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Impaired brain function is restored following injury through dynamic processes

that involve synaptic plasticity. This restoration is supported by the brain’s

inherent modular organization, which promotes functional separation and

redundancy. However, it remains unclear how modular structure interacts

with synaptic plasticity to define damage response and recovery efficiency.

In this work, we numerically modeled the response and recovery to damage

of a neuronal network in vitro bearing a modular structure. The simulations

aimed at capturing experimental observations in cultured neurons with modular

traits which were physically disconnected through a focal lesion. The damage

reduced the frequency of spontaneous collective activity events in the cultures,

which recovered to pre-damage levels within 24 h. We rationalized this recovery

in the numerical simulations by considering a plasticity mechanism based on

spike-timing-dependent plasticity, a form of synaptic plasticity that modifies

synaptic strength based on the relative timing of pre- and postsynaptic spikes.

We observed that the in silico numerical model effectively captured the decline

and subsequent recovery of spontaneous activity following the injury. The

model supports that the combination of modularity and plasticity confers

robustness to the damaged neuronal network by preventing the total loss of

spontaneous network-wide activity and facilitating recovery. Additionally, by

using our model within the reservoir computing framework, we show that

information representation in the neuronal network improves with the recovery

of network-wide activity.
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spiking neural network, spike timing dependent plasticity, cultured neuronal network,
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1 Introduction

Brain injury impairs crucial brain functions, including
cognition, memory, and higher-level executive functions (Walker
and Tesco, 2013). Although injuries may temporarily affect large
areas of the brain, these functions are often restored spontaneously
or through rehabilitation within a few months (Chen et al., 2010;
Christensen et al., 2008; Edlow et al., 2021; Murata et al., 2015;
Nudo, 2013). Restoration of neuronal activity is central to the
recovery of brain function, a process that has been extensively
investigated in vivo (Fukui et al., 2020) and in vitro (Ayasreh et al.,
2022; Teller et al., 2020). This restoration is believed to be mediated
by network-wide reorganization of functional connections
through synaptic plasticity. Clinical and computational studies
have indicated that spike-timing-dependent plasticity (STDP),
a form of Hebbian synaptic plasticity, is a potential mechanism
for restoring damaged neuronal networks (Bunday and Perez,
2012; Gabrieli et al., 2020; O’Neill et al., 2023). Taken together,
these findings suggest that synaptic plasticity restores neuronal
activity, which in turn leads to the recovery of higher brain
function.

In addition to plasticity, inherent network topological traits
are highly involved in injury response and recovery (Arnemann
et al., 2015; Boroda et al., 2021). Recent brain connectome
analyses have revealed that the brain network evolutionarily
conserved a modular structure in which densely connected
neuronal populations (modules) are relatively sparsely connected
to other modules (Lee et al., 2016; Lynn and Bassett, 2019;
Meunier et al., 2010). The coexistence of highly clustered
modules and shortcuts between modules facilitates redundancy,
ensuring resilience to failure by diversifying information flow,
thereby granting robustness to network functions. For example,
animal studies have shown that modularity of the frontal
cortex increases task feasibility under partial perturbations
(Chen et al., 2021). Furthermore, modularity is advantageous
for functional recovery, as patients with higher modularity of
the cortex exhibit greater improvements in executive function
during cognitive training after brain injury (Arnemann et al.,
2015). However, it remains unclear how the underlying modular
structure of the neuronal network combines synaptic plasticity,
prominently STDP, to lay out efficient damage response and
recovery.

In this study, we conducted experiments on cultured neurons
and a spiking neural network (SNN) model, both of which
were designed with a modular organization, to examine their
response to damage. We created modular neuronal cultures
using topographically modulated substrates shaped as parallel
tracks, which effectively guided and constrained connectivity along
tracks (Montalà-Flaquer et al., 2022) and later inflicted focal
damage using a scalpel. Immediately following injury, the rate
of spontaneous neuronal activity was substantially reduced but
recovered to its original level after 24 h. Next, an SNN model was
devised, and its parameters adjusted to align with experimental
observations, resulting in a similar reduction and recovery of
network activity after damage. The constructed SNN was then used
to investigate the effects of damage at different module locations,
and to examine the response to damage in networks without
a modular structure. The in silico replication of the damaged

networks suggested that the underlying modular organization helps
preserve overall network organization upon damage, resulting
in faster recovery compared to non-modular networks. Finally,
the recovery of neuronal activity was conceptually linked to the
recovery of brain function using a spoken digits classification task
within a reservoir computing framework. Our results underscore
the interplay between network architecture and plasticity in
enabling the restoration of activity and basic functionality following
damage, providing new insights into recovery mechanisms in living
neuronal assemblies.

2 Materials and methods

2.1 Fabrication of engineered
topographical substrates

Polydimethylsiloxane (PDMS) topographical substrates
(Montalà-Flaquer et al., 2022) were used to fabricate cultured
neuronal networks with modular characteristics. The substrates
were prepared using a specially designed mold made of fiberglass
and copper (2CI Circuitos Impresos, Spain) to form a two-layer
structure. The bottom layer consisted of a uniform fiberglass sheet
2 mm thick, while the top layer contained copper motifs 70 µm
high, shaped as parallel stripes 300 µm wide, separated by 300 µm
fiberglass gaps, and extending the entire length of the mold. In the
remainder of this paper, we refer to this pattern as “tracks.”

PDMS (Sylgard 184, Ellsworth Adhesives) was poured onto
the fiberglass-copper mold as a mixture of 90% base and 10%
curing agent, and cured at 90◦C for 2 h. The PDMS cast was
then gently peeled off to form a two-level substrate, which
was the negative of the original mold, with PDMS valleys
corresponding to copper imprints and crevices to the fiberglass,
respectively. The PDMS sheet was perforated using a stainless-
steel punch (Bahco 400.003.020), resulting in disks 6 mm in
diameter and 1 mm in thickness. The topographical “tracks”
pattern on the surface contained 300 µm wide modulations
extending across the entire disk. Conceptually, each track gave
rise to a module in which neurons were strongly connected
along the tracks and weakly connected across them. Before
culturing, the PDMS disks were cleaned with ethanol, dried,
and mounted on clean coverslips (#1 Marienfeld Superior;
13 mm diameter). One or two PDMS disks were placed on
each coverslip, and the PDMS-glass assembly was sterilized
in an autoclave (Selecta 4002515). Sterilization increased the
bonding between the PDMS and the glass surface such that
the PDMS remained attached to the glass throughout the
lifespan of the culture.

