 
on the latest progress in algorithmic advances specifically for potential use in 
brain implants. We discuss current algorithms and emerging neurocomputational 
models that, when implemented on neuromorphic hardware, could match or 
surpass traditional methods in efficiency. Our aim is to inspire the creation and 
deployment of models that not only enhance computational performance for 
implants but also serve broader fields like medical diagnostics and robotics inspiring 
next generations of neural implants.
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1 Introduction

Neuromorphic computing is an interdisciplinary area that takes inspiration from 
biological neural systems to develop computing architectures and hardware. It emphasizes 
massive parallelism, energy efficiency, adaptability, and co-located memory and processing—
contrasting with traditional von Neumann designs (Kudithipudi et al., 2025; Schuman et al., 
2017). Neuromorphic Algorithms often incorporate phenomena like neuron spiking, synaptic 
plasticity, and network-level dynamics, aiming to replicate the brain’s style of processing. While 
some run on standard CPUs or GPUs, specialized neuromorphic chips—analog, digital, or 
mixed-signal—offer advantages for pattern recognition, sensory data analysis, and real-time 
learning by minimizing data-transfer bottlenecks (Kudithipudi et  al., 2025; Schuman 
et al., 2022).

Implementing neuromorphic algorithms in hardware involves several steps:

 1.  Algorithm design: Formulating the mathematical models (e.g., spiking neurons, 
plasticity rules).

 2.  Hardware architecture: Selecting how neurons and synapses are represented, such as using 
analog or digital circuits

 3.  Hardware description: Employing design languages (e.g., Verilog) to produce 
implementable circuit specifications, though analog approaches may demand other tools.

 4.  Chip fabrication: Physically manufacturing the design, often in CMOS or emerging 
technologies like memristors.

Brain implants, meanwhile, are medical devices that interface directly with the brain’s 
bioelectrical environment. Currently, they are used for treating neurological disorders 
(Benabid, 2003), sensory prosthetics (Wilson and Dorman, 2008), motor prosthetics (Gupta 
et al., 2023), or mental health treatment (Reardon, 2017). Emerging and future applications 
include cognitive enhancement, brain-to-brain communication, neural rehabilitation such as 
rewiring neural pathways to restore function after stroke or brain injury (Baker et al., 2023; 
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Chiappalone et al., 2022; Donati and Valle, 2024; Rao et al., 2014; 
Vakilipour and Fekrvand, 2024).

Integrating neuromorphic computing with these implants could 
enable more adaptive, low-latency control of neural signals. For 
example, a neuromorphic chip in an implant might adjust stimulation 
patterns in real time as brain states fluctuate, minimizing power 
consumption and improving clinical outcomes (Chiappalone et al., 
2022; Donati and Valle, 2024). In this paper, we review neuromorphic 
models as well as neurocomputational models—ranging from single-
neuron abstractions to large-scale network simulations—that appear 
well-suited for neuromorphic hardware. We also discuss how these 
models might address the unique demands of brain implants, such as 
biocompatibility, power constraints, and real-time adaptability in a 
living neural environment (Miziev et al., 2024).

2 The foundations and evolution of 
neuromorphic computing

From its beginnings, neuromorphic computing has sought to 
replicate the brain’s approach to handling information. In 1949, 
Donald Hebb proposed synaptic plasticity as a mechanism for 
learning and memory (Hebb, 1988) laying a conceptual foundation for 
brain-inspired hardware. Carver Mead took these ideas forward in the 
late 1980s, pioneering analog very-large-scale integration (VLSI) chips 
such as artificial retinas and cochleas that circumvented the “von 
Neumann bottleneck” by combining memory and processing in one 
place as opposed to traditional separation of CPUs and memory units 
(Mead and Conway, 1978; Mead, 1989).

Although Mead was not alone in brain-inspired computing, his 
mixed-signal designs revolutionized the field by reducing latency and 
allowing data storage and processing to occur simultaneously across 
the network. Unlike conventional computing, where explicit 
instruction sequences guide operation, neuromorphic systems derive 
their “program” directly from the network’s structure (Mead and 
Conway, 1978; Mead and Ismail, 1989; Schuman et al., 2017). Over 
time, the term “neuromorphic computing” has broadened covering a 
wider range of software and hardware implementations—digital, 
analog, and mixed-signal implementations (Mehonic et  al., 2024; 
Schuman et al., 2022). In the 1990s and 2000s, neuromorphic chip 
development accelerated, driven by the DARPA SyNAPSE program. 
Researchers explored architectures for specialized applications like 
pattern recognition and sensory processing, including the use of 
memristors for more efficient, brain-like computation (Hylton, 2007; 
Markram, 2012). Key developments included silicon neurons, synapse 
models, and large-scale systems—all embodying plasticity and 
learning principles.

βIn the 2010s, there was a significant focus on advancing both 
hardware and algorithms including IBM’s “spiking-neuron integrated 
circuit” TrueNorth (Merolla et al., 2014), Neurogrid (Benjamin et al., 
2014), BrainScaleS (Schemmel et al., 2020), Loihi (Davies et al., 2018), 
or SpiNNaker (Furber et al., 2012). These platforms modeled networks 
of spiking neurons achieving low power consumption and real-time 
processing for sensory data. Parallelly, the progression toward fully 
digital, event-driven neuromorphic chips was advanced by SynSense’s 
SENECA, ReckOn, Speck, and Xylo, allowing edge-based processing 
for applications like object identification and sensory processing tasks 
(Christensen et al., 2022; Yao et al., 2024; Tang et al., 2023; Bos and 

Muir, 2022). Moreover, commercial neuromorphic solutions have 
since emerged from companies like BrainChip and Innatera, 
demonstrating the practical viability of low-power, 
on-device deployments.

Since 2020, new gradient-based training methods for spiking 
neural networks (Lee et al., 2016; Eshraghian et al., 2023) and real-
time evolutionary optimization (Ahmadi et al., 2024) have opened the 
door to tasks once dominated by deep learning on GPUs. Moreover, 
optical “memristors” are being explored for high-bandwidth 
neuromorphic machine learning (Duan et al., 2024; Nirmal et al., 
2024). This continuing evolution is thoroughly reviewed in recent 
roadmaps such as Christensen et al. (2022), showing an even clearer 
trajectory toward highly efficient, brain-inspired computing 
platforms—progress that is particularly advantageous for brain 
implants, which require ultra-low power consumption, minimal 
latency, and on-chip learning.

3 Brain implants

3.1 Overview

Brain implants are medical devices designed to interface with the 
brain’s bioelectrical environment by either reading neural signals to 
restore lost functions or modulating activity to bypass damaged 
pathways. Although neurons primarily communicate through 
electrochemical signals (action potentials and neurotransmitters), 
studies show that mechanical forces, glial cell interactions, and even 
quantum phenomena may also affect brain function (Allen and 
Barres, 2009; Franze, 2013; Hameroff and Penrose, 2013; Lambert 
et al., 2012). These insights might contribute to our understanding of 
the “brain code,” possibly allowing better control of the bioelectrical 
properties of all cells within the brain, affecting brain functions or 
even cellular regeneration (Boys et al., 2022; Park et al., 2025; Shim 
et al., 2024; Tanikawa et al., 2023; Zhao et al., 2024).

Such implants could address a variety of disruptions, including 
protein or ion channel dysfunction, myelin loss, mechanical trauma, 
and glial cell abnormalities (Roa et  al., 2023; Wang et  al., 2022). 
Examples include restoring motor control in Parkinson’s disease (where 
the loss of dopamine neurons impairs movement), reducing epileptic 
seizures through responsive neurostimulation (detecting and 
preventing abnormal firing), and using visual or auditory prosthetics 
to bypass damaged sensory pathways (Fernandez, 2018; Gupta et al., 
2023; Hartshorn and Jobst, 2018). By decoding neural signals, these 
devices can translate an individual’s intentions into commands for 
controlling prosthetic limbs, restoring mobility and providing a sense 
of embodiment (Donati and Valle, 2024). Moreover, implants could 
address cognitive impairments, as shown by Schiff et al. (2023), who 
used thalamic deep brain stimulation in traumatic brain injury patients 
to improve executive functions. Das et al. (2024) showed attention 
mechanisms in non-human primates via LFP and spiking data, 
suggesting specific stimulation patterns might enhance attention 
regulation. Systematic reviews indicate noninvasive methods can 
alleviate ADHD symptoms (Yin et  al., 2024), hinting at broader 
potential for brain implants. Because each condition has its own 
pathophysiological features, implants need to adapt dynamically to 
changing states to deliver more personalized and effective therapies. 
Consequently, neuromorphic algorithms and compatible hardware that 
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model neuronal communication—and can record and stimulate neural 
activity—might be crucial for advancing these targeted solutions.

3.2 Brain implant workflow

Currently brain implants follow a multi-step workflow—surgical 
insertion into the target region, neural signal recording, on- or 
off-chip processing, and sometimes neuronal stimulation. By directly 
interfacing with the brain, they can record or modulate neural activity 
for therapeutic or rehabilitative purposes.

The typical workflow of a brain implant system involves:

 1. Insertion of the implant: The device is surgically placed in the 
target brain area, with electrode placement varying based on 
the intended application. It is followed by a regeneration period 
since microglia are activated (Kozai et al., 2014).

 2. Recording of neural signals: Electrodes on the implant detect 
the electrical activity of neurons. The resolution of this 
recording can vary significantly while recording:

 a) Group of neurons (multi-unit activity)
 o Advantages: More stable signals over time; multi-unit 

recordings are often less susceptible to minor electrode shifts, 
which can occur due to micromovements of electrodes relative 
to the tissue (Ramezani et  al., 2024; Supèr and 
Roelfsema, 2004).

 o Disadvantages: Less precise, may miss nuanced neural activity 
or possibility to directly modulate or bypass specific neurons 
(Gupta et al., 2020).

 b) Single-neuron resolution (single-unit recordings)

 o Advantages: Highest precision, allowing for detailed neural 
decoding depending on the number of electrodes. This enables 
targeted stimulation and neuron-to-neuron algorithms for 
data processing and stimulation (Fu et al., 2016; Gupta et al., 
2020; Zhang et al., 2023).

 o Disadvantages: More challenging to maintain long-term 
stability due to tissue response or electrode degradation (Kozai 
et al., 2014).

