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Aberrant white matter and
subcortical gray matter
functional network connectivity
associated with static and
dynamic characteristics in
subjects with temporal lobe
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1Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ,

United States, 2Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School,

New Brunswick, NJ, United States

Temporal lobe epilepsy (TLE) is a common type of epilepsy, with seizures

primarily originating in the deep temporal lobe. This condition results in changes

in connectivity across gray matter (GM), and white matter (WM) regions. This

altered connectivity categorizes TLE as a network disorder, highlighting the

need to investigate functional network connectivity (FNC) in WM areas. Dynamic

functional connectivity (dFC) measures time-varying correlations between

two or multiple regions of interest and derives clusters highlighting functional

networks (FNs) where connectivity among regions behaves in a similar fashion.

In this study, we included a total of 103 subjects from the Epilepsy Connectome

Project, comprising 51 healthy controls (HC), and 52 subjects with TLE. We

obtained static FNs (sFNs) and dynamic FNs (dFNs) using K-means clustering on

ROI-based static functional connectivity (sFC) and dFC, respectively. Both static

and dynamic FNCs were then separately investigated in HC and TLE subjects,

with the latter demonstrating significant di�erences in WM networks. The static

FNC was significantly decreased between the Forceps minor-Anterior corona

radiata (ACR) - genu and left inferior longitudinal fasciculus (ILF) in TLE. Dynamic

FNC significantly decreased between the corpus callosum (CC) (body) - superior

corona radiata - right superior longitudinal fasciculus network and the Forceps

minor - ACR - medial frontal gyrus network in subjects with TLE. This result

implies that this WM connection changes with lower variability in TLE. On the

other hand, the dynamic connections between the left temporal sub gyral - left

thalamus - left pallidus - left hippocampus and right thalamus - right putamen -

right temporal sub gyral - right pallidus network and the connections between

the cingulum network and right thalamus - right putamen - right temporal sub

gyral - right pallidus network significantly increased. These results indicate that

these two GM subcortical connections change with higher variability in TLE.

The study also demonstrates that the static functional connectivity strength

(FCS) of the left ILF decreased significantly in subjects with TLE. However, the

dynamic FCS of the splenium and brain stem were altered significantly in TLE,

implying that the total dynamic connections of this network with all other

networks experienced greater changes. Furthermore, the FNC suggests that the
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WM regions - ILF, superior and ACR, and CC exhibit connectivity changes related

to the clinical features.

KEYWORDS
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network connectivity (dFNC), functional connectivity strength (FCS)

Highlights

• Deriving Gray matter subcortical and white matter functional

networks (FNs) by clustering ROI-based static and dynamic

functional connectivity.

• Static and dynamic functional network connectivity (FNC)

analysis in temporal lobe epilepsy (TLE).

• Static and dynamic functional connectivity strength (FCS)

analysis in temporal lobe epilepsy (TLE).

1 Introduction

Temporal lobe epilepsy (TLE) is a chronic neurological disorder

characterized by severe recurrent seizures and is the most common

form of epilepsy in adults (Lariviére et al., 2020; Téllez-Zenteno

and Hernández-Ronquillo, 2012). In TLE, the frequent seizures

originate in the epileptogenic zone, typically within the medial

temporal regions (Vlooswijk et al., 2010). The generation and

propagation of these seizures result from hypersynchrony within

the epileptogenic zone. Rivera Bonet et al. (2020) reported a

loss of synchronization between the frontal and temporal regions

associated with increased neuroticism. Additionally, cognitive

impairment (Qin et al., 2020) and accelerated brain aging (Hwang

et al., 2020) progress chronically in TLE. TLE can be conceptualized

as a network disorder, with the epileptogenic zone acting as

a critical node in the network (González Otárula and Schuele,

2020). Although TLE primarily affects the epileptogenic zones in

the medial temporal regions, structural and functional changes

have been shown to have widespread effects extending to limbic

structures (e.g., the entorhinal and perirhinal cortices and the

amygdala), subcortical regions (e.g., the thalamus), and neocortical

regions (e.g., the frontal lobes and the superior, middle, and inferior

temporal gyri), as evidenced by magnetic resonance imaging (MRI)