2.2 Cell culture and GCaMP6s viral
transduction

Primary neurons derived from rat embryonic cortices on
days 18–19 were used in all experiments. Animal experiments
and tissue manipulations were conducted following the approval
order B-RP-094/15-7125 from the Ethics Committee for Animal
Experimentation of the University of Barcelona (CEEA-UB).
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Rats were provided by the Animal Farm of the University
of Barcelona. Brain dissection was performed in ice-cold L-
15 medium (Gibco), and cortical tissue was mechanically
dissociated by pipetting. Neurons were then transferred to a
“plating medium” [90% Eagle’s minimum essential medium (MEM,
Invitrogen), 5% horse serum (HS, Invitrogen), 5% bovine calf
serum (Invitrogen), 1 µL/mL B27 (Sigma)]. Before seeding the
neurons, the PDMS topographical surfaces were coated overnight
with a solution of 20 µg/mL poly-L-lysine (PLL; Sigma-Aldrich)
in borate buffer. Neurons were seeded onto these surfaces to
create cultured neuronal networks at a density of approximately
400 neurons/mm2. On day in vitro (DIV) 1, neurons were
transduced with the genetically encoded fluorescence calcium
indicator GCaMP6s (AAV9.Syn.GCaMP6s.WPRE.SV40, Addgene)
under the Synapsin 1 promoter, so that only mature neurons
(and not other cells such as glia) expressed the fluorescence
indicator. On DIV 5, the “plating medium” was replaced
with a “changing medium” (90% MEM, 10% HS, 0.5% 5-
Fluoro-2-deoxyuridine) to limit glial growth. On DIV 8, the
medium was switched to “final medium” (90% MEM and 10%
HS), which was periodically refreshed every 3 days. Cultured
cells were incubated at 37◦C, 5% CO2, and 95% humidity
(Memert INCO2-246).

2.3 Monitoring of neuronal activity

Wide-field calcium imaging of the PDMS topographical
cultures was performed using an inverted fluorescence microscope
(Zeiss Axiovert 25C, Zeiss GmbH) equipped with a high-speed
camera (Hamamatsu Orca Flash 4.0v3, Hamamatsu Photonics)
and a fluorescent light source (mercury vapor arc lamp, Osram
GmbH) at 12–13 DIV. The fluorescence image series was recorded
at 50 frames/s, 8-bit grayscale levels, with an image size of
1,024 × 1,024 pixels. The recordings covered a field of view of
7.1× 7.1 mm2, which was achieved by combining a 2.5× objective
with an optical zoom, allowing observation of the entire 6 mm
diameter culture. Recordings of spontaneous activity were 15 min
long and were controlled through the Hokawo 2.10 software
(Hamamatsu Photonics). During recordings, the cultured neuronal
networks were placed in a glass microincubator (Ibidi GmbH),
which maintained the same environmental conditions as the
standard incubator. The temperature was set to 25◦C to facilitate
spontaneous activity.

2.4 Induction of damage in the neuronal
cultures

The focal injury was induced through a scalpel on DIV 12−13
by inflicting a 4-mm long straight incision on the neuronal
population in the 6 mm diameter PDMS. The protocol for
monitoring network behavior through a complete experimental
“damage sequence” was as follows: spontaneous activity was
recorded for 15 min before injury. Immediately after injury,
neuronal activity was recorded for 30 min; and thereafter for 15 min
at quasi-logarithmic time points post-injury, specifically at 2, 6, and
24 h post-injury (Ayasreh et al., 2022).

2.5 Activity quantification

On the images of acquired recordings, a series of
150 × 150 µm2 square regions of calcium intensity data
were defined as regions of interest (ROIs), resulting in a
total of 1,400 regions. Spike trains of neuronal activity were
extracted from each region by first generating a time series
of mean fluorescence intensity within each ROI and then
by detecting inferred spiking events using a Schmitt-trigger
filter (lower threshold = 0.4 and upper threshold = 0.8)
(Soriano, 2023). ROIs with spike rates below 0.01 Hz were
considered to contain no active cells and were excluded from the
analysis.

Neuronal activity comprised either individual activation
of ROIs or collective events in which several ROIs displayed
coordinated activity within a short time window. These
coordinated events were termed network bursts and reflect
the synchronized and rhythmic activity of neuronal populations
in vitro (Wagenaar et al., 2006; Yamamoto et al., 2016; Pasquale
et al., 2017). In our study, network bursts were considered
significant when the number of participating ROIS within a 200 ms
window exceeded 20% of the total number of ROIs, as below this
fraction a burst could not be easily distinguished from random
background activity. The number of bursts during a recording
and their amplitudes (network fraction) were used to quantify
neuronal culture activity before and after injury, as well as during
recovery.

2.6 Effective connectivity

Causal interactions between pairs of active ROIs were inferred
using generalized transfer entropy (TE) (Stetter et al., 2012; Tibau
et al., 2020; Montalà-Flaquer et al., 2022). Given the spike trains of
a pair of ROIs X and Y , with X = xm and Y = ym, the amount of
information transferred from ROI Y to X is given by:

TEY→X =
∑

p(xm+1, x(k)m , y(k)m )log2

p
(

xm+1

∣∣∣ x(k)m , y(k)m

)
p
(

xm+1

∣∣∣ x(k)m

) ,

(1)
where m is a discrete-time index and k ( = 2) is the Markov order.
For inference, the 15-min-long spike train of each ROI was built
using a time bin of 20 ms, with data containing either “1” for
the presence of a spike or “0” for its absence. Transfer entropy is
a nonlinear and nonsymmetric measure in X and Y (TEY→ X 6=

TEX→ Y), allowing us to estimate causal interactions, i.e., effective
connectivity, in the network. Significance was established by first
normalizing the distribution of the TE values using a z-score
transformation:

zY→X =
TEY→X − 〈TE〉

σ
, (2)

where 〈TE〉 is the mean value of all TE scores and σ their
standard deviation, and then by setting a threshold zth = 2
so that zY→X = 1 ∀zY→X ≥ zth, and zY→X = 0 otherwise.
The final adjacency matrix Z of the effective connections was
directed and binary.
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2.7 In silico neuron model

The Izhikevich model was used in this study (Izhikevich, 2003)
since it accurately reproduces the spiking behavior of cultured
neurons with sufficient biological plausibility (Orlandi et al., 2013).
The model is described by the following equations:

dv
dt
= 0.04v2

+ 5v+ 140− u+ IE
+ II
+ Iin,

du
dt
= a

(
bv− u

)
,

if v ≥ vpeak, then

{
v ← c

u ← u+ d,

(3)

where v is the membrane potential, u is the recovery variable,
IE is the excitatory synaptic input, II is the inhibitory synaptic
input, and Iin the external current. During spontaneous activity, an
external current was absent, indicating that Iin = 0. The membrane
potential was reset when it exceeded vpeak = 30 mV, at which point
an action potential (a spike) was recorded for that neuron. The
parameters a, b, c, and d determine the dynamic characteristics of
the modeled neurons. In the present study, the simulated neuronal
networks contained 80% excitatory and 20% inhibitory neurons.
For excitatory neurons, the parameters were set as [a, b, c, d] = [0.02,
0.2,−65.0, 8.0], whereas for inhibitory neurons they were set as [a,
b, c, d] = [0.1, 0.2,−65.0, 2.0].