3. Processing of neural signals: The recorded data undergoes 
different signal processing steps to filter out noise and extract relevant 
features. This processing can occur in different locations:

a) On workstation processing:

 • Recording: High-resolution electrodes capture neural signals.
 • Processing: Data is sent to an external workstation for processing 

either with wire or wirelessly.

 o Advantages: High computational power. Large CPUs or GPUs 
can run advanced algorithms (e.g., deep learning or complex 
statistical methods), and workstation hardware and software 
are easier to update or replace (Zhang et al., 2022).

 o Disadvantages: Increased latency, reliance on external devices. 
While reliance itself is not inherently problematic (consider 
how our phones rely on satellites), it introduces challenges in 

data transmission, power transfer, and potential data 
bottlenecks (Ding, 2024). When processing occurs on an 
external workstation, data transmission can face challenges 
such as:

 ▪ Signal attenuation and degradation over 
wireless transmission

 ▪ Bandwidth limitations affecting real-time fast processing
 ▪ Security and privacy concerns if sensitive neural data is sent 

to the cloud
 ▪ Increased power consumption for data transmission
 ▪ Potential loss of data during transmission
 ▪ Reliance on continuous connectivity and compatibility with 

external systems, risking partial or total loss of functionality 
if communication is disrupted (Miziev et al., 2024).These 
factors can impact the system’s overall performance, 
reliability, and suitability for continuous, real-time neural 
signal processing in brain-computer interfaces (Lebedev and 
Nicolelis, 2006; Schalk et al., 2004).

b) On-node processing:

 • Recording: Electrode arrays record neural activity.
 • Processing: Local processing occurs on the node, with external 

data transfer for further analysis or on-station synchronization.

 o Advantages: Potential for reduced latency for real-time neural 
signal processing compared to workstation processing, though 
this depends on the specific chip used. Enhanced privacy, as 
much of the data can remain on the local device rather than 
being transmitted to the cloud improving reliability through 
reduced network dependence, which helps avoid data 
corruption associated with sending signals to and from 
external CPUs (Miziev et al., 2024).

 o Enhanced privacy by keeping data local, and improved 
reliability through reduced network dependence, which helps 
avoid data corruption (Miziev et al., 2024).

 o Disadvantages: Limited by node processing power. The lack of 
cloud connectivity means the AI might rely on a single 
individual’s data rather than aggregated data from many users. 
Additionally, the power consumption of on-board chips can 
limit computational speed, as higher clock speeds demand 
more energy and might lead to increased heat, potentially 
resulting in tissue damage if the temperature rises. Updating 
algorithms and software for implanted devices also poses 
challenges (Miziev et al., 2024; Serrano-Amenos et al., 2023).

c) On-implant processing:

 • Recording: High-density electrodes integrated into the implant.
 • Processing: All signal processing occurs on the implant with 

possibility for external data transfer if needed.

 o Advantages: Minimal latency, real-time processing capability, 
and reduced data transmission requirements (Ding, 2024; 
Miziev et al., 2024). Additionally, patient privacy can be further 
protected by restricting data flow to the implant itself.

 o Disadvantages: Severely limited by power and size constraints 
of the implant and potentially increased temperature in the 
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brain environment. The implant could process approximately 
2 GB of data locally, eliminating the need for time-consuming 
data transmission (*at 1,024 channels sampled at 20 kHz with 
10-bit resolution, a minute of uncompressed data could reach 
about 2 GB). However, due to power restrictions and safety 
regulations, the on-board chip operates at a slower speed than 
external processors. While sending data externally would 
incur transmission delays, external devices can still process 
data much faster (Musk, 2019; Stanslaski et al., 2012; Figure 1).

 4. Stimulation: Based on the processed information, implant may 
stimulate specific brain regions. The decision to stimulate and 
the parameters of stimulation (frequency, intensity, duration) 
can be  determined either by on-implant algorithms or by 
external systems, depending on the implant’s design 
and capabilities.

3.3 Current limitations

3.3.1 Algorithms and dynamic neural 
environments

Many brain implants use machine learning methods (e.g., deep 
neural networks, RNNs, SVMs) to interpret neural activity and enable 
communication with external devices (Chapin et al., 1999; Hochberg 
et al., 2012). Although these techniques have proved beneficial (e.g., 
in Neuralink prototypes such as the pig demo and monkey cursor 
control), they often rely on relatively simple models and fixed 
stimulation parameters that may not suit rapidly changing conditions 
of living neural tissue, its plasticity, or fluctuations in the brain’s state 
over a human lifetime (Gulino et al., 2019; He et al., 2020; Musk, 2019).

3.3.2 Data rates, compression, and transmission
Another substantial issue is data compression. The amount of 

neural data processed by a brain implant can vary widely, depending 
on factors like the number of electrodes, the sampling rate, spatial 

and temporal resolution (fine-grained control for individual 
neurons), and whether the device monitors spike-level signals 
(sampled at 20–30 kHz to resolve individual action potentials) or 
local field potentials (LFPs). Issues such as data compression or 
wireless transfer can slow real-time feedback for rapid neural events 
(Gilja et  al., 2012; Harrison, 2008; Liu et  al., 2020; Prosky et  al., 
2021). At the lower end, a system with a handful of electrodes 
recording at a few kilohertz might handle kilobytes to megabytes of 
data per second, whereas a high-density array with hundreds or 
thousands of channels could generate tens to hundreds of megabytes 
per second.

For instance, Neuralink generates approximately 200 Mbps of 
electrode data from its high-density implant but can only transmit 
1–2 Mbps via Bluetooth—meaning the implant operates at about 
0.5% of its potential. Achieving the required compression ratio of over 
200× and is often handled by feature extraction or on-chip 
compression—yet these techniques do not fully maximize the 
implant’s capabilities. Furthermore, these systems often struggle with 
power consumption, size constraints, and the need for external 
processing units, which can limit their practicality and scalability 
(Gulino et  al., 2019; Miziev et  al., 2024; Neuralink Compression 
Challenge, 2025).

3.3.3 Materials and biocompatibility
Additionally, material constraints, thermal noise, and the 

possibility of requiring immune-suppressing therapies can affect data 
quality, device performance, and patient well-being (Miziev et al., 
2024). Some wound-healing and material research suggests that 
specific stimulation patterns may enhance healing speed—possibly 
reducing implant rejection or tissue scarring—lowering the 
degradation of signal quality and improving the precision of neural 
recording, although these methods have not been extensively applied 
in clinical practice (Boys et al., 2022; Fani et al., 2023; Miziev et al., 
2024). Polymer coatings, hydrogel encapsulation, and flexible 
bioelectronics aim to reduce foreign-body responses and provide 
stable, long-term performance for neuromorphic implants (Hwang 
et al., 2015; Polikov et al., 2005; Qi et al., 2023; Salatino et al., 2017).

FIGURE 1

Illustrates the signal processing workflow for brain implants across the three tiers: external (on-workstation), on-node, and fully on-implant processing. 
Each tier highlights differences in hardware, bandwidth, tasks, and trade-offs between latency, power, and computational efficiency.
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3.3.4 Scalability, complexity, adaptability
Most current implants remain relatively large, limiting improved 

spatial or temporal resolution (Miziev et al., 2024). The complexity of 
neural signals—firing patterns, synaptic plasticity, network-level 
feedback—requires precise placement and calibration to avoid 
undesired side effects, such as cognitive dysfunction or behavioral 
changes (Valle et al., 2024). Many devices do not self-adjust to evolving 
neural conditions without external control, reducing their capacity to 
stay aligned with the user’s needs in the long term, especially as the 
brain’s functional state changes due to learning, aging, or disease 
progression (Shanechi et al., 2016; Zhou et al., 2023).

Addressing these issues is important for advancing brain implants. 
Bio-inspired robotics, improved materials design, and neuromorphic 
computing—with event-driven, efficient on-chip processing—may 
pave the way to adaptive, biologically informed systems (Chiappalone 
et  al., 2022; Qi et  al., 2023; Zhang et  al., 2024). Fully implantable 
devices could reduce latency and enhance real-time interactions, 
though obstacles such as energy management, heat dissipation, and 
data compression methods remain unsolved (Chiappalone et al., 2022; 
Zhang et al., 2022).

4 Neuromorphic computing for brain 
implants

4.1 Brain-inspired foundations of 
neuromorphic computing

The human brain is a computational marvel, reaching exaflop-
scale performance while consuming just ~20 watts (Yao et al., 2024). 
This efficiency contrasts sharply with traditional computing 
architectures, which are approaching physical limits. Moore’s Law, 
predicting a doubling of transistors every 2 years, is slowing due to 
transistor miniaturization constraints (Schaller, 1997), and Dennard 
scaling, which maintained power density as transistors shrank, is also 
faltering, complicating efforts to boost performance without 
sacrificing energy efficiency (Horowitz, 2014). These trends highlight 
the brain’s computational edge and the need to draw inspiration from 
its design.

Key features of the brain’s paradigm include:

 • Massive parallelism: Unlike the sequential processing of 
traditional computers, the brain handles distributed, 
simultaneous computations across billions of neurons (Schuman 
et al., 2017). While architectures like SIMD, MIMD, or Dataflow 
can excel at specific tasks (e.g., image processing, matrix 
operations), they still lack the versatility and energy efficiency of 
the brain’s parallel computation across a wide variety of tasks 
from sensory processing to abstract reasoning (Hennessy and 
Patterson, 2011; Roy et al., 2019).

 • Integrated memory and processing: Traditional von Neumann 
architectures separate memory and processing, creating 
bottlenecks absent in the brain, where computation and memory 
are believed (until now) to be integrated at the synaptic level (Isik 
et al., 2024; Kastellakis et al., 2015).

 • Adaptability and learning: The brain’s real-time adaptability and 
plasticity outstrip machine learning algorithms, which struggle 
with catastrophic forgetting and lack comparable energy 

efficiency despite for example incremental learning (Kirkpatrick 
et al., 2017; Aleixo et al., 2024; Sadegh-Zadeh et al., 2024).

 • Fault tolerance: Biological networks remain functional despite 
significant neuron loss, as seen in Alzheimer’s patients retaining 
abilities with reduced brain mass (Su et al., 2016). Traditional 
systems, however, are vulnerable to single points of failure, 
though efforts using genetic algorithms aim to address this 
(Zlokapa et al., 2022; Su et al., 2016).

 • Handling noisy data: The brain processes noisy, incomplete inputs 
effortlessly, using mechanisms like sensory substitution. In cases 
where one sensory modality is impaired, the brain can rewire 
itself to process information from other senses to compensate for 
the loss (Merabet and Pascual-Leone, 2009). While there have 
been advancements in machine learning, traditional systems still 
mostly require precise data (Caiafa et al., 2021).

Neuromorphic computing largely addresses these issues. While 
the Harvard architecture already separates data memory and program 
memory (Hennessy and Patterson, 2011), neuromorphic approaches 
offer support for dynamic and real-time data processing at high 
throughput and low energy consumption, avoiding continuous data 
transfers between discrete memory and processing units. This reduces 
the bandwidth limitations of current technologies. Compression 
methods in neuromorphic systems focus on essential spikes or 
relevant features, reducing data size and lessening the load on external 
devices or wireless links (Roy et al., 2019; Lee and Lee, 2020). Because 
information is handled locally, these pipelines can cut back on 
unnecessary transfers, enhance real-time compression, and improve 
overall performance (Schuman et al., 2017; Rhodes et al., 2019).