and electroencephalogram (EEG) studies (Lieb et al., 1991; Spencer

and Spencer, 1994; Spencer, 2002; Bartolomei et al., 2005; Lin

et al., 2006; Bonilha et al., 2006; Bartolomei et al., 2004; Laufs

et al., 2007; Haneef et al., 2012; Liao et al., 2010; Hermann et al.,

1991; Giovagnoli, 2001; Mueller et al., 2004). The seizures are

typically treated with antiepileptic medication or by resecting

the epileptogenic zone (Thadani et al., 1995; Pittau et al., 2012).

Therefore, it is crucial to identify the epileptogenic zone and

understand the dysfunction of the networks affected by it.

Low-frequency fluctuations in the resting-state functional

magnetic resonance imaging (rs-fMRI) signal are thought to reflect

spontaneous neuronal activity (Biswal et al., 1995) via the blood

oxygen level-dependent (BOLD) signal and have emerged as a

means to study brain function. Functional connectivity (FC),

obtained by assessing the synchronized activity between segregated

brain regions, has been well-studied in different disorders (Fox and

Raichle, 2007; Greicius, 2008; Lui et al., 2014). Functional networks

(FNs) refer to groups of brain regions that work coherently to

perform cognitive tasks or govern behavior, and these FNs are

mostly obtained by data-driven methods such as independent

component analysis (ICA) (Calhoun et al., 2001) or clustering (Ji

et al., 2017). Using ICA, one can derive a series of spatially localized

functional brain regions, including the Default Mode Network

(DMN), Sensory Motor Network (SMN), Visual Network (VN),

and so on, using BOLD time series. The clustering approach derives

FNs by clustering the multivariate data, i.e., FCs. In traditional FC-

based analysis, the measure is assumed to be stationary (static FC)

over the entire fMRI scan. However, this is typically not the case,

and time-varying measures, such as dynamic FC (dFC) analysis,

are necessary. The temporal dependency among the FNs is called

functional network connectivity (FNC). The correlation between

the entire network time series leads to static functional network

connectivity (sFNC), which represents the average FC between the

FNs over the entire scan period (Jafri et al., 2008). In contrast,

dynamic functional network connectivity (dFNC) measures the

FC between the FNs over shorter periods, revealing the dynamic

configuration of network connectivity (Allen et al., 2012).

The static FC (sFC) alteration has shown the association of

different FNs in TLE (Liao et al., 2010; D’Cruz et al., 2019). Binder

has reviewed fMRI studies in TLE, emphasizing the identification

of the motor, language, and memory systems that are at risk in

subjects treated surgically for intractable epilepsy (Binder et al.,

2002). Subjects with TLE have been shown to exhibit slower

processing speeds associated with decreased connectivity between

the primary visual cortices and the left supplementary motor area,

as well as between the right parieto-occipital sulcus and the right

middle insular area using rs-fMRI (Hwang et al., 2019). Waites

and colleagues have reported disrupted seed-based connectivity in

the language area in left mesial TLE (mTLE) (Waites et al., 2006).

Reduced connectivity within mesial temporal lobe structures and

enhanced connectivity in the contralateral regions were observed

in mTLE (Bettus et al., 2011). Studies reported decreased FC in the

auditory, sensory, middle temporal, and dorsal attention networks,

while increased FC was observed in the primary visual cortex

and attention FNs in mTLE (Zhang et al., 2009a,b). Increased

connectivity was observed in the left hippocampus and amygdala,

while a decrease in connectivity was shown in the right lateral

temporal lobe (Struck et al., 2021). The identification of the anterior

temporal lobe structure, particularly the hippocampus, is highly

suggestive of a syndrome-specific effect because these regions have

long been associated with TLE (Engel, 1996). Pereira and colleagues
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demonstrated impairment within and between the hippocampus in

unilateral mTLE (Pereira et al., 2010). Therefore, since TLE causes

abnormal electrical activity that originates in the hippocampus

and other nearby structures (Jerome Engel, 2001), researchers have

focused on hippocampus-based static and dynamic FC analysis.