2.8 In silico network generation and
infliction of damage

Neurons were randomly positioned in a homogeneous manner
within a circular area of 3 mm in diameter, with a density
of 400 neurons/mm2, resulting in approximately 2,800 neurons.
Following the method of Orlandi et al. (2013), dendrites were
modeled as circles centered on each neuronal soma with a radius of
150 µm, while axons were described through a growth process as
follows. For each axon, its maximum length ` was first determined
by sampling from a Rayleigh distribution with an average length of
〈`〉 = 1.1 mm. Then, segments of 0.1 mm in length were placed
in a concatenated manner along a pseudo-straight path, such that,
at each growing step, a new axon segment slightly deviated from
the direction of the previous one by an angle θi, according to the
following probability:

p(θi) =
1√

2πσ2
θ

exp

(
−
(θi − θi−1)

2

2σ2
θ

)
, (4)

where i represents each growing step, and σθ was set to 5.73◦

(0.1 rad). The effect of PDMS on the development of the
neuronal culture was modeled following (Houben et al., 2025). To
account for the PDMS modulations, present in the living neuronal
networks, virtual parallel bands 0.2 mm wide were considered for
the “crevices” of the PDMS, which were separated by 0.3 mm wide
“valleys.” These bands acted as obstacles that interfered with the
axonal growth, such that axons crossed from top to bottom with
a 50% probability (Pdown in Figure 1C) and from bottom to top
with a 5% probability (Pup). Whenever an axon failed to cross,

it was deflected and continued to grow parallel to the obstacle
wall. Simulations also included “control” scenarios with no virtual
bands to investigate the impact of spatial constraints on network
dynamics.

In both the “control” and “tracks” scenarios, a connection
between neurons i→ j was established whenever the axon of
neuron i crossed the area covered by the dendritic tree of neuron j
with a 20% probability. The resulting binary structural connectivity
matrix A = {aij} (1 for the presence of a connection and 0
otherwise) was then used to generate a new matrix W = {wij} that
preserved the connectivity relationships but incorporated weights.
The specific values of wij are described in section 2.10.

To model damage in the in silico networks, a straight line
was defined as a reference in the center of the simulated
culture, placed horizontally with a length of 1.5 mm (half
the diameter of the network). Subsequently, all connections
crossing this line were set to 0 in the connectivity matrix A.
Additionally, neurons whose axons were severed due to damage
were considered dead (to mimic axonal transection) and excluded
from further membrane potential updates during the simulation
of the dynamics.

2.9 Synaptic model

The numerical simulations utilized the following synaptic
model, which is characterized by an exponential decay of induced
postsynaptic membrane currents:

dIE
j (t)

dt
= −

IE
j (t)

τE
+

∑
i∈Exc

wji
∑

k

δ
(

t − (tk
i + dij)

)
+ ξ

∑
p

δ
(

t − tp
j

)
,

dII
j (t)

dt
= −

II
j (t)

τI
+

∑
i∈Inh

wji
∑

k

δ
(

t − tk
i

)
.

(5)

In this model, j is the postsynaptic neuron index, tk
i the time

of the k-th somatic spike of presynaptic neuron i, and δ(·) the
Dirac delta function. The set Exc refers to the excitatory neurons,
and Inh refers to the inhibitory neurons. The average excitatory
weight, wE = 〈wE

ij〉 can be modified to alter the capacity of the
network to display synchronized activity events (network bursts).
The parameters τE and τI account for the time constants of
current loss and were set to τE = 5 ms for excitatory synapses and
τI = 20 ms for inhibitory ones. Additionally, axonal conduction
delays dij on excitatory connections were uniformly distributed
in the range of [0, 5] ms, while those on inhibitory connections
were fixed to 1 ms. The total excitatory and inhibitory input
onto a neuron, IE and II , respectively, was the sum of synaptic
currents from incoming input connections. Additionally, the target
neuron j receives Poisson noise in the form of spontaneous
synaptic inputs at an average rate of 1 Hz. The quantity tj

p

denotes the time of the p-th Poisson spike input to neuron j, and
ξ is the noise amplitude. The higher the frequency or strength
of the Poissonian noise, the higher the capacity of the network
to spontaneously activate, either at a single neuron level or as
collective network burst.
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FIGURE 1

Schematic pipeline of the experimental and numerical approaches. (A) Primary cortical mouse neurons were cultured on an engineered substrate
shaped with PDMS topographical modulations. The topographical substrate was a 6-mm-diameter, 1-mm-thick disk. Its surface featured 70
µm-high parallel stripes, each 300 µm wide and spaced 300 µm apart. A bright-field image of a prepared neuronal culture is shown on the right.
Network structure under the same culture conditions was previously validated by immunostaining (see Montalà-Flaquer et al., 2022). (B) Damage
was applied to the culture with a scalpel, creating a wound approximately 4 mm long (blue box) at day in vitro 12–13. Spontaneous activity was then
recorded using calcium imaging just before the damage and at preset time points: immediately after the damage and at 15 min, 2 h, 6 h, and 24 h
post-injury, to monitor changes in activity levels and other properties. (C) In the in silico modeling, an axon growth model was used to replicate the
structure of the cultured neuronal networks. Pup and Pdown represent the probability that an axon crosses the patterned bands upwards or
downwards, respectively, and are set to 5 and 50%. Then, a spiking neural network model was initialized, and synaptic weights were adjusted using
STDP over 72 h. Injury was applied in the same manner as in the experiments, and network activity was evaluated by simulating STDP again at the
same time points as in the cultured experiments. Scale bars in (A,B) are 1 mm. Cartoons in (A,B) were created with BioRender.com.

2.10 Spike-timing-dependent plasticity

The STDP model (van Rossum et al., 2000; Rubin et al., 2001;
Gütig et al., 2003) is based on a phenomenon in which the strength
of synaptic weight changes depending on the time difference
between the firing of pre-synaptic and post-synaptic neurons. This
is described mathematically by the following set of equations:

wij ← wij + 1wij,

1wij =

A+
(
wij
)

exp
(
−
1tij
τ

)
(1tij > 0)

A−
(
wij
)

exp
(
1tij
τ

)
(1tij ≤ 0)

,
(6)

where wij is the synaptic weight from neuron i to j and 1t = tj −

ti − dij the time difference between the firing of pre-synaptic
neuron i and post-synaptic neuron j. τ is a constant set to 20 ms
that accounts for the characteristic time for the strengthening or

weakening of a connection. A+
(
wij
)

and A−
(
wij
)

are functions of
wij (van Rossum et al., 2000; Rubin et al., 2001; Gütig et al., 2003)
given by:

A+
(
wij
)
= η+

(
1−

wij

wmax

)
,

A−
(
wij
)
= η−

(
wij

wmax

)
,

(7)

where η+ and η− are learning constants, set to 0.1 and −0.12,
respectively. The wmax is the maximum value of the synaptic
weight and is set to 6.8 unless otherwise specified. With A+

(
wij
)

and A−
(
wij
)

set in this way, the average value of synaptic
weights is approximately ŵ = wmax

η+
η+−η−

. Since only the
connection strengths between excitatory neurons were updated,
all other connections were set to: wEI = ŵ for excitatory-to-
inhibitory connectivity, wIE = −ŵ for inhibitory-to-excitatory, and
wII =−ŵ and for inhibitory-to-inhibitory. Nearest-neighbor spikes
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only contributed to modifying weights on plastic connections
(Izhikevich and Desai, 2003; Morrison et al., 2008).