Neuromorphic systems can improve spatial and temporal 
resolution through bio-inspired architectures with high-density, 
low-power processing units, reflecting the brain’s ability to process 
information at multiple scales. This leads to improved spatial 
resolution by better mapping—fitting more sensors or compute 
elements into smaller areas—and boosts temporal resolution through 
parallel, event-driven operations, allowing real-time monitoring and 
minimal-latency stimulation of neural activity (Hall et  al., 2012; 
Gonzalez et al., 2024; Peres and Rhodes, 2022). Such responsiveness 
is crucial for effective neuroprosthetic control or closed-loop 
interventions with quick feedback (Niu et al., 2020).

In a prosthetic limb, for instance, a neuromorphic processor can 
interpret signals from sensory receptors instantly and adjust motor 
commands in actuators, resulting in smooth, natural movements 
aligned with the body’s reflex responses—especially in dangerous 
situations where fight-or-flight responses matter (Niu et al., 2020; 
Song et al., 2024).

A key feature of these systems is event-driven computation, where 
processing occurs only in response to significant input changes or 
‘events’, rather than continuous operation (Ji et al., 2023; Shahsavari 
et al., 2023). This approach has been deployed in vision-processing 
tasks on neuromorphic platforms like Speck where real-time, event-
based sensing enables low-latency, energy-efficient object recognition 
(Yao et al., 2024). This approach is particularly effective in managing 
temporally sparse activity, which is useful in various applications, 
such as detecting rare events or monitoring long-term trends, 
ensuring that the system remains efficient and responsive only when 
necessary (Aboumerhi et  al., 2023). This also could make the 
neuromorphic design more energy-efficient and improve power 
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consumption, minimizing the thermal impact on surrounding 
brain tissues.

Incorporating synaptic plasticity mechanisms, particularly spike-
timing-dependent plasticity (STDP), allows neuromorphic systems to 
learn and adapt from new stimuli (Bill and Legenstein, 2014). This 
learning capability, together with the systems’ inherent parallel 
processing, strengthens pattern recognition and sensory data 
handling—advantageous in plastic neuronal environments (Zhu et al., 
2021; Büchel et al., 2022a,b). Recent research has extended on-device 
computing capabilities, achieving state-of-the-art performance in real-
time audio tasks (e.g., speech recognition) and vision tasks (e.g., object 
detection), all with notable energy efficiency (Yao et al., 2024; Yik 
et al., 2025). The scalability of neuromorphic computing has been 
demonstrated in projects like SpiNNaker, which can simulate millions 
of neurons in real time and simultaneously across multiple chips 
(Furber et al., 2012; Davies et al., 2018). This scalability spans from 
small, energy-efficient sensors to comprehensive neural networks 
modeling complex behaviors. For example, DeWolf et  al. (2016) 
employed spiking neural networks for robotic arm control, while 
others have explored neuromorphic sensory systems (Liu and 
Delbruck, 2010), speech recognition (Xiang et al., 2023), and energy-
efficient image classification (Pawlak et al., 2024).

Additionally, neuromorphic systems often include elements of 
stochasticity, reflecting the probabilistic character of biological neural 
networks (Petrovici et  al., 2016). This enhances robustness and 
adaptability to uncertain, variable environments. For example, a 
recent study on neuromorphic-based closed-loop neuroprostheses 
(Chiappalone et al., 2022) describes how real-time data processing, 
energy efficiency, and bio-inspired computation can help reestablish 
or substitute injured neural pathways, going beyond sensory or motor 
restoration and potentially enabling direct brain-level repair. The 
broad applicability of neuromorphic algorithms aligns with the type 
of information processing found in the brain. However, as the field 
advances, the focus is expanding beyond just hardware. There is a 
growing need to integrate neuromorphic systems with algorithms and 
real-world applications, increasing our understanding of neuronal 
communication models to allow for the development of even more 
advanced neural interfaces (Furber, 2016).

4.2 Mixed-signal design in neuromorphic 
systems

Mixed-signal design is one of the techniques improving the 
efficiency of neuromorphic computing, integrating both analog and 
digital circuitry to mimic the brain’s information processing. This 
approach combines the flexibility and precision of digital systems with 
the energy efficiency and continuous-time processing capabilities of 
analog circuits. Quan et al. (2023) demonstrated the effectiveness of 
mixed-signal neuromorphic circuits in implementing energy-efficient 
and space-efficient Spiking Neural Networks (SNNs) using 55 nm 
CMOS technology. The integration of analog and digital components 
allows neuromorphic systems to better model the brain’s parallel 
processing and adaptive learning capabilities while maintaining 
computational efficiency. For instance, Benjamin et  al. (2014) 
developed Neurogrid, a mixed-analog-digital multichip system for 
large-scale neural simulations, showing the potential of this approach.

4.2.1 Benefits of mixed-signal design
Analog circuits are highly energy-efficient, often performing 

specific computations with far lower power consumption than 
digital alternatives. Their continuous-time nature allows real-time 
processing of sensory inputs, which aligns with how biological 
systems operate (Indiveri et al., 2011). Additionally, the high density 
of neural elements in mixed-signal circuits supports more compact 
designs for neuromorphic systems (Moradi and Indiveri, 2013).

4.2.2 Challenges of mixed-signal design
However, analog components are inherently more sensitive to 

noise and environmental variations, which can impact system 
reliability (Qiao et al., 2015; Schuman et al., 2017). Recent efforts have 
begun to address issues such as mixed-signal mismatch, particularly 
during training, through techniques like mismatch-aware training 
algorithms (Büchel et  al., 2022a,b) and improved circuit design 
methodologies (Murray and Edwards, 1994). Addressing these issues 
is crucial for the future development of mixed-signal neuromorphic 
architectures (Roy et al., 2019).

4.3 Algorithm to hardware conversion 
trade-offs

Neuromorphic hardware can be categorized into analog, digital, or 
mixed-mode (analog/digital) systems. While analog designs offer 
benefits such as a smaller footprint and lower power requirements, 
digital approaches tend to be more adaptable and cost-effective, for 
example, for running large-scale SNN models (Indiveri et al., 2011; Seo 
and Seok, 2015). For instance, TrueNorth (Merolla et al., 2014) and Loihi 
(Davies et al., 2018) each exemplify large-scale digital neuromorphic 
chips, achieving energy efficiency and event-driven spiking at scale. 
Small-scale digital neuromorphic processors have also gained attention 
for their potential in edge computing applications, offering low-power, 
real-time processing capabilities (Yik et al., 2025). In addition, mixed-
signal designs combine analog front-ends with digital back-ends, 
supporting continuous-time processing (Roy et al., 2019).

The traditional approach of using high-level programming 
languages like Python for neuromorphic algorithm development, 
followed by conversion to hardware, still comes with its challenges. 
Schuman et  al. (2022) emphasize the importance of co-designing 
algorithms and hardware to fully benefit from the characteristics of 
neuromorphic systems. Direct implementation of neuromorphic 
algorithms on specialized hardware, rather than relying on software 
intermediaries, can lead to substantial improvements in energy efficiency 
and processing speed. This is particularly relevant in neurotechnology 
applications, where real-time processing of neural signals is crucial 
(Furber et al., 2012). However, recent work with field-programmable 
gate arrays (FPGAs) has shown potential for neuromorphic solutions. A 
study by Zhang et al. (2019) reported speed-ups compared to CPU 
implementations and lower power consumption compared to 
GPU-based systems when SNNs were placed directly on FPGAs 
(Javanshir et al., 2022). Benchmarking efforts, such as the NeuroBench 
project (Yik et al., 2025) and edge audio evaluations (Bos and Muir, 
2024), show the efficiency of small-scale digital neuromorphic processors 
in low-power, on-device sensory processing, including real-time audio 
(e.g., speech recognition) and vision (e.g., object detection) tasks. These 
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findings show their potential for power-sensitive applications requiring 
minimal latency and real-time performance such as implants.

5 Neuromorphic algorithmic 
approaches for brain implants

Neuromorphic computing can address existing brain-implant 
limitations, offering an approach that improves energy efficiency, 
information transfer, and adaptive behavior—possibly including 
future memory storage. We  reviewed a range of neuromorphic 
algorithms, from traditional ones and potential hybrid methods to 
neurocomputational models not yet implemented. We showed how to 
optimize them for the demanding requirements of brain implants: 
real-time processing, low power usage, and adaptive learning in 
complex, noisy environments.

5.1 Spiking neural network algorithms

5.1.1 Fundamentals of SNNs
Spiking Neural Networks (SNNs) have significant relevance in the 

development and implementation of brain implants due to their 
ability to model natural neural processes, offering several advantages 
for brain-computer interfaces (BCIs), such as decoding neural signals, 
sensory substitution, or better personalization (Roy et al., 2019; Liao 
et al., 2024). The conceptual roots of SNN algorithms trace back to the 
mid-20th century, inspired by the work of neuroscientists like Alan 
Lloyd Hodgkin and Andrew Huxley (Hodgkin and Huxley, 1952). The 
formal introduction of SNNs as we  know them today is often 
attributed to Wulfram Gerstner and his colleagues in the 1990s. 
Gerstner’s work on the Spike Response Model (SRM) in 1995 provided 
a framework for describing the behavior of spiking neurons 
mathematically (Gerstner, 1995).

However, the term “Spiking Neural Network” gained prominence 
in the late 1990s and early 2000s, with papers by Wolfgang Maass and 
William Bialek contributing significantly to the field (Maass, 1996; 
Bouvier et  al., 2019). This coincided with advancements in VLSI 
technology that made it feasible to implement large-scale spiking 
networks in hardware (Indiveri et al., 2009; Indiveri and Liu, 2015). 
SNNs closely model the information processing mechanisms of 
biological neurons through several key principles:

 1. Membrane potential dynamics: Each artificial neuron in an 
SNN maintains a membrane potential, which is a time-varying 
state variable (Izhikevich, 2003). The membrane potential 
changes in response to input spikes and decays over time when 
no input is received. In brain implants, this might allow for 
more natural interaction with surrounding biological neurons 
(Zhang et al., 2021).

 2. Threshold and spiking: When the membrane potential exceeds 
a certain threshold, the neuron “fires” or emits a spike. After 
firing, the neuron enters a refractory period during which it is 
less likely or unable to fire again (Zhang et al., 2021; Guo et al., 
2022). For brain implants, this thresholding mechanism 
provides a natural way to filter out noise and focus on 
significant neural events, improving signal quality and reducing 
power consumption (Shah et al., 2024).

 3. Temporal integration: Neurons integrate incoming spikes over 
time, allowing them to process temporal patterns in the input 
data (Takaghaj and Sampson, 2024). This helps brain implants 
interpret and respond to complex neural signals more 
accurately. Additionally, temporal integration stores some 
representation of the signal in an analog form: the membrane 
voltage (and its fluctuations) encodes input amplitude and 
timing, functioning like parallel weighting coefficients in 
machine learning. This parallel processing capability is 
important for brain implants, allowing them to handle the 
massive parallelism of neural computations efficiently (Peres 
and Rhodes, 2022; Müller et al., 2023).