The dFC measure is useful for examining brain dysfunction in

various mental disorders (Holtzheimer and Mayberg, 2011; Jones

et al., 2012; Damaraju et al., 2014; Price et al., 2014; Choe et al.,

2017; Zhang et al., 2022) because temporal variability, specifically

the variance of FC, carries important information about brain states

and can provide detailed insights into brain function. Alterations in

networks have been associated with TLE using dFC (Morgan et al.,

2020). The dFC between the hippocampus and the supplementary

motor area, the pre- and post-central gyri, the cuneus, the middle

occipital gyrus, and the superior frontal gyrus for seeding in the left

and right hippocampus in TLE has also been shown to be greater

than in controls (Laufs et al., 2014). Morgan et al. (2020) reported

an increase in variance in the fMRI time series at the seizure focus in

the hippocampus in subjects with mTLE. This may disrupt healthy

FC dynamics and consequently decrease static hippocampal FC.

Functional organization and dysfunction have been studied

using rs-fMRI in white matter (WM) across healthy controls

(HC) and various disease groups (Ding et al., 2018; Peer et al.,

2017; Wang et al., 2021; Ji et al., 2017; Jiang et al., 2019a,b; Cui

et al., 2021; Li et al., 2021). A recent study has derived functional

clusters based on dynamic functional connectivity (dFC), and the

association between static functional connectivity (sFC) and dFC

was estimated within WM and gray matter (GM). It was revealed

that the WM functional networks (WM-FNs) are more dynamic

in nature and contain rich spatiotemporal information, similar

to that of GM (Wang et al., 2021). Based on previous studies,

the network abnormalities in subjects with temporal lobe epilepsy

(TLE) also included structural disturbances in theWM,which serve

as the structural basis for carrying information to different regions

of GM and account for almost half of the brain (Concha et al.,

2009; Gross et al., 2006; Thivard et al., 2005; Chu et al., 2023,

2024). These studies anticipate identifying the widespread brain

dysfunction of the WM networks using rs-fMRI associated with

TLE. Most previous studies using rs-fMRI data from subjects with

TLE have been conducted using the BOLD time course taken from

GM regions, while the signal from WM has been neglected, except

for a few studies (Jiang et al., 2019a,b; Cui et al., 2021; Li et al., 2021).

Jiang et al. (2019b) demonstrated increased FC in the rolandic

network and the pre/post-central network, along with decreased

FC in the dorsal frontal network in unmedicated benign epilepsy

with centrotemporal spikes compared with HC. Cui et al. (2021)

highlighted the white matter functional network disorder in mesial

TLE. When investigating functional abnormalities, the network

that showed a significant difference was considered a seed, and

the underlying relationship between region of interest (ROI) mean

FC (based on the seed) and clinical variables (seizure frequency

and duration of seizures) was investigated. The study reported

increased ipsilateral deep WM connectivity with specific cortical

regions: the insula, temporal lobe, and supramarginal gyrus. This

finding reveals reduced connectivity in WM networks extending to

extratemporal regions. The reported investigation only considered

the sFC for clustering and identifying significant alterations. FCs

among WM networks and between WM and GM networks were

also investigated in unilateral TLE (Li et al., 2021). They reported

decreased FCs among superficial WM networks and decreased

FCs between WM networks and the hippocampus in the patient

group. Though numerous studies, including those on the static and

dynamic behavior of the BOLD response, have been conducted,

it remains unclear which WM and subcortical GM circuits are

most prone to alterations in TLE subjects. The derivation of

clusters or FN and their subsequent analysis to identify altered

circuits, based on their dynamic characteristics, may shed light

on the fundamental mechanisms, informing us about declines in

cognitive function due to recurrent seizures. Thus, an investigation

of WM-FC alterations in a larger cohort using static and dynamic

characteristics is necessary to understand brain function in TLE

populations.