2.11 Computation of global efficiency for
structural and effective networks

Network-wide connectivity of the in silico, weighted synaptic
connectivity matrices W = {wij}, before and after injury, was
quantified by means of the global efficiency Eglob (Latora and
Marchiori, 2001; Onnela et al., 2005; Fagiolo, 2007; Rubinov and
Sporns, 2010) as:

Eglob =
1

N(N − 1)

∑
ij

1
lij
, (8)

where N is the number of nodes in W, and lij is the shortest
path length between nodes i and j, obtained from all possible path
lengths Lij through Dijkstra’s algorithm. Lij was computed from the
weighted connectivity matrix W as:

Lij =

{
wmax

wij
if wij 6= 0,

∞ otherwise.
(9)

We note that Lij transforms weights into connection lengths with
the property that stronger weights correspond to shorter path
lengths, increasing global efficiency.

Similarly, for the computation of global efficiency based on the
TE-derived effective connectivity matrices, the path length Lij was
calculated as:

Lij =

{
TEmax
TEi→j

if TEi→j > 0,

∞ otherwise,
(10)

where TEi→j represents the transfer entropy values prior to
z-score normalization, and TEmax is the maximum value of these
unnormalized transfer entropy values observed across all time
points of a given damage sequence.

2.12 Normalized mutual information

NMI is a measure of the similarity between two partitions
(Alotaibi and Rhouma, 2022) and was used to quantify the
differences in the community structure of the synaptic matrix W
or effective connectivity matrix Z before and after damage:

NMI(C, C
′

) =

−2
∑

c∈C
∑

c′∈C′
∣∣∣c ∩ c

′
∣∣∣log( |c∩c′|

|c|
∣∣∣c′ ∣∣∣ )∑

c∈C |c| log( |c|N )+
∑

c′∈C′
∣∣c′ ∣∣ log(

∣∣∣c′ ∣∣∣
N )

, (11)

where N is the total number of neurons, and C is the best partition
of the matrix (either W or Z), computed through the Louvain
algorithm (Blondel et al., 2008). |c| and |c’| denote the number
of neurons in the communities c and c’ that belong, respectively,
to partitions C and C’. |c ∩ c′| indicates the number of neurons
in the intersection of c and c′. The greater the similarity in
community partitions between two conditions, the higher the NMI.
In the present work, NMI was used to compare the similarity in
community structure between pre- and post-injury networks, with
NMI = 1 indicating identical structure.

2.13 Reservoir computing

The reservoir computing numerical implementation comprised
an input layer, a reservoir layer, and an output layer. Input signals
were spoken digits from the TI-46 dataset (Liberman et al., 1993).
The spoken digits were first converted to a 78-channel cochleagram
using Lyon’s passive ear model (Slaney and Lyon, 1993). The
cochleagram was then normalized to a maximum value of 1. The
reservoir layer consisted of a spiking neural network, with 5% of
the total neurons receiving signals from the input layer. The signals
delivered to each of these neurons were generated by summing two
randomly selected channels of the 78-channel cochleagram. This
input was then multiplied by the averaged synaptic weight ŵ and
added to Iin in Eq. (3). During the task, the updating of synaptic
weights was stopped. The reservoir state x(t) was constructed from
a subset of 5% of the neurons in the network, but different from the
subset that received the inputs, according to the following equation:

dxi(t)
dt

= −
xi (t)
τx
+ xstep

∑
k

δ
(

t − tk
i

)
, (12)

where ti
k is the time of the k-th spike of neuron i. The time constant

τx was set to τx = 1 s, and xstep was set to 0.1. The output y(t) was
calculated as:

y (t) = Woutx (t) , (13)

where Wout is the output weight matrix, which was obtained using
ridge regression during the training phase as:

Wout = ŶXT
(
XXT
+ λI

)−1
, (14)

where X represents the reservoir state and was constructed by
horizontally concatenating x(t) from the start of the first trial
to the end of the last trial. Each trial consisted of an input of
a spoken digit, followed by a 10-s output period. The matrix Ŷ
represents the target signal and was created by concatenating ŷ(t),
a target vector, where the element corresponding to the correct
label is set to 1 for 2.5 s following each stimulus onset and zero
otherwise. The λ ( = 1) is the regularization coefficient, and I is an
identity matrix. The training dataset included 10 distinct samples
of each spoken digit labeled as “zero,” “one,” and “two” from the
speaker identified as “f1.” The test dataset was identical to the
training dataset and was used to examine the loss and recovery
of function due to damage. The estimated output was obtained
from y(t) as argmaxi

[∑tk+1t
t = tk

yi(t)
]

, where i is an element of the
output layer, tk the onset of the k-th input, and 1t the target
duration (set to 2.5 s). Accuracy was evaluated as the fraction of
correct estimates.

3 Results

We investigated damage in neuronal networks and numerically
explored the interplay between modularity and plasticity in
promoting recovery. The results below are organized as
follows. Section 3.1 provides an overview of the experimental
design and describes the damage and recovery observations
in both the cultured neuronal networks (in vitro) and the
spiking neural network (SNN, in silico). Section 3.2 focuses on
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the numerical exploration of synaptic weight changes upon
network damage and elucidates on the capacity of STDP
to promote network reorganization and recovery in silico.
Section 3.3 further utilizes the in silico model to investigate
the dependence of the damage and recovery processes on the
location and size of the injury, as well as the effect of modular
architecture. Finally, section 3.4 integrates the in silico model
into a reservoir computing framework to demonstrate that
information processing capability is recovered following the
recovery of the network.

3.1 Self-organized recovery after injury in
cultured and spiking neuronal networks

We prepared cultured neuronal networks with a modular
structure by growing rat primary neurons on topographical PDMS
substrates as described previously (Montalà-Flaquer et al., 2022;
Figure 1A). Crevices and valleys of the PDMS surface repeat in one
direction, forming parallel tracks. There were approximately 10,000
neurons on a 6 mm diameter PDMS culture, and their behavior
was monitored using calcium fluorescence imaging. The cultured
neuronal networks were damaged at DIV 12 or 13 using a scalpel in
a direction transverse to the PDMS tracks (Figure 1B). Subsequent
recovery of neuronal activity was measured immediately after
injury and at 15 min, 2 h, 6 h, and 24 h later. To mimic the
experimental design, an SNN model was created to understand the
synaptic and network mechanisms of the recovery process of the
cultured neuronal network (Figure 1C). Network connectivity was
modeled by simulating the growth process of nerve axons on a
substrate that incorporated experimental-like parallel modulations,
effectually shaping a modular network. The created neural
network models were initialized and simulated with STDP for 72
simulated hours to settle all transients in the weight distribution.
Then, the network model was damaged similarly to the culture
experiments.