The dynamics of a spiking neuron can be described mathematically 
using differential equations. One popular model is the Leaky Integrate-
and-Fire (LIF) neuron, which could be used for efficient memory, as 
noted by Kim et  al. (2023). The dynamics of the LIF neuron are 
governed by the following equation, which models the evolution of 
the membrane potential over time:

 
( ) ( )rest

dV V V RI t
dt

τ = − − +

Where:

 • (V): Membrane potential
 • Vrest: Resting potential
 • tau: Membrane time constant (tau = R C, where (C) is the 

membrane capacitance)
 • (R): Membrane resistance
 • (I(t)): Input current
 • When (V) reaches the threshold Vth, a spike is emitted, and (V) 

is reset to Vreset.

In the context of brain implants, the LIF model provides a 
framework for simulating and interpreting neural signals. For 
example, the membrane time constant (tau) determines how quickly 
a neuron responds to stimuli, which can be  tuned to match 
biological neural processing speeds, approximating different 
biological neurons. This is important for applications like 
prosthetics, where accurate and timely decoding of neural signals is 
essential for smooth motor control (Donati et al., 2019; Donati and 
Valle, 2024).

5.1.2 Information encoding in SNNs
The concept of encoding information in spike timing and 

frequency, rather than continuous values, has its roots in the study of 
biological neurons. This shift in perspective arose as neuroscientists 
investigated how the brain represents and processes information. 
Work in this field includes Eric Kandel’s research in the 1960s on 
synaptic transmission and plasticity, David Marr’s theories on neural 
computation in the 1970s, and Moshe Abeles’ exploration of precise 
spike timing in the 1980s (Kandel and Spencer, 1968; Kandel, 1976; 
Marr, 1969). These foundational studies laid the groundwork for the 
encoding strategies now used in Spiking Neural Networks (SNNs).

In SNNs, information can be encoded in several ways, such as 
Time-to-First Spike (TTFS) coding, Phase coding, and Burst coding, 
as well as the following:

https://doi.org/10.3389/fnins.2025.1570104
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Pawlak and Howard 10.3389/fnins.2025.1570104

Frontiers in Neuroscience 08 frontiersin.org

 1. Rate coding: The average number of spikes over a time window 
represents the intensity of a signal. In brain implants, rate 
coding can be used to interpret sensory or motor signals (Liu 
and Delbruck, 2010; Guo et  al., 2021). For example, the 
frequency of neural spikes detected in the motor cortex could 
be  translated into the strength or speed of movement in a 
robotic limb (Gupta et al., 2023; Chapin, 2004).

 2. Temporal coding: The exact timing of spikes carries 
information. Temporal coding is critical for real-time 
processing in brain implants, enabling precise interpretation 
of rapidly changing neural signals (Cariani, 2001). This 
could be  especially useful for applications like auditory 
prosthetics, where timing plays a key role in speech 
recognition (Aldag and Nogueira, 2024; Saddler and 
McDermott, 2024).

 3. Rank order coding: The order in which neurons in a layer fire 
encodes information. Rank order coding can improve 
efficiency in brain implants by prioritizing the most significant 
neural inputs, reducing computational overhead while 
maintaining accuracy. This approach is particularly beneficial 
in energy-constrained systems like neural prosthetics (Loiselle 
et al., 2006).

5.1.2.1 Practical data-to-spike conversion
Rate/temporal/rank order describe intrinsic coding strategies in 

SNNs (or biological systems), while binning/spike-count/charge-
injection are applied methods for converting external signals to spikes. 
This aspect of input encoding is often overlooked: translating 
numerical data (e.g., raw sensor signals) into spikes so that SNNs can 
process them. Recent work compares binning, spike-count encoding, 
charge-injection, and more complex hierarchical strategies, 
demonstrating that the best input encoding depends heavily on the 
task and hardware (Schuman et al., 2019). For brain-implant scenarios, 
choosing an appropriate encoding method can significantly impact 
power usage, latency, and overall decoding accuracy—potentially just 
as critical as the learning algorithms themselves.

5.1.2.2 ANN-to-SNN conversion
It offers a complementary approach for creating spiking networks. 

Instead of relying on spike-based encoding from the outset, this 
technique converts pre-trained artificial neural networks (ANNs) into 
spiking equivalents—preserving learned weights and architecture 
(Wang et al., 2023). Such conversion could potentially allow the use of 
existing, highly effective deep learning models in brain implants while 
benefiting from the energy efficiency of SNN implementations 
(Yamazaki et  al., 2022). For instance, an ANN trained for speech 
recognition could be  converted to an SNN, potentially enabling 
low-power, real-time decoding of auditory signals in a cochlear 
implant. Researchers have demonstrated promising ANN-to-SNN 
conversions for image classification (Rueckauer et al., 2017), which 
could be adapted for neural image input in visual implants, though 
this specific application has yet to be tested.

5.1.3 Learning and optimization algorithms
Developing efficient learning and optimization algorithms is 

critical for enabling neuromorphic computing in brain implant chips, 
where on-chip computing must balance power efficiency, real-time 
processing, and adaptability.

5.1.3.1 Spike-timing-dependent plasticity
STDP is often regarded as an important learning rule in Spiking 

Neural Networks (SNNs), particularly for brain implants seeking a 
biologically plausible way to adapt (Indiveri and Liu, 2015; Lan et al., 
2021). By adjusting synaptic strengths based on the timing of pre- and 
postsynaptic spikes, STDP allows implants to modify responses to a 
user’s neural signals over time.
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where ΔW is the change in synaptic weight and Δt is the time 
difference between spikes. Parameters (A+, A−, τ+, τ−) shape the STDP 
curve and can be  adjusted for the desired balance between 
strengthening or weakening connections based on the user’s 
neural activity.

Recent work by Subramoney et  al. (2024) presents a new 
perspective on SNN learning: fast adaptation that does not rely 
entirely on synaptic plasticity. Instead, it draws on a combination of 
slower plastic changes and faster network dynamics, incorporating 
biologically inspired elements such as spike frequency adaptation 
(SFA)—observed in a significant portion of cortical neurons. This 
approach allows SNNs to learn in a single trial, aided by recurrent 
connections that support key network behaviors. Synaptic weights 
still represent broader information (such as priors or task 
structures), but the system’s adaptive properties stem more from 
real-time dynamics and SFA than from plasticity-based rules 
like STDP.

5.1.3.2 SpikeProp
Introduced by Bohte in 2002, SpikeProp is a gradient-based 

learning algorithm for spiking networks that adjusts synaptic weights 
according to the timing of individual spikes. It could enable brain 
implants to learn complex mappings—such as translating neural 
signals into motor control for a prosthetic hand—using supervised 
learning approaches (Bohte et al., 2000). For on-chip computing, its 
timing-based update is essential for real-time processing of complex 
neural signals in tasks such as motor control or sensory processing 
(Shrestha and Song, 2014). Recent advancements have extended 
SpikeProp with event-based update algorithms that enable exact 
gradient computation, improving training accuracy and efficiency 
(Wunderlich and Pehle, 2021).

5.1.3.3 ReSuMe (remote supervised method)
Introduced by Filip Ponulak in 2005, ReSuMe combines STDP 

with supervisory signals (Ponulak, 2005; Ponulak and Kasiński, 2009). 
In contrast to purely Hebbian or STDP-based approaches, ReSuMe 
adjusts synaptic weights to minimize the timing discrepancy between 
the network’s output spikes and the target output pattern. This makes 
it well-suited to scenarios where a reference or “correct” spiking 
pattern is available. ReSuMe could help implants learn from external 
feedback, such as from a physical therapist during rehabilitation, to 
improve neural signal decoding over time. As the user would practice 
a motor task (e.g., hand movements), the implant’s spiking network 
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receives corrective signals that guide STDP adjustments, refining 
neural signal decoding over time continuously aligning the SNN’s 
spike outputs.

5.1.3.4 Spike-based backpropagation and BPTT for SNNs
Recent work by researchers like Zenke and Ganguli (2018) applies 

backpropagation-like learning (through surrogate gradients) to 
spiking neural networks (SNNs), allowing them to learn complex tasks 
while preserving energy efficiency—essential for brain implants 
(Gygax and Zenke, 2024). This approach adapts traditional gradient-
based methods to handle the discrete, event-driven nature of SNNs, 
enabling efficient training for applications like neural signal decoding 
and personalized therapies (Eshraghian et al., 2023; Lee et al., 2016). 
A closely related approach, Backpropagation Through Time (BPTT), 
extends these methods by modeling the temporal dynamics of SNNs, 
making it especially suitable for personalized therapies or 
rehabilitation (Bird and Polivoda, 2021; Nápoles et  al., 2024). By 
adjusting synaptic weights based on user-specific neural activity 
patterns, BPTT could potentially optimize interventions such as deep 
brain stimulation for Parkinson’s disease, where precise timing matters 
for symptom management.

Additionally, other forms of plasticity and learning rules are being 
explored in SNNs. For example, some research focuses on 
unsupervised feature learning with winner-takes-all-based STDP 
(Ferré et al., 2018), while others investigate the dynamics of phase 
oscillator networks with synaptic weight and delay plasticity (Chauhan 
et al., 2022).

5.2 Advanced SNN algorithms and 
hardware implementation

Neuromorphic computing algorithms, particularly those based on 
Spiking Neural Networks (SNNs), show great promise for applications 
in brain implants. These algorithms model the brain’s natural 
processing mechanisms, offering potential improvements in efficiency, 
adaptability.

5.2.1 Models
 1. Spiking convolutional neural networks (SCNNs) adapt CNNs 

into a spiking format—typically via rate or temporal coding—
for low power, real-time processing of visual or sensory inputs 
(Kheradpisheh et al., 2017). For example, SCNNs can transform 
retinal implant signals into spike patterns interpretable by the 
brain (Yu et al., 2020), forming a basis for edge vision–based 
visual prostheses (Yao et al., 2024). An unsupervised SCNN 
approach has also bridged the gap between artificial and 
biological neurons by extracting image features and using 
receptive field–based regression to predict fMRI responses 
(Wang et al., 2023). Another study shows SCNNs detecting 
anticipatory slow cortical potentials for braking intention via 
EEG, outperforming standard CNNs, EEGNet, and graph 
neural networks with over 99% accuracy (Lutes et al., 2024; 
Kheradpisheh et al., 2017). This suggests strong potential for 
real-time motor control in driver assistance or 
prosthetic applications.