This study explores WM-FNs and alterations in FNC and

functional connectivity strength (FCS) in subjects with TLE,

focusing on the dynamic characteristics of FC. First, we derived

WM-FNs using k-means clustering on the sFC and dFC. The k-

means clustering technique groups similar connectivity patterns

using dual features to provide a comprehensive understanding

of distinct functional clusters by capturing both the average and

time-varying relationships between brain regions. The sFC-based

method groups ROIs into a cluster where the average connectivity

is similar for all included ROIs. In contrast, the dFC-based method

considers every ROI for inclusion in a cluster based on the

changes in the FC of that ROI with all other ROIs over a shorter

period, ensuring they are similar. After deriving these clusters, we

analyzed their network connections (FNC) to determine which

specific connections were significantly altered in subjects with

TLE compared to HC. If the dFNC, with standard deviation

as a statistic, between two networks is high, then the networks

change diversely over time; otherwise, they change similarly. Since

interictal epileptic discharges are often transient and spread across

different brain regions, affecting multiple networks in epilepsy,

dFNC analysis may provide additional insight into the underlying

pathophysiological mechanisms in TLE (Klugah-Brown et al.,

2018). Furthermore, we computed both static and dynamic FCS for

each FN and identified those that exhibited significant alterations

in FCS, providing information about the total connectivity changes

of a derived FN with other FNs in TLE. The identified functional

distinctions in WM were further examined to uncover the

underlying connections between neurophysiological alterations

and specific clinical features, particularly complex partial seizures

and seizure frequency.

2 Method

2.1 Participants

We used publicly available data from the Epilepsy Connectome

Project (ECP).1 The ECP study had a total of 236 subjects; for this

study, we only used data sets from 196 subjects from the first session

(Run 1) that had both T1 and resting-state fMRI data available.

1 https://osf.io/exbt4/
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Out of 196 subjects, we considered 103 subjects (64 females and 39

males, average age 36.73 years) with 52 unilateral TLE (excluding

those with bilateral or unrecognized-sided TLE) and 51 healthy

controls (HC) to create balanced groups after excluding subjects

based on framewise displacement. Out of the 52 TLE subjects,

34 and 18 subjects had their seizures on the left and right sides,

respectively. The mean and standard deviation of the ages of the

HC and TLE groups are 34.41 ± 11.10 and 37.28 ± 12.16. The

Modified Edinburgh Handedness Quotient (MEHQ), ranging from

−100 to +100, is presented in the histograms of the HC and TLE

groups in the Supplementary material. If the MEHQ value is−100,

then the subject is strongly left-handed, and if it is +100, then the

subject is strongly right-handed. The mean and standard deviation

of the MEHQ of the HC and TLE groups are 82.69 ± 31.23 and

77.04± 38.85, respectively.

2.2 Image acquisition

All the data from ECP subjects were acquired on standard

GE Healthcare Discovery MR750 MRI systems (3T) housed at the

Medical College of Wisconsin and the University of Wisconsin.

The integrated body RF coil was used for excitation, while a Nova

Medical 32-channel receive-only head coil was used for signal

reception. T1-weighted structural images were acquired using a

three-dimensional gradient-echo pulse (MPRAGE) sequence with

the following parameters: repetition time (TR) = 604 ms, echo time

(TE) = 2.516 ms, flip angle = 8 degrees, field of view (FOV) = 25.6

cm, voxel size = 0.8 mm (isotropic). Resting-state functional MRI

(rs-fMRI) data were acquired using a gradient recalled echo (GRE)

echo-planar imaging (EPI) sequence with the following parameters:

TR = 802 ms, TE = 33.5 ms, FOV = 20.8 cm, flip angle = 50 degrees,

number of slices = 72, voxel size = 2 mm (isotropic), multiband

acceleration factor of 8. Two sessions, each containing a set of

four 5-min resting state scans (axial acquisitions), were acquired

in pairs of runs that alternated between anterior-to-posterior (AP)

and posterior-to-anterior (PA) phase encoding directions, totaling

eight scans. Participants were asked to gaze at a white cross on a

black background. For every subject, we considered 361 time points

in our study.