Figure 2A shows fluorescence images of representative cultured
neuronal networks before and after damage. Neuronal activity
for each recording was extracted from the average fluorescence
intensity of 1,400 ROIs that covered the culture area (see
Supplementary Figure S1). The cultured neuronal network
exhibited spontaneous activity characterized by collective quasi-
synchronous events (network bursts). Such a bursting behavior
was observed both before and after damage (Figure 2B); however,
network burst frequency was reduced immediately after damage.
Effective connections were computed from firing patterns using
transfer entropy, and functional communities were evaluated.
These communities revealed groups of neurons that interacted
more strongly within their groups than with the rest of the
network.

As shown in Figure 2C, the spatial organization of the detected
communities changed substantially throughout the network before
and after injury (see Supplementary Figure S2). Before damage, the
functional communities were aligned along the “tracks” pattern,
indicating that the substrate’s topographical modulation facilitated
the formation of the communities. Such alignment was lost
immediately after damage, suggesting that the local injury caused
long-range alterations. The similarity of the community structure

before and after injury, quantified through the normalized mutual
information (NMI), decreased after damage and remained low even
at 24 h post-injury (Figure 2D). Interestingly, however, the cultured
neurons reorganized their functional communities differently
from the pre-damage communities, recovering the distribution of
connection angles after 24 h (Supplementary Figure S2B).

Since activity in neuronal cultures is characterized by network
bursts, changes in the frequency of such bursting were used as
the first approach to quantify the effect of damage. As shown
in Figure 2E, the “burst count ratio,” that is, the ratio of the
number of bursting events relative to pre-damage conditions,
substantially dropped immediately after injury. Upon recovery, the
ratio approached pre-damage levels or even exceeded them 24 h
after injury.

To understand the synaptic mechanisms underlying this
recovery, we utilized an SNN model, simulating a population
consisting of 80% excitatory and 20% inhibitory neurons, where
excitatory coupling was modified by STDP (Figure 2F). Raster plots
of activity were then generated, and the model parameters were
adjusted—specifically the synaptic weights wmax—to qualitatively
reproduce the experimental observations. The variability observed
in the cultured neurons was captured by modifying either wmax
or the frequency of spontaneous noise (Supplementary Figure S3).
In general, regardless of parameter settings, and as long as
there was sufficient drive for spontaneous activity, we observed
that the frequency of bursting decreased following damage and
then gradually recovered. This exploration demonstrates that
the recovery process is robust to variations in the parameters
that control overall activity level. In the subsequent analyses,
we considered numerical simulations with wmax = 6.8 and a
spontaneous noise frequency of 1.0 Hz, which provides the average
behavior.

Finally, we conducted the same analysis pipeline as in the
experiments to investigate whether the model captured the
experimental observations on activity and effective connectivity.
When damage was inflicted on the SNN model, a decrease
in activity was observed (Figure 2G), and, as in the culture
experiment, the organization of functional communities shifted
from a track-oriented to a mixed arrangement immediately after
damage (Figure 2H; Supplementary Figure S4). The similarity
of the community structure showed a sustained reduction post-
injury (Figure 2I), whereas the distribution of connection angles
recovered to a track-oriented configuration by 24 h (Supplementary
Figure S4B). By qualitatively comparing with experiments, these
results suggest that STDP of excitatory-to-excitatory synapses
is sufficient to model the recovery of spontaneous activity and
damage-induced alterations in both dynamics and functional
organization. Additionally, consistent with culture experiments,
a quantification of the ratio of burst events revealed a transient
decrease by a factor 0.68 immediately after injury, recovering to the
baseline level after approximately 24 h of simulation (Figure 2J).

We note that functional recovery in silico did not occur when
STDP was absent (Supplementary Figure S5). However, such a
scenario cannot be experimentally tested in cultured neurons, as
plasticity is an intrinsic property of living neuronal assemblies
and cannot be easily suppressed without affecting other processes
important for physiological activity. Moreover, multiple plasticity
mechanisms may act concurrently, e.g., synaptic scaling and
homeostasis (Turrigiano, 1999, 2008; Effenberger et al., 2015).
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FIGURE 2

Damage and recovery in cultured neurons and in silico. (A) Fluorescence images before (left) and after damage (right) in vitro. The blue dotted line
indicates the PDMS substrate, and the red box marks the damaged area. (B) Raster plots of neuronal activity before, immediately after, and 24 h after
injury in cultures. (C) Effective connectivity maps and modular partitions. Functional modules are aligned with PDMS tracks before and 24 h after
damage, but become disorganized immediately after it. Module colors are not matched across time points due to post-injury reorganization.
(D) NMI values between pre- and post-injury partitions in vitro (n = 4). (E) Ratio of bursting events after damage relative to before damage (n = 4).
(F) Structural maps of the network before and after damage in silico. (G) Simulated raster plots before, immediately after, and 24 h after injury.
(H) Effective connectivity and modular structure in silico, showing acute disruption and partial reorganization. (I) NMI values in simulations. The bars
denote the mean values, and error bars indicate the 95% confidence interval (n = 15). (J) Burst activity ratio in simulations (n = 15), showing recovery
similar to the experimental observations. Scale bars: 1 mm (A,C,F,H).

3.2 Reorganization of synaptic weights
mediates recovery of neuronal activity
in silico

To investigate the potential of STDP to spatially redistribute
synaptic weights and restore activity in silico, we analyzed the
changes in excitatory-to-excitatory synaptic weights of the SNN
model before and after injury. Figure 3A shows the change in
synaptic weights of a representative network immediately after
injury and 24 h later. The increase and decrease in synaptic weights
occurred throughout the entire network rather than at specific

locations. We observed large fluctuations in synaptic weights
post-damage, whereas the undamaged network remained relatively
stable (Figure 3B), suggesting that injury enhanced the effect of
STDP. Despite the large variation in the damaged network, the
mean synaptic weight remained practically constant with a value
of about 3.1 before injury and after reorganization (Figure 3C).