 2. Spiking recurrent neural networks (SRNNs) integrate spiking 
neurons with recurrent architectures to process temporal 

neural signals, maintaining an internal state for tasks like 
predicting speech or motor patterns (Bohnstingl et al., 2022; 
Yamazaki et al., 2022). They could enable closed-loop systems 
to anticipate epileptic seizures with targeted, energy-efficient 
stimulation, though clinical efficacy requires further study. 
Adaptive SRNNs, with multiple timescales and self-recurrent 
parameters, match or surpass classical RNNs in sequential 
tasks, offering sparse spiking and > 100x energy savings 
(Yamazaki et al., 2022), making them ideal for motor-control 
implants and real-time monitoring on neuromorphic 
hardware (Willsey et al., 2022; Samee et al., 2022).

 3. Spiking Feed-forward Neural Networks (SFNN) trained with 
gradient-descent methods enable efficient pattern 
recognition and sensory processing while remaining 
compatible with low-power hardware (Bauer et al., 2023). 
Using surrogate gradients and temporal coding, these 
networks approximate continuous derivatives to 
backpropagate errors effectively, achieving high accuracy in 
tasks like visual classification with energy-efficient sparse 
spiking (Zenke and Ganguli, 2018). This makes them well-
suited for brain implants decoding sensory inputs in real 
time (Contreras et al., 2023).

5.2.2 Neuromorphic-specific technologies
Real-world deployment of brain implants demands low-power, 

adaptive, and reliable hardware. Technologies such as event-based 
processing, memristive learning, and non-volatile memory (NVM) 
offer essential solutions to these challenges.

5.2.2.1 Event-based algorithms
Event-based algorithms process data only when specific events 

(e.g., spikes) occur, reducing power usage and extending device 
operational time. This approach is similar to the behavior of biological 
neurons, which fire only upon receiving significant inputs. For 
example, Posch et al. (2014) demonstrated a retinomorphic event-
based vision sensor adaptable to various sensory modalities, including 
auditory signals, for energy-efficient, real-time implant applications. 
Event-driven spiking CNN hardware, such as the Speck platform, 
further enhances this capability by enabling low-latency, energy-
efficient processing of sensory data, making it ideal for real-time brain 
implant applications (Yao et al., 2024).

5.2.2.2 Memristive learning algorithms
Memristive learning algorithms use memristors—devices that 

retain their resistance state when powered off—to implement synaptic 
plasticity directly in hardware. This design enables on-the-fly learning 
with low latency and resembles the way biological synapses adjust 
their strength over time (Boybat et  al., 2018; Huang et  al., 2023). 
Multiple studies demonstrate the use of memristors to implement 
synaptic plasticity in hardware. For example, BiFeO₃ (BFO)-based 
memristive devices have been shown to support various long-term 
plastic functions, including spike timing-dependent plasticity (STDP), 
cycle number-dependent plasticity (CNDP), and spiking rate-
dependent plasticity (SRDP) (Du et al., 2021). Moreover, the TS-PCM 
device demonstrates the ability to modulate its behavior based on 
stimulus history, similar to neuronal plasticity (Sung et al., 2022). 
These findings suggest the potential for devices that can adjust to a 
user’s neural patterns.
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5.2.2.3 Non-volatile memory technologies
NVM technologies provide efficient, persistent storage for 

synaptic weights. Three key NVM types with potential for brain 
implants are:

 • Phase-change memory (PCM): Uses chalcogenide materials that 
switch between amorphous and crystalline states to store data. Its 
capacity to represent multiple resistance states allows for analog-
like computation and persistent synaptic storage (Burr 
et al., 2016).

 • Resistive RAM (RRAM): Also known as memristive memory, it 
changes resistance based on applied voltage, simulating synaptic 
plasticity. Its scalability and non-volatility suit high-density 
synaptic storage in space-constrained brain implants (Li et al., 
2023; Wan et al., 2022).

 • Ferroelectric RAM (FeRAM): Employs ferroelectric materials to 
store data without power, featuring fast read/write speeds and 
high endurance. However, integrating FeRAM into silicon 
remains a challenge as their chemical properties vary, potentially 
causing unwanted reactions (Mehonic et al., 2024).

These NVM technologies retain learned synaptic patterns without 
continuous power, reducing energy consumption and improving 
reliability for devices such as neural decoders in prosthetics or 
memory-enhancement implants However, their application in brain 
implants requires further research on biocompatibility, long-term 
stability in biological environments, and integration with neural tissue 
(Rathi et al., 2022).

5.3 Emerging and theoretical models

5.3.1 Multimodal learning algorithms
Multimodal learning algorithms implemented in neuromorphic 

chips show great promise for brain-computer interfaces and intelligent 
robotics. They enable the simultaneous processing of various sensory 
inputs (e.g., visual, auditory, and tactile), modeling the human brain’s 
ability to integrate multiple sensory modalities (Krauhausen et al., 
2024; Li et al., 2024a,b). Recent advancements include the development 
of artificial synapses capable of handling multiple stimuli, allowing 
parallel in-memory computing and low-energy AI processing (Li 
et al., 2024a,b). A bio-inspired approach using organic neuromorphic 
circuits has demonstrated real-time multimodal learning in robotic 
systems, enabling intelligent environmental interaction suggesting 
potential applications in sensory substitution for brain implants 
(Krauhausen et al., 2024). Despite difficulties of integrating multiple 
data streams within implant constraints, multimodal neuromorphic 
systems have potential to improve data comprehension, performance, 
and adaptability for sensory substitution or augmentation.

5.3.2 Liquid state machines and echo state 
networks

LSMs and ESNs both belong to reservoir computing and can 
be adapted for spiking (neuromorphic) hardware. They enable energy-
efficient, real-time processing of spatio-temporal data, useful for 
applications like seizure prediction or prosthetic control. Studies on 
SpiNNaker and Loihi-2 show high accuracy in visual classification 
tasks with low power usage (Patiño-Saucedo et al., 2022; Pawlak et al., 

2024); for instance, one LSM reached 91.3% on CIFAR-10 at 213 μJ/
frame (Pawlak et al., 2024). ESNs have also been implemented in 
memristor crossbar arrays, leveraging neuromorphic parallelism and 
efficiency (Hassan et al., 2017). Recent advances include modular 
ESNs for EEG-based emotion recognition, achieving improved 
performance without additional neural adaptation, suggesting 
potential for brain implants requiring real-time signal interpretation 
(Yang et al., 2024).

5.3.3 Liquid neural networks
Liquid Neural Networks (LNNs), inspired by biological systems, 

incorporate differential equations into their activation functions to 
better describe neuronal membrane dynamics. Their adaptive design 
could make implants more versatile for changing brain needs, enabling 
continuous, label-free learning. LNNs have shown promise in robotics, 
autonomous vehicles, and healthcare, where Closed-Form 
Continuous-Time LNNs (CfCs) enable real-time analytics of complex 
patient data for earlier diagnoses (Nye, 2023).

6 Neurocomputational models of 
neuronal communication

Neurocomputational models describe computational principles 
and structures that model the human brain’s neural architecture. 
Although computational neuroscience traditionally emphasizes 
biologically plausible models and detailed physiology, it also 
inspires (and is inspired by) broader fields like connectionism, 
control theory, and machine learning (Davison and Appukuttan, 
2022). For instance, convolutional neural networks (CNNs)—
inspired by the visual cortex—have been adapted into spiking 
CNNs (SCNNs) for sensory prosthetics, including retinal and 
cochlear implants (Lindsay, 2020; Büchel et al., 2022a,b; Alsakkal 
and Wijekoon, 2025).

Neuromorphic computing shares the core goal of replicating the 
brain’s efficiency and adaptability. While medical applications (e.g., 
brain implants) could particularly benefit from this synergy due to 
requirements for low-power, real-time operation, neuromorphic 
systems also have broader uses in general AI and robotics (Donati and 
Valle, 2024; Schuman et al., 2022). There are various ways to categorize 
neurocomputational models—such as single-neuron modeling, 
neuron–glia interactions, and sensory processing (Linne, 2024; Jiang 
et al., 2024; Herz et al., 2006). However, in this chapter, we will follow 
the five-level framework proposed by Herz et al. (2006), as it clearly 
illustrates how models range from high-fidelity (detailed 
compartmental) to purely functional (black box), showing the trade-
offs in complexity, efficiency, and applicability for potential use on 
neuromorphic chips for single-neuron dynamics.

6.1 Models

6.1.1 Detailed compartmental models (level 1)
Detailed compartmental models subdivide a neuron into many 

sections (compartments) to represent how its spatial structure affects 
electrical and chemical activities (Koch, 1998). They typically rely on 
anatomical reconstructions, ensuring that features like dendritic 
branches, axons, and ion channel distributions are included in a 
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realistic way. These approaches build upon Rall’s cable theory, which 
mathematically showed that voltage attenuation in dendrites spreads 
asymmetrically (Herz et al., 2006; Rall, 1977; Mainen and Sejnowski, 
1996). By using numerical integration across many compartments, 
these models can reflect complex biophysical details, including active 
dendritic currents (e.g., calcium spikes) and backpropagation of action 
potentials (De Schutter and Bower, 1994; Roth and Bahl, 2009). 
However, modeling large dendritic trees may require over 1,000 
compartments, leading to a very high-dimensional system of 
equations (Amsalem et al., 2020).

6.1.1.1 Examples
 • Multi-compartmental neuron models

Used in tools like NEURON, emphasizing accurate geometry and 
ion channel placement (Friedrich et al., 2013).

 • Cable Theory–Based Models
Extend Rall’s equations to cover voltage and current flow along 
dendrites and axons.

 • Thalamocortical neuron models
Enhanced over time with additional ion channels (e.g., dendritic 
calcium currents) to study fast oscillations or pathological 
rhythms (e.g., in sleep disorders) (Wang et al., 2022; Destexhe 
et al., 1998).

6.1.1.2 Key features
 • Morphological details

Incorporate anatomical reconstructions to see how shape and 
structure influence neuronal activity.

 • High fidelity
Reflect ion channel variability, dendritic integration, and axonal 
propagation with considerable detail.

 • Numerical complexity
Require solving large sets of differential equations, especially 
when dendritic trees are extensive (Ben-Shalom et al., 2021).

 • Mechanistic insights
Can produce testable ideas about how certain firing patterns or 
oscillations arise (e.g., Purkinje cell simulations suggesting an 
inhibitory current behind specific spike patterns) (Lumer, 1997; 
Santoro et al., 2024).

6.1.1.3 Potential applications for brain implants

1. Precision in stimulation

By modeling how voltage spreads across dendrites and soma, 
these models could help predict where an implant’s electrical pulses 
might have the strongest effect (e.g., in Parkinson’s DBS). However, 
running such detailed computations in real time on an implant could 
be impractical due to the heavy processing load (Bingham et al., 2018; 
McIntyre and Foutz, 2013).

2. Understanding neural disorders

Disease-linked alterations (e.g., modified ion channel conductance 
in epileptic tissue) could be studied in a spatially precise manner, 
supporting customized stimulation strategies (Suffczynski et al., 2004). 
However, detailed pathological modeling still demands high-end 
computing resources, making on-chip simulations unlikely.

3. Predicting extracellular stimulation effects

Because these models show how electrical fields interact with the 
neuron’s shape, they could suggest how implants should deliver pulses 
for maximum benefit in treatments like DBS. The challenge might 
arise as calculating the effects across many neurons or an entire region 
can rapidly exceed computational limits (Hussain et al., 2024; Yousif 
and Liu, 2007).

6.1.1.4 Constraints
These models often require high-performance computing or offline 

simulations, making them unsuitable for real-time neuromorphic 
hardware or large-scale networks (Amsalem et al., 2020). Moreover, 
including full dendritic and axonal detail for every neuron in a network 
is generally infeasible. Although detailed compartmental models do 
guide design and optimization, their detailed simulations continue to 
be impractical for on-chip use. As a result clinicians and engineers 
typically employ them offline to optimize factors such as electrode 
placement or stimulation patterns, then transfer simplified models or 
empirically derived parameters to the actual device.

6.1.2 Reduced compartmental models (level 2)
Reduced compartmental models model the spatial details of 

neurons but still include key biophysical elements (e.g., voltage-
dependent currents, somatodendritic interactions). They represent a 
compromise between the high detail of Level I  (detailed 
compartmental) models and the computational simplicity of Level III 
(single-compartment) models. By keeping a limited number of 
compartments—often two or three—they provide more biological 
details than single-compartment approaches, yet they remain easier 
to analyze than fully detailed simulations (Herz et  al., 2006; 
Izhikevich, 2006).

6.1.3 Examples
 • Leaky integrate-and-fire (LIF) neuron model

Focuses on membrane leakage and spike generation with fewer 
parameters than more detailed models such as Hodgkin–Huxley 
(Hodgkin and Huxley, 1952).

 • Izhikevich neuron model
Uses a minimal set of equations to reproduce various firing 
patterns, making it more efficient than fully biophysical approaches.

 • Two-compartment models (soma + dendrite)
Divide a neuron into soma and dendrite (or further sections) to 
study phenomena such as homeostatic plasticity or binaural time 
difference detection in bipolar cells (Bush and Sejnowski, 1993).

 • Simplified dendritic tree models
Keep partial branch structures to model local dendritic processes 
without modeling every branch.

6.1.3.1 Key features of this group
 • Somatodendritic interactions

Allow partial modeling of how dendrites and soma exchange 
signals, influencing bursts, spikes, or oscillations (Tomko et al., 
2021; Bush and Sejnowski, 1993).

 • Calcium dynamics (when included)
Enable phenomena like stable firing rate switching or short-term 
memory without requiring an elaborate multi-compartment tree 
(Marcucci et al., 2018).
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 • Scalability and mathematical clarity
Compared to Level I models, these designs often scale better for 
network studies (e.g., cortical gamma or slow-wave oscillations), 
and are simpler to analyze for emergent behaviors (Close 
et al., 2014).

 • Task-specific computations
These models can capture how neurons perform behaviorally 
relevant computations at multiple timescales, linking neural 
structure to function.

6.1.3.2 Potential applications for brain implants

1. Sensory prostheses

Reduced complexity may support near real-time simulations of 
hearing or vision pathways, helping design implants that reflect some 
somatodendritic interactions. Yet they still demand more resources 
than single-compartment models, which can limit on-chip processing 
for very large sensory arrays.

2. Adaptive interfaces

By including calcium currents or partial dendritic structures, 
these models could adjust to patient-specific firing patterns or changes 
in neural state. However ongoing parameter tuning may require 
external computation, given implant hardware constraints.

3. Local circuit simulations

Modeling small or medium-sized networks could help predict 
how groups of neurons respond to stimulation, guiding more targeted 
interventions (e.g., in motor or cognitive prosthetics). While more 
feasible than Level I, simulating an entire cortical region in real time 
may still be beyond typical implant hardware capabilities.

6.1.3.3 Constraints
Though they need fewer resources than fully detailed 

compartmental models, these approaches still use more computational 
power than single-compartment designs (Bush and Sejnowski, 1993). 
Large-scale, real-time simulations in implant devices may prove 
difficult under such demands. For mid-scale tasks, however, they could 
deliver sufficient neural detail for certain network studies or adaptive 
interfaces, without causing excessive computational load.

6.1.4 Single compartmental models (level 3)
Single compartmental models represent each neuron as a point-

like unit and do not include the spatial details of dendrites or axons. 
They focus on how ionic currents govern subthreshold behavior and 
spike generation in a consolidated way, making them computationally 
efficient for large-scale or real-time simulations. Despite omitting 
dendritic or axonal structure, they often provide a useful quantitative 
look at how key variables—such as membrane voltage and ion channel 
states—interact to produce neural firing patterns (Koch, 1998).

6.1.4.1 Examples
 • Hodgkin–Huxley model

Considered the prototype for Level III. It concentrates on 
multiple ion channels in a single compartment, explaining 

subthreshold dynamics and spike initiation without spatial 
subdivisions (Hodgkin and Huxley, 1952).

 • Simple integrate-and-fire (if) model
Focuses on input integration and threshold-based spiking, with 
minimal parameters.

 • Leaky integrate-and-fire (lif) model
Adds a leak term to better reflect real neural membranes.

 • Theta neuron model
Uses phase variables to track spiking behavior under 
minimal assumptions.

 • FitzHugh–Nagumo model
Includes simplified equations that approximate the action 
potential mechanism, often for conceptual or educational use.

 • Izhikevich model (single-compartment form)
Although often considered in the “reduced compartmental” 
category, it can also be implemented in a single-compartment 
form for certain use cases giving a more realistic representation 
of passive membrane properties (Izhikevich, 2003).

6.1.4.2 Key features
 • Removing spatial structure

All dendrites and axons are lumped into one computational 
node, focusing on how combined ionic currents drive spikes. 
This distinguishes these models from Level I  and II, which 
include some morphological detail.

 • Quantitative understanding of dynamics
They clarify how membrane voltage, ion channels, and thresholds 
govern phasic spiking, bursting, or spike-frequency adaptation—
often through phase-plane or bifurcation analysis (Rinzel and 
Ermentrout, 1989).

 • Mathematical reductions
Systematic methods reduce or approximate more detailed models 
(like Hodgkin–Huxley) to an Integrate-and-Fire or resonate-and-
fire form, enabling analytical insight (Izhikevich, 2006).

 • Stochastic dynamics and noise
Ion channel noise or background synaptic inputs can be included, 
explaining variations in spike timing and how random 
fluctuations might affect signal reliability.

6.1.4.3 Potential applications for brain implants

6.1.4.3.1 Basic neural communication
Because these models avoid spatial complexity, they could process 

large numbers of neurons with minimal computational cost, fitting 
power-limited implant constraints (Dehghanzadeh et al., 2021). However 
the absence of dendritic or axonal structure means these models might 
not reflect certain detailed processes relevant to specific therapies.

6.1.4.3.2 Motor control implants
A lightweight design could be useful for decoding or controlling 

muscle activation patterns, potentially helping with real-time 
prosthetic limb control. Nevertheless adaptation or conduction delays 
that depend on neuron geometry are not represented, so precision in 
controlling multi-joint movements may be affected.

6.1.4.3.3 Large-scale population simulations
Integrating thousands of these neurons for cortical assemblies or 

multi-region models is more feasible than with Levels I or II, which 
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could be useful for broad network simulations within implant hardware. 
However, missing spatial interactions can reduce fidelity when studying 
phenomena that hinge on local dendritic integration or traveling waves.

6.1.4.3.4 Rapid network responses
Low overhead could support fast feedback loops for closed-loop 

seizure detection or adaptive deep brain stimulation. However, 
oversimplified stochastic elements and nonlinearities may affect 
accuracy in complex pathological conditions.

6.1.4.4 Limitations
Though single-compartmental models are widely studied, 

researchers occasionally discover unexpected behaviors. For instance, 
the standard Hodgkin–Huxley formulation might not fully explain 
every aspect of spike generation, and even slight additions or noise 
terms can lead to new details about spiking reliability or variability 
(Fang et al., 2021). They also cannot model dendritic computations like 
synaptic integration along branching processes, which is still a limitation 
of their speed and simplicity (Hendrickson et al., 2010; Brette, 2015).

6.1.5 Cascade models (group 4)
Also known as Level IV models in some classifications or neural 

encoding models for sensory information, cascade models focus on 
the conceptual side of neural encoding rather than the biophysical 
mechanisms inside single neurons. They treat sensory processing and 
other neural computations as a sequence of mathematical operations—
often linear filters, nonlinear transformations, and stochastic 
processes—that transform incoming signals into meaningful output. 
This stepwise approach is commonly applied to sensory systems (e.g., 
vision, audition) and is especially valuable for interpreting how 
neurons handle high-dimensional inputs in a feed-forward manner 
(Latimer et al., 2019; Meyer et al., 2017).

6.1.5.1 Examples
 • Linear cascade models

Often involve simple convolution or filtering steps to represent 
basic visual or auditory pathways.

 • Nonlinear cascade models
Extend linear versions by adding adaptive or more complex 

transformations, allowing for phenomena like contrast gain control or 
adaptive coding.

 • Linear–Nonlinear–Poisson (LNP) models
Include a spike generation process (Poisson) after a linear filter 

and a static nonlinearity, modeling how neural firing might 
depend on filtered stimuli (Zoltowski and Pillow, 2018; Neri, 2015).

 • Generalized linear models (GLMs)
Provide a flexible framework to fit input–output relationships from 

empirical data, incorporating spike history effects or refractoriness.
 • Hierarchical Max-Pooling models

Stack multiple filtering and pooling layers, modeling advanced 
visual processes (e.g., complex cells in the cortex).

6.1.5.2 Key features of this group
 • Conceptual level of computation

Emphasize the functional transformations neurons perform on 
inputs, rather than morphological details or ion channel 
distributions (Koch, 1998).

 • Mathematical primitives

Rely on operations like convolution (linear filters), rectification 
(nonlinear functions), and random processes (e.g., Poisson spiking) 
(Moskovitz et  al., 2018). For instance, adding a normalization 
nonlinearity to cascaded linear filters can capture motion processing 
in visual pathways, illustrating how these transformations go 
beyond simple linear filtering (Simoncelli and Heeger, 1998).

 • Fitting to experimental data
Model parameters are often obtained through regression or 
maximum likelihood methods (Pillow et al., 2008).

 • Applications beyond sensory pathways
Although widely used in vision or audition, they can also address 
how neurons adapt to different stimulus statistics or encode 
multiple features (Betzel et al., 2024).

6.1.5.3 Potential applications for brain implants
 1. Sensory restoration

Translating sensory signals through cascaded filtering and 
nonlinearity may let devices (e.g., cochlear or retinal implants) 
approximate natural coding (Zrenner, 2002; Wilson and 
Dorman, 2008; Fornos et  al., 2019). However, real neural 
circuits include feedback and context-dependent processing 
that simple cascades do not capture.