We then investigated the effect of post-damage reorganization
of synaptic weights driven by STDP on the efficiency of information
transfer in a network. We observed that the global efficiency of the
damaged network decayed immediately after injury and gradually
recovered over time (Figure 3D, blue curve), whereas the control
condition exhibited only a small variation (gray curve). Global
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FIGURE 3

Changes in synaptic weights in silico due to STDP. (A) Representative network illustrating the changes in synaptic weights 24 h post-damage, as
1w = w24h −winjury. Red connections represent those that increase in weight, while blue connections represent those that decrease in weight.
Scalebar is 1 mm. (B) Evolution of synaptic weights changes relative to the weights immediately after injury (0 min) for the representative damaged
network and control network. The plot shows the 100 representative synaptic weights at each time point, with the values calculated by subtracting
the weights at 0 min. (C) Evolution of the mean value of the synaptic weights for damaged networks and control networks, showing that the global
change is minimal. The blue curve corresponds to a damaged network, whereas the gray corresponds to control network. Shadings indicate the
95% confidence interval, n = 15 networks. (D) Evolution of the global efficiency of the weighted connectivity matrix W after injury and during
recovery. (E) Relationship between global efficiency and bursting event rate, with data exhibiting a Pearson’s correlation coefficient of r = 0.80 and
p < 0.001 [two-sided Pearson correlation test, n = 75, degrees of freedom (df) = 73].

efficiency quantifies the ease of neuronal communication across
the entire network. Thus, the results indicate that communication
between neurons was reduced due to damage but was restored
through the reorganization of synaptic connections via STDP.
Global efficiency was further examined in relation to the rate of
network burst frequency, and we observed a strong correlation
between the two quantities [r = 0.80, p < 0.001, two-sided
Pearson correlation test, n = 75, degrees of freedom (df ) = 73]
(Figure 3E). This correlation indicates that synchronous activity
requires reliable communication between distant neurons in the
network and, therefore, high network efficiency for information
exchange.

Furthermore, we quantified global efficiency of the effective
connectivity in the cultured neuronal networks estimated via
transfer entropy. Although the values varied across samples
(Supplementary Figure S6A), we observed a consistent decrease
upon damage followed by gradual recovery when each damage
sequence was normalized by its pre-damage value (Supplementary
Figure S6B). A similar analysis for the STDP-driven in silico model
also revealed a comparable decrease and subsequent recovery
(Supplementary Figure S6C). The magnitude of efficiency in silico
aligns with in vitro samples with higher initial global efficiency,
while those with lower efficiency may also be modeled by adjusting
simulation parameters, such as connection density. These findings
suggest that the network alterations observed in the experimental
neuronal cultures are compatible with the numerical model that
considers STDP as the main recovery mechanism. In summary,
the STDP reorganization brings the post-damage network to a new
state with increased global efficiency and activity level, but with
different spatial distribution of connection weights.

3.3 Effect of modular organization on
damage and recovery in the in silico
model

We next examined the influence of the modular structure,
shaped by a series of interconnected parallel tracks, to provide
robustness against various damage scenarios. We designed
several damage conditions, alongside control scenarios, in which
either intra- or inter-modular connections were damaged, as
shown in Figure 4A. Cuts perpendicular to and along the
tracks affected the intra-modular and inter-modular connections,
respectively. A network generated by modeling axonal growth
on an unpatterned surface was used as a control. Two different
damage extents were considered: one in which the length of
the injury extended half the diameter of the network and
another in which the injury extended the full width (see
Figure 4A).

Figure 4B shows the rate of network burst relative to the
non-damaged control at each time point after injury for a total
of six conditions (four in modular networks and two in non-
modular networks). Immediately after injury (0 min), the activity
was lower than the control in all conditions [intra-modular half,
0.27 ± 0.14 (mean ± SD), two-sided one-sample t-test, p < 0.001
(vs. 1.00); intra-modular full, 0.06± 0.07, p< 0.001; inter-modular
half, 0.60 ± 0.17, p < 0.001; inter-modular full, 0.41 ± 0.11,
p < 0.001; non-module half, 0.27 ± 0.14, p < 0.001; non-module
full, 0.09 ± 0.06, p < 0.001; n = 15, df = 14]. A comparison
between half-cuts and full-cuts showed that networks with a full-
cut had a significant reduction in activity [two-sided unpaired
t-test, p < 0.001 (intra-modular half vs. intra-modular full);
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FIGURE 4

Importance of modularity on the magnitude and direction of damage in silico. (A) Schematic representation of damage actions on patterned
(modular) and homogeneous networks. Intra-modular or inter-modular damages are achieved by, respectively, cutting the network along the
direction perpendicular or parallel to the tracks’ orientation. In the sketch, “half” indicates that the cut extends half the diameter of the network,
while “full” indicates that the damage effectually separates the network in two parts. “Damage on non-module” represents the control scenario of
neurons simulated on a flat surface. (B) Burst frequency changes for the six damage scenarios. For each scenario, the color bar shows the ratio of
burst frequency between the damaged and control conditions. Color bars use the same color scheme as in (A). The bar height indicates the mean,
and error bars indicate the 95% confidence intervals. Color asterisks indicate a two-sided one-sample t-test (*p < 0.05; **p < 0.01; ***p < 0.001;
N.S., no significance; n = 15, df = 14). Asterisks in black correspond to a two-sided unpaired t-test (**p < 0.01; ***p < 0.001; N.S., no significance;
n = 15, df = 13). (C) Sketch illustrating the concept of normalized mutual information (NMI). Community structure is obtained via the Louvain
algorithm. (D) NMI values between pre- and post-injury networks, for the six damage scenarios. Bars show mean value, and error bars indicate the
95% confidence intervals (n = 15). The horizontal line at NMI = 1 represents the reference point for identical community structures between pre- and
post-injury conditions.

p < 0.01 (inter-modular half vs. inter-modular full); p < 0.001
(non-module half vs. non-module full)]. Additionally, damage
perpendicular to the tracks direction (intra-modular) had a greater
impact on the rate of neuronal activity than damage applied along
the tracks (inter-modular) (two-sided unpaired t-test, p < 0.001,
intra-modular half vs. inter-modular half). However, there were
no significant differences between non-modular networks and
modular networks in which damage was applied within a module,

i.e., perpendicular to the tracks orientation [two-sided unpaired
t-test, p = 0.99 (intra-modular half vs. non-module half); p = 0.38
(intra-modular full vs. non-module full)]. In summary, activity
decreased as the size of the injury increased, and intra-modular
damage had a greater effect than inter-modular damage.

The recoverability of the network was dependent on multiple
factors, such as the size and direction of damage, and the presence
of modular structure. When the injury was small and applied along
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the tracks (green bar in Figure 4B), activity recovered to the pre-
damage level 2 h later [inter-modular half, 1.04 ± 0.38, two-sided
one-sample t-test, p = 0.71 (vs. 1.00)]. This recovery was further
observed at 6 h, with activity comparable to that without damage
in the cases of damage along tracks (green and red bars) and half
damage across tracks (blue bar) (intra-modular half, 0.98 ± 0.57,
p = 0.87; inter-modular full, 0.89 ± 0.40, p = 0.32). However, even
after 24 h, the activity did not recover in the case of full intra-
modular damage (orange bar), i.e., across tracks (intra-modular
full, 0.70± 0.33, p< 0.05). Furthermore, in the absence of a specific
modular structure (purple and pink bars), activity was not restored,
regardless of damage size (non-module half, 0.75 ± 0.33, p < 0.05;
non-module full, 0.51± 0.25, p< 0.001). The differences in damage
and recovery caused by network structure and cut orientations
were also observed when the same number of connections were
eliminated (Supplementary Figure S7). These findings suggest that
modular structures facilitate recovery from local injuries.