 2. Signal processing chains
Each stage can be  optimized independently, which might 
simplify the design of implant firmware that manages noisy or 
high-dimensional signals. But strongly sequential structures 
may not adapt well to dynamic conditions (and neuromorphic 
parallel nature) involving recurrent loops or feedback from 
other brain areas (Guo et al., 2024; Lebedev and Nicolelis, 2017).

 3. Adaptive tuning
Modularity of these models makes it easier to adjust individual 
layers to reflect patient-specific changes in neural responses. 
However, if the implant requires fully online adaptation, the 
computational overhead of re-fitting multiple parameters 
might be too high for hardware with strict power constraints 
(Dehghanzadeh et al., 2021; Fisher et al., 2023).

 4. Conceptual simplicity
Cascade-based frameworks can run efficiently on neuromorphic 
chips in feed-forward mode, aligning with the power constraints 
typical of implantable devices (Dehghanzadeh et al., 2021). Yet 
they might not handle recurrent or complex feedback-driven 
behaviors (e.g., certain cognitive tasks) within the same model 
architecture (Guo et al., 2024).

6.1.5.4 Limitations
Cascade models primarily handle forward-flow transformations, 

which may be insufficient for neurons deep in sensory pathways or 
for tasks that involve complex feedback loops. While they are well-
suited for discovering or modeling receptive fields and filter stages, 
they might generalize poorly across diverse stimulus conditions or 
dynamic contexts. Additional layers (e.g., recurrent or adaptive 
modules) or advanced model structures may be necessary to handle 
feedback mechanisms or strong interactions among distant neural 
populations (Almasi et al., 2022; Zhang et al., 2017).

6.1.6 Black box models (group 5)
Black box models concentrate on system-level input–output 

relationships, often through probability distributions such as 
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p(Response∣Stimulus). Rather than simulating a neuron’s internal 
biophysical processes, these frameworks focus on functional 
accuracy—how well the output matches observed data or desired 
performance (Saxena et al., 2012; Sheu, 2020). Because they do not 
require detailed morphological or mechanistic information, they can 
adapt to various conditions by learning directly from empirical data 
(Saadatinia and Salimi-Badr, 2024).

6.1.6.1 Examples
 • Input–output models

Characterize stimulus–response mappings from recorded data, 
with no aim to explain the neuron’s internal workings.

 • Neural network models
Aim to maximize performance on tasks like classification or 
regression, sometimes using large training datasets.

 • Support vector machines (SVMs)
Use margin-based optimization to separate classes or predict 
continuous outputs, staying agnostic about neuronal details.

 • Gaussian process models
Provide a probabilistic treatment of inputs and outputs, 
offering uncertainty estimates and flexible nonparametric fitting.

6.1.6.2 Key features of this group
 • Neglect of biophysical mechanisms

They intentionally bypass the ion channels, compartments, or 
morphological aspects of neurons, focusing solely on mapping 
from inputs to outputs (Karim et al., 2023).

 • Data-driven probability distributions
Often define the relationship p(R∣S) between response (R) and 
stimulus (S), sometimes relying on nonparametric methods that 
infer distributions directly from measurements (Huang, 2024).

 • Adaptability & neural efficiency
Useful for examining how operating points shift when input 
statistics change, or how the system evolves to maintain robust 
performance (Karim et al., 2023).

 • Functional outcomes
Emphasize results like error rates, decoding accuracy, or 
predictive power over explanations of how these results emerge 
biologically. However this is shifting in recent years toward more 
explainable models.

6.1.6.3 Applications in brain implants
 1. Functional goals

When the primary objective is to achieve a specific outcome—
for example, schizophrenia diagnosis—black box methods can 
deliver good performance without detailing internal neuronal 
mechanisms (Saadatinia and Salimi-Badr, 2024; Highton et al., 
2024). However, since these models do not rely on biological 
details, they may struggle to provide precise or fine-tuned 
stimulation patterns that align with actual neural processes.

 2. Rapid design and high-level control
Quick to train or configure, making them a practical choice for 
developing algorithms for prosthetics or brain–machine interfaces 
with minimal assumptions about the neuron-by-neuron 
architecture (Lebedev and Nicolelis, 2017). But it may require 
frequent retraining when faced with varied stimuli or changing 
patient conditions, which can be demanding on implant hardware 
making it more practical for software use so not on chip computing.

6.1.6.4 Limitations
Neuromorphic hardware often restricts how plasticity is 

implemented, limiting real-time learning for black box models. Real-time 
performance in a changing physiological environment demands adaptive 
algorithms, which can be difficult to support on-chip (Mayr et al., 2016). 
In practice, it could be more feasible to train networks offline, then deploy 
fixed weights on custom neuromorphic chips, achieving efficient 
inference but reducing in-situ adaptability (Merk et al., 2023).

6.1.7 Unifying models: fundamental code unit 
and brain code

The Fundamental Code Unit (FCU) and Brain Code (BC) 
frameworks provide a method for connecting low-level biological 
processes (e.g., ion channels, protein interactions) with high-level 
cognitive outputs (e.g., language, decision-making). They link 
detailed and abstract perspectives, describing how neural signals 
move from molecular chirality in neurotransmitters to fully formed 
mental activities in human cognition (Howard and Hussain, 2018; 
Howard et al., 2020; Isik et al., 2024).

6.1.7.1 Key features

 1. Higher-Order Abstractions
 a FCU is presented as an abstract code unit that relates basic 

biophysical events (like spikes or protein-driven signaling) to 
more advanced mental functions. This approach covers 
multiple scales, from neurochemical to behavioral.

 2. Four Principles of Brain Code
 a) Activation Thresholds: Includes phenomena such as action 

potential thresholds, Weber’s just-noticeable differences, 
and baseline neural firing cutoffs.

 b) Duration of the Signal: Considers how long a signal persists, 
influencing short-term loops and long-term patterns.

 c) Waveforms for Information Transfer: Addresses oscillatory 
or spike-based signals, including the influence of 
neurotransmitter chirality.

 d) Transduction Between Different Forms of Energy: Focuses 
on transitions such as ATP/ADP cycles and how chemical 
gradients become electrical impulses.

 3. Brownian Motion and Protein Dynamics
 a) Recognizes the stochastic nature of neurotransmission—e.g., 

in the ubiquitin–proteasome or autophagy–lysosome 
pathways—and how it affects signal consistency.

 4. Cumulative Cognitive Output
 a) Treats language and behavior as products of ongoing neural 

signals, showing how short-term electrical events connect 
to higher cognitive or emotional states (e.g., isomer-specific 
mood shifts).

 5. Stochastic Neural Signals
 a) Notes that spikes, channel gating, and synaptic release have 

random components, and that the ON/OFF unary math in 
FCU can incorporate these variations.

 6. Relation to Memory and Learning
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 a Connects with processes such as LTP (long-term potentiation), 
LTD (long-term depression), and ATP-related energy usage to 
account for extended neural plasticity in cognition.

 7. Unary Mathematics
 • Uses a ± coding approach to simplify neural signaling into an 

ON/OFF framework, designed for efficient implementation in 
computational hardware.

6.1.7.2 Applications for brain implant chips
1. Better signal decoding

By converting noisy or random neural activity into a unary code, 
implants may decode signals with improved consistency while staying 
within practical hardware limits.

2. Improved treatment of neurological disorders
Tuning stimulation parameters based on details like molecular 

chirality or activation thresholds could help devices manage 
conditions (e.g., Parkinson’s), adjusting activity patterns as the brain 
state evolves (Howard and Hussain, 2018).

3. Predictive modeling
Incorporating Brownian motion and stochastic synaptic events 

might allow early detection of cognitive or pathological shifts, 
enabling preemptive intervention.

4. Integrated data processing
Combining sensor inputs, linguistic data, and behavioral metrics 

within a unary-coded structure offers a more unified view of a patient’s 
neural and cognitive status (Howard and Hussain, 2018).

6.1.7.3 Limitations
Some limitations might include that parameters rely on in vitro 

data, raising questions about how well they generalize to in  vivo 
conditions. Moreover the models need robust methods for extracting 
relevant neural features and translating them to control mechanisms.

6.1.8 Combining models
While each modeling level has its own strengths—from the spatial 

detail of Detailed Compartmental Models to the high-level functionality 
of Black Box approaches—their components could possibly be unified 
on a single neuromorphic chip to address a plethora of brain implant 
needs, considering the chip’s power restrictions (Dehghanzadeh et al., 
2021; Qi et al., 2023). For real-time loops (e.g., motor control or seizure 
detection), Single-Compartment Models or Reduced Compartmental 
Models may handle essential dynamics under strict power and latency 
constraints, while Cascade Models can structure sensory signal flow in 
specialized stages (Ramezanian-Panahi et  al., 2022). Meanwhile, 
Fundamental Code Unit (FCU) and Brain Code (BC) frameworks can 
integrate higher-level or axiological factors for adaptive therapies (e.g., 
shifting stimulation patterns in response to cognitive changes) (Howard 
and Hussain, 2018). Where long-term plasticity is required, custom or 
STDP-based rules could let the system change stimulation over time as 
a patient’s neural state changes. A combination of parameters from 
various models is necessary for building effective on-chip computing for 
the brain implant (Bazzari and Parri, 2019).

One key challenge for brain implants is scaling from micro-level 
neuronal activity to macro-level outcomes—such as conscious arousal 
or sleep states—an aspect already explored by FCU and BC. Recent 

studies show how single-neuron biophysics and large-scale arousal states 
connect, demonstrating how microscopic spiking or bursting patterns 
can influence macroscale phenomena like wakefulness or anesthesia 
(Munn et al., 2023; McGinley et al., 2015). This highlights the need to 
design computational systems that merge compartmental or spiking 
neuron models with higher-level frameworks in neuromorphic designs, 
particularly for brain implants intended for adaptive real-time control 
across different brain states. In this way, researchers move beyond local 
neuronal or therapeutic effects to consider how large-scale behaviors 
might be altered—and the possible risks involved—with more research 
being conducted (Munn et al., 2023; Singh et al., 2025; Zotey et al., 2023). 
An alternative approach could be modeling the state of neural disease 
with a gradual progression toward a healthy model, allowing for 
controlled healing of neural matter.

Malfunction of these higher-level models (the formal information-
processing rules) or the underlying mechanisms (the neural signal 
transformations themselves) can similarly impact executive cognition, 
as recent study shows (Barack and Platt, 2016). When models fail to 
execute correctly, or when neural circuits (e.g., in medial prefrontal 
cortex) malfunction and misimplement those computations, the result 
may be  dysfunctional behavior or impaired cognition. For brain 
implants seeking to restore or enhance higher-order functions, it is 
important to consider not just how a desired model is defined, but also 
how the actual neuronal mechanisms implement it in real time.