To examine differences in damage recovery depending on
the presence or absence of a modular structure, we focused on
community structure before and after damage. We quantified
the differences in community structure using normalized mutual
information (NMI) (Figure 4C). Immediately after injury, the
NMI scores between post- and pre-damage states dropped below
1 for all damage conditions (Figure 4D), indicating that the
community structure was altered by the injury. The comparison
of the injury sizes revealed that the extent of damage strongly
affected the communities in both the intra-modular and non-
modular scenarios [two-sided unpaired t-test, p < 0.01 (intra-
modular half vs. intra-modular full); p < 0.05 (non-module half
vs. non-module full), n = 15]. However, cut size did not affect
the communities in the case of inter-modular damage [two-sided
unpaired t-test, p = 0.30 (inter-modular half vs. inter-modular
full)]. In the context of the tracks pattern, damage across tracks had
a more significant impact than damage along the tracks [two-sided
unpaired t-test, p < 0.01 (intra-modular half vs. inter-modular
half); p< 0.05 (intra-modular half vs. inter-modular full)]. Among
these damages on modular networks, the strongest influence was in
the networks with full intra-modular damage, but they had greater
NMI than networks without a specific modular structure [two-
sided unpaired t-test, p < 0.05 (intra-modular full vs. non-module
half)]. In summary, we conclude that modular structures reduce the
alteration of community structures due to damage, leading to faster
recovery than non-modular networks in the SNN.

3.4 STDP restoration of information
representation and processing in a
spiking neural network model

Finally, we employed a reservoir computing framework to
explore the computational impact of network recovery using STDP
(Figure 5A). In the framework used here, a signal is injected into
the network and its response is linearly decoded to perform a
classification task. Spoken digits were used as sensory information
and served as input to 5% of the neurons in the SNN both before
and after damage. Figure 5B shows the neural responses to the
spoken digit “zero” before and after full damage across tracks.
Before the injury, the neurons responded well to the input, and the

summed activity of the neurons produced two peaks. These peaks
of summed neural activity aligned with the peaks of the summed
spectrogram of the input spoken digits with a time delay. After
injury, the neural response decreased, and the two peaks became
smaller. The magnitude of the response recovered after 24 h. This
indicates that self-organization through synaptic plasticity restores
not only spontaneous activity but also the capacity of the system to
respond to external inputs.

Subsequently, we used multiple spoken digits to perform
classification tasks. In this task, the linear decoder in the output
layer was trained to obtain the optimal output weight matrix
Wout to classify the spoken digits “zero,” “one,” and “two.” When
the output weight matrix was trained on the network responses
before damage, the classification accuracies were 66.2 ± 11.6%
(mean ± SD) for the tracks-patterned network and 69.8 ± 9.5%
for the unpatterned network, both of which were significantly
higher than a random guess (33.3%). When the output weights
were fixed at the pre-damage state, classification accuracy decreased
over time, regardless of the presence of damage (Supplementary
Figure S8). This decline occurred because STDP alters the synaptic
weights of the reservoir’s SNN, resulting in changes in the
information representation.

Furthermore, we retrained the output weight matrix for each
damaged and recovered network state. In the undamaged case,
performance was maintained whenWout was retrained (Figure 5C).
This indicates that the input information was quantitatively
preserved in the neural response and could be classified by a linear
decoder, even though the information representation changed
over time due to plasticity. Such maintenance of performance
was observed under three of the four conditions applied to the
modular neural network (intra-modular half, inter-modular half,
and inter-modular full), suggesting that the modular structure
is robust against small damage in terms of sensory information
representation. In contrast, under the conditions of damage on
non-module and full intra-modular damage, accuracy dropped
immediately after damage (intra-modular full, 59.8 ± 10.1%,
p < 0.05; non-module half, 62.2 ± 11.5%, p < 0.05; non-module
full, 58.0 ± 11.2%, p < 0.01; n = 15). In other words, under these
conditions, damage impaired the network’s ability to represent
information and perform speech recognition as a reservoir. While
such temporary dysfunction was observed, classification accuracy
gradually recovered over time and returned to its original level
after 24 h. This suggests that information representation in neural
networks improves with the recovery of synchronous activity.

4 Discussion

In the present study, we developed a cultured neuronal
network with a modular structure using topographical substrates.
Modularity is a distinctive feature of the brain, evolutionarily
conserved across many species (Meunier et al., 2010), and is
believed to be a crucial trait in living neuronal circuits (Sporns
and Betzel, 2016; Michaels et al., 2020; Vishwanathan et al.,
2024). Recent studies in neuronal network patterning in vitro have
shown that developing a modular structure in neuronal networks
can generate rich activity that mimics the complex information
processing of the brain (Yamamoto et al., 2018, 2023; Montalà-
Flaquer et al., 2022). PDMS-based engineering plays a pivotal role
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FIGURE 5

Reservoir computing on a damaged spiking neural network. (A) Sketch of the reservoir computing framework. The spectrogram of spoken digits is
delivered into a spiking neural network, and the evoked activity is regressed as output. (B) Raster plots of evoked activity for the spoken digit “zero”
before (left), immediately after (center), and 24 h after injury (right). The bottom panels show the summed-up spikes (black) and the spectrogram
(blue). (C) Time courses of accuracy in the reservoir computing tasks for the six damage conditions. The colors correspond to each type of damage.
Gray curves show the undamaged case for the tracks-patterned network, and the brown curves show the undamaged case for the control,
unpatterned network. In the panels, the lines indicate the average value, and the shaded areas represent the 95% confidence interval. *p < 0.05;
**p < 0.01; ***p < 0.001 (two-sided unpaired t-test, n = 15, df = 13).

in the development of neuronal cultures with rich structure and
dynamics (Halldorsson et al., 2015; Souza et al., 2024). Microfluidic
devices made with PDMS can control the structure of neuronal
networks (Takemuro et al., 2020), and culturing cortical neurons
on PDMS can reduce mechanical mismatch (Sumi et al., 2020)
and adjust the topology of the network through topographical
modulation (Sharma et al., 2019; Montalà-Flaquer et al., 2022).
Furthermore, when damaging neuronal networks, PDMS provides
a scaffold that allows mechanical damage to be applied with a
scalpel (Ayasreh et al., 2022).

In the present study, we first examined the changes in activity
caused by damage to cultured neuronal networks, extending
previous studies that also investigated the impact of damage.
These studies used laser microdissection or a scalpel to damage
a subpopulation of the network (Teller et al., 2020; Ayasreh
et al., 2022), while others focused on the modulation of structural
connectivity through heat (Hong and Nam, 2020). In these works,
the authors observed that cultured neuronal networks temporarily
decreased the number of activations and the rate of synchronous
activity when damaged, although activity was restored within
minutes or days, depending on the magnitude of the damage.
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However, the overall recovery was not homogeneous; the area of
the network surrounding the damage recovered well, whereas the
damaged area remained silent and was effectively unrecoverable.
Our study showed that immediately after injury, the rate of activity
in the network decreased but recovered after 24 h (Figure 2E),
which is consistent with previous studies.