6.2 Challenges of neurocomputational 
models on neuromorphic hardware

6.2.1 Complexity of neural dynamics simulation
Many neurocomputational models—particularly those simulating 

detailed neural activity like ion channels or synaptic integration—require 
significant computational resources (Hodgkin and Huxley, 1952; Koch, 
1998). Current neuromorphic hardware might lack the complexity or 
precision to manage these dynamics at scale, forcing simplifications that 
reduce fidelity (Schuman et al., 2017; Ward and Rhodes, 2022). This is 
especially problematic for brain implants, where accurate neural 
modeling is crucial for addressing pathologies. Different neuron types 
are determined by gene expression, their specific ion-channel 
complement, and the polarity of the intra- and extracellular environment 
connecting all parts of the cell. Ion channels can exhibit diverse 
timescales, voltage ranges, or states of inactivity, shaping how neurons 
respond to inputs and external modulation (Koch, 1998).

Designing neuromorphic interfaces that generate adaptable and safe 
electrical patterns is also challenging. While the brain can adapt to 
varied signals, correctly reproducing individual cell dynamics and 
modeling the bioelectrical environment might help lower the risk of 
immune responses (Lebedev and Nicolelis, 2006; Polikov et al., 2005; 
Fani et al., 2023). These implants must deliver stimuli with precisely 
defined amplitude and timing, adjusting to ongoing brain activity. 
Achieving this depends on understanding how different neural pathways 
contribute to sensory processing, cognition, and action, then using real-
time algorithms to interpret signals and convert them into suitable 
stimulation protocols (Contreras et al., 2024; Chiappalone et al., 2022).

6.2.2 Large-scale network architectures
The complexity of brain modeling remains high, and our current 

grasp of neural systems continues to evolve—especially regarding 
regeneration, adaptation, and large-scale network modeling. 
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Simplified models risk omitting key aspects of neural dynamics, 
reducing an implant’s adaptability over time as neurobiological 
knowledge advances (Pathak et  al., 2022). Meanwhile, current 
neuromorphic chips face practical limits on the number of neurons 
and synapses they can handle due to chip size, power usage, and 
interconnectivity challenges (Dehghanzadeh et al., 2021; Contreras 
et al., 2024). Modeling entire cortical areas may require scaling down 
model complexity or distributing workloads across multiple chips, 
which introduces latency and synchronization hurdles that can 
constrain real-time processing in implants (Stanslaski et al., 2012).

6.2.3 Scalability and power efficiency
Perhaps the most critical area of focus is developing 

neuromorphic chips that remain power-efficient while supporting 
high-complexity neural computations. This challenge is especially 
pressing in brain implants that demand battery-free solutions given 
limited battery life and the shortcomings of wireless power transfer 
in extending operational longevity (Dehghanzadeh et  al., 2021; 
Miziev et al., 2024). This issue is heightened by the fact that biological 
brains exhibit great efficiency that neuromorphic systems frequently 
fail to match at scale, leading to a trade-off between model complexity 
and battery life in implantable devices if on-device computing must 
run long-term without frequent recharging. This also raises concerns 
about long-term stability to maintain steady chip performance and 
avoid degradation, particularly for patients living with the implant 
for many years (Dehghanzadeh et al., 2021; Miziev et al., 2024).

6.2.4 Translation of models to hardware and new 
hardware design

A gap persists between theoretical neurocomputational models 
and practical neuromorphic chip implementations. Each model’s 
requirements for precision, timing, and connectivity may not align 
with architectures typically optimized for generalized SNN 
operations. Researchers are now exploring designs that more directly 
mirror biological neural systems—potentially using additional analog 
components for finer synaptic control, memory technologies that 
reflect biological processes (Zhang et al., 2020), or even xenobots 
(Kriegman et al., 2020), anthrobots, robots healing damaged tissues 
(Hutson, 2023), or other bio-hybrid solutions (Boulingre et al., 2023; 
Rochford et  al., 2019) as technology advances. Some are also 
investigating mind-simulation/uploading, where a patient’s brain 
state could be  modeled online, possibly modeling regeneration 
progression and adapting implants accordingly, such as in epilepsy 

(Jirsa et al., 2016; Watanabe, 2023). In many cases, custom-made chip 
designs—possibly unique to each patient (Singh et al., 2025)—might 
prove necessary, making off-the-shelf solutions insufficient and 
pushing up development costs for brain implants.

6.2.5 Need for a new complete neuromorphic 
pipeline

Developing a complete sensor–processor–stimulator pipeline is 
key for neuromorphic brain implants, as shown in Figure 2. Each 
component must be built specifically for neural use with possibly 
biocompatible materials and signal processing (Valle et al., 2024): 
the sensor interprets neural signals, the processor decodes and 
processes them in real time, and the stimulator generates precise 
patterns to modulate neural circuits based on the processed 
information (Stanslaski et  al., 2012; Chiappalone et  al., 2022). 
Neuromorphic bio-signal interfaces enhance this pipeline by 
enabling efficient EEG and ECG processing for real-time 
applications, such as decoding brain states or monitoring cardiac 
activity, though integrating these capabilities into a compact, 
low-power system is still a significant challenge (Bauer et al., 2019; 
Sharifshazileh et al., 2021; Li et al., 2024a,b).

7 Conclusion and next-generation 
brain implants

Addressing these issues requires the development of high-
performance, low-power neural signal processing algorithms with 
adequate compression capabilities, though this often involves 
navigating trade-offs between chip size and functionality.

7.1 Memory storage

Memory storage in neuromorphic hardware may someday replicate 
the brain’s own mechanisms for encoding, storing, and retrieving 
information, possibly through advanced materials, such as neuromorphic 
optical data storage enabled by nanophotonics (Lamon et al., 2024; Tait 
et al., 2019), FLASH memory, other NVM technologies (Mehonic et al., 
2024), or adaptable wire Creating truly effective neuromorphic systems 
requires a “brain code” that captures key biochemical and electrical 
dynamics while adapting to neural activity and plasticity (Valle et al., 
2024; Chiappalone et al., 2022). Research on cellular intelligence suggests 

FIGURE 2

An example of a neuromorphic pipeline for brain implants, starting with neural recording and progressing through event-driven processing, spiking 
neural network computation, and adaptive neuromodulation for closed-loop control.
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this code must surpass traditional neural models, incorporating 
bioelectrical signals that act as “software” guiding cellular behavior and 
even large-scale anatomical outcomes such as organ formation (Levin, 
2021). Such competencies and collective goals create a multi-scale 
architecture that implants must interpret and modulate. Yet even 
advanced neuromorphic technologies only partially capture these 
emergent properties—self-organization and goal-directed behavior. 
Success will hinge on fidelity and adaptability: model choices must 
respect synaptic plasticity, network connectivity, and biochemical 
responsiveness without disrupting the brain’s natural processes 
(Contreras et al., 2024; Rommelfanger et al., 2021).

7.2 Single spatial resolution and adverse 
effect

Implementing neuron-to-neuron modeling rather than 
stimulating a broader area may be important for achieving better 
therapeutic outcomes (Zhang et al., 2023; Topalovic et al., 2023; 
Campbell et al., 2024). ETH Zurich researchers have found that 
neuroprosthetics work better when using signals inspired by nature, 
proving superior to time-constant stimulation in the case of leg 
amputees while being less demanding for the brain (Valle 
et al., 2024).

Although it may seem conceivable that the brain could adapt to 
any kind of electric signal or pattern, cells react to mechanical 
properties in their surroundings—including matrix stiffness and 
external forces—and targeting entire clusters instead of a single 
dysfunctional cell can trigger unwanted reactions (Kumosa, 2023; Su 
et al., 2024; Davidson et al., 2021; Ladoux and Mège, 2017; Alberts 
et  al., 2002). Broad stimulation risks overlooking the collective 
intelligence of cellular networks, where cells communicate via 
bioelectrical and molecular signals to achieve specific goals (Levin, 
2021). Disrupting this collective behavior could amplify adverse 
effects by ignoring the emergent dynamics that govern tissue integrity 
and function. Interconnected cells influence each other’s behavior, 
including through extracellular and systemic signaling. As a result, 
stimulating an entire group can amplify the release of harmful 
molecules from dysfunctional cells—compromising tissue integrity—
or trigger systemic immune responses, potentially leading to 
inflammation or hypersensitivity disorders. It may also cause 
therapeutic effects to lose selectivity or become counterproductive if 
normal cells are affected, but more research is required to further 
confirm this (Su et al., 2024; Hegade and Rashid, 2024; Kubelt et al., 
2021; Alberts et  al., 2002). Moreover, the potential impact of the 
cerebral vascular network when designing and implanting devices 
should be taken into account—not only during the implant’s design 
but also as a potential source of noise or fluctuation in signal recording 
(Kozai et al., 2014).

 1. Neighboring cell effects
Neighboring cells often evaluate each other’s fitness through 
mechanisms like “fitness fingerprints,” where less fit cells are 
targeted for elimination by their healthier neighbors. 
Stimulating all cells in a group could disrupt this balance and 
potentially enhance the survival of pathological cells or 
suppress the natural elimination of damaged ones (Madan 
et al., 2019; Colom et al., 2020; Rao et al., 2012).

 2. Release of toxic substances
When dysfunctional cells are stimulated, they may release 
harmful substances such as reactive oxygen species or 
inflammatory signals, which can damage surrounding 
normal cells. For example, dying neurons release 
neurotoxic factors that harm nearby neurons, and 
preventing this through targeted interventions can 
potentially protect the group (Rao et al., 2012; Lee et al., 
2010; Block and Hong, 2005).

 3. Immune system activation
Broad stimulation may inadvertently activate immune 
responses, such as T-cell hypersensitivity reactions. These 
reactions can lead to systemic effects like inflammation or 
tissue damage, as seen in drug-induced hypersensitivity 
reactions mediated by off-target immune receptor interactions 
(Pichler et al., 2015; Adam et al., 2010; Wuillemin et al., 2022).

 4. Off-target effects
Stimulating a group of cells could result in unintended 
activation of nearby normal cells, leading to off-target effects. 
For instance, with the simultaneous intake of drugs, 
interactions with non-target receptors or proteins can cause 
unpredictable side effects, including immune-mediated adverse 
reactions (Adam et al., 2010; Wuillemin et al., 2022).
Future advancements must decode cellular 
communication—understanding collective goals and 
incorporating multi-scale, non-invasive approaches to 
achieve full integration with the brain’s complex 
intelligence and architecture. This shift, potentially 
through biohybrid solutions or enhanced neuromorphic 
models, requires further studies to bridge the gap between 
current technology and the brain’s capabilities. More 
research needs to be done to study the effects of targeted 
neuromorphic stimulation and potential adversarial 
effects of large surface stimulation, particularly in light of 
cellular communication and collective biological 
intelligence for next-generation implants.
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