Motivated by these culture experiments, we extended our
study using a spiking neural network model. The combination
of mathematical models and culture experiments facilitated the
design of extended in silico explorations, allowing us to compare
a wide range of conditions. Specifically, numerical simulations
enabled us to explore the mechanisms underlying the restoration
of neuronal network activity, which may involve the reorganization
of the neuronal network through plasticity. STDP is a natural
candidate for such plasticity because it plays important remodeling
roles in various regions of the brain (Bi and Poo, 1998; Schmidgall
et al., 2024) and has led to the restoration of activity in
simulations of randomly inactivating neurons (Gabrieli et al.,
2020). Even in cases of severe network disconnection, as in our
experiments, STDP worked well and was sufficient to restore
neuronal activity (Figure 2J). Further investigation of synaptic
weights revealed that synaptic plasticity enhanced global efficiency
in the damaged network (Figure 3D). Although previous studies
using cultured neuronal networks have estimated the recovery of
global efficiency by inferring effective connectivity from network
activity (Teller et al., 2020; Ayasreh et al., 2022), our study
has shown that it is also possible to examine the synaptic
weights underlying firing patterns using a mathematical model
that mimics cultured neuronal networks. The qualitative agreement
between experiments and simulations opens new avenues for
numerically exploring other plasticity mechanisms that are present
in cultures, such as homeostasis, and invites experimentalists to
devise new experiments to fully monitor synaptic alterations during
development and damage.

Related to this, an experimental limitation of our study that
needs further investigation is the fact that STDP was not directly
demonstrated in the in vitro experiments. This could be achieved
for instance through the pharmacological blockade of NMDA
receptors in excitatory neurons, whose allosteric kinetics have been
related to be central for STDP (Urakubo et al., 2008). While
such exploration is promising, it may also affect overall network
activity given the NMDA receptors are excitatory, rendering it
difficult to isolate the specific contribution of STDP without
altering the network dynamics. Experimental design inherently
limits the ability to isolate individual contributions within the
complex dynamics of living neuronal networks, highlighting the
complementary strength of computational models in uncovering
the mechanisms that regulate activity in neuronal cultures,
specifically in the context of damage and recovery.

The proposed model and its capacity to successfully reproduce
the experimental observations allowed us to extend the simulations
to explore the effects of different damage conditions. The results
showed that the impact of intra-modular damage was stronger
than the inter-modular one, and that networks without modular
organization were unable to fully recover their activity within the
timeframe considered here (Figure 4B). In this regard, we suggest
that recovery can be achieved by reorganizing new functional
communities that couple regions activating together. Although the
new communities departed from the original ones, the underlying

initial modular configuration seemed to provide a backbone to
facilitate the maintenance of functional communities (Figure 4D).
This hypothesis is supported by the fact that modular organization
is known to be a damage-resistant structure due to its functional
separation and redundancy (Zhang et al., 2019; Chen et al.,
2021). For instance, animal experiments have shown that rodents
can efficiently perform short-term memory tasks when artificially
perturbed by optogenetic stimulation in the brain hemisphere;
however, a modular organization is required for the robustness of
persistent activity in response to perturbations (Chen et al., 2021).
Additionally, in the present study, the burst rate of some numerical
explorations, particularly the “half inter-modular” ones (Figure 4B),
was significantly higher than in control networks 24 h after injury.
Such overactivity is interesting, and may be associated with clinical
studies showing that epilepsy can occur after injury (Herman,
2002; Englander et al., 2014; Ding et al., 2016). This overactivity
is thought to be triggered by an imbalance between excitation and
inhibition. Thus, the wiring of excitatory and inhibitory mesoscale
circuits, and their alteration upon damage, may be an aspect that
could be explored in a future investigation.

Finally, we observed an association between the restoration of
synchronous activity and the recovery of cognitive-like functions,
such as spoken digits classification, using a reservoir computing
framework. Reservoir computing can be integrated with cultured
or computational neural networks to link neuronal dynamics to
cognitive and behavioral tasks (Nicola and Clopath, 2017; Yada
et al., 2021; Cai et al., 2023; Sumi et al., 2023). In the present
study, we used this framework to investigate how changes in
neuronal dynamics before and after injury affect speech signal
classification. Our model demonstrated that the modular structure
was functionally robust to relatively small injuries and that
functional impairment, even due to severe damage, could be
restored if down-stream neuronal circuits were able to re-organize
as well (Figure 5C). Although injury-induced cognitive impairment
and recovery have been observed in animal studies (Chen et al.,
2010; Christensen et al., 2008; Edlow et al., 2021), our results
provide a new perspective on how the dynamic process of synaptic
reorganization after injury affects information representation and
processing at the neuronal network level. The reservoir computing
framework can also be employed for other tasks, such as motor
learning and memory, by adjusting the readout. Therefore, it
can be applicable to model various neurological dysfunctions and
recovery. In our study, functional recovery was achieved through
spontaneous synaptic reorganization of functional connectivity
and task-dependent learning in the output layer. However, in
clinical rehabilitation, patients modify the functional connectivity
of the motor cortex through input-output learning in addition
to spontaneous modulation (Murata et al., 2015). The recovery
through input-output interactions is reported to be promoted by
repeated 40 Hz stimulation, which rescues synaptic plasticity such
as STDP (Wang et al., 2023). Also, a theoretical study has shown
that repeated stimulation inputs to the STDP model can lead to
the formation of temporal patterns (Hosaka et al., 2008). The
ongoing development of these fields is expected to lead to future
applications in rehabilitation models using repetitive input and
synaptic plasticity in the neuronal network to restore function.

To conclude, it is worth emphasizing that damage to
neuronal networks occurs in several pathologies (Carmichael,
2016; Nagappan et al., 2020). In our study, a cultured neuronal

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2025.1570783
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1570783 June 19, 2025 Time: 12:56 # 14

Sumi et al. 10.3389/fnins.2025.1570783

network was designed as an accessible laboratory model for
damage to neuronal circuits, which was successfully reproduced
computationally. Our model has the potential to predict changes in
functional neuronal networks and dynamics due to local damage
and may be useful in designing advanced models that combine
spontaneous and evoked activity to treat dysfunction. In addition,
the mathematical description of the self-organized recovery process
can be applied to the field of information processing. The brain
is often compared to an electronic computer as an information-
processing device. However, damage resistance and recovery
capabilities are unique characteristics of living neuronal networks,
particularly in the brain (Hassabis et al., 2017). Analysis of
recovery from damage through cultured neuronal networks and
mathematical neural models is valuable for understanding the
mechanisms of neuronal function recovery and for designing
artificial neural networks with damage tolerance and self-repair
capabilities (Psaier and Dustdar, 2011; Khlaisamniang et al., 2023).
Our findings could contribute to further research to introduce
self-repair capabilities in robots and AI systems and to advance
the understanding of diseases caused by local injury and their
treatments in the human nervous system.
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