2.3 Data pre-processing

All the data across each subject was pre-processed as follows:

(1) The first 10 volumes were discarded to ensure steady-

state longitudinal magnetization; (2) The functional images were

realigned; (3) Subjects with maximum displacements greater than

2 mm or 2 degrees were excluded from further analysis; (4)

Individual T1 images were segmented into gray matter (GM),

white matter (WM), and cerebrospinal fluid (CSF) to obtain the

tissue probability map transformation from native to standard

MNI space. The resulting segmented images were co-registered

to functional space for each participant; (5) The nuisance signal

(including 24 motion parameters: 6 rigid body head motion

parameters at the current time point, 6 parameters at previous

time points, and the 12 corresponding squared values) and the

mean CSF time course were regressed out from all voxel time

series; (6) Temporal filtering (using 5th-order Butterworth) was

applied in the low-frequency range of 0.01–0.15 Hz to reduce non-

neuronal contributions to BOLD fluctuations (Peer et al., 2017);

(7) To minimize the mixing of GM and WM signals, individual

functional images were spatially smoothed with an isotropic kernel

of full width at half maximum (FWHM) of 4mm × 4mm × 4mm

separately within the GM and WMmasks (Peer et al., 2017). Then,

GM and WM images were merged into full functional images; (8)

Finally, the functional images were normalized to the standard

MNI template with a voxel size of 2mm× 2mm× 2mm. The entire

preprocessing task was performed using our in-house MATLAB

scripts with SPM122 in MATLAB R2023a.

2.4 Dataset and code availability

ECP data is publicly available at https://osf.io/exbt4/. The code

for deriving the FNs is available at https://github.com/sentudas32/

FNs.

2.5 Deriving WM networks using sFC

A schematic diagram for clustering the ROI-based sFC is shown

in Figure 1, steps 1–4, 7, 8. A WM parcellation mask (Eve atlas,

Type III WM parcellation map) (Oishi et al., 2009), consisting of

128 regions of interest (ROI), was used. This mask is a manual

parcellation of 44 superficially located WM (SWM) and 56 deep

WM (DWM) structures. The outline of the SWM is based on the

90% WM probability. As this parcellation includes the subcortical

GM regions, including the thalamus, putamen (Clarke et al., 2022),

hippocampus, and brainstem, and these regions are also found

to be vulnerable to functional alterations in TLE (Hryniewicz

et al., 2024; Lucas et al., 2023; Norden and Blumenfeld, 2002), we

considered them in the clustering. Average ROI time courses were

extracted fromWM regions, and subject-wise Pearson’s correlation

matrices (sFC) were calculated; average correlation matrices were

obtained across all subjects (i.e., M number of subjects including

HC and TLE). Distinct WM functional networks were identified by

performing k-means clustering on the average WM sFC matrices.

In k-means clustering, the distance metric used was correlation,

and 50 replications were taken into consideration. The number of

clusters was chosen to be between 5 and 20. Cluster stability or the

optimal number of clusters was achieved based on the nf (number

of folds = 8) cross-validation using adjacency matrices (Peer et al.,

2017). The average connectivitymatrix was randomly divided into a

given nf folds, and clustering computation was performed on each

fold separately. The cluster indices were divided into chunks (chunk

size, cs = 30) in each of the nf folds. For every pair of chunks, a

binary 3Dmatrix (cs×cs×nf ) was formed. Then, an averaged Dice

coefficient was computed by comparing all nf adjacency matrices

for everyK with 50 replications. TheK that yielded the highest Dice

coefficients was the optimal K, deriving the stable clusters. Finally,

K-means clustering was performed using the optimal number of K,

2 www.fil.ion.ucl.ac.uk/spm
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FIGURE 1

Procedure for clustering static and dynamic functional connectivity (sFC and dFC) to obtain static and dynamic functional networks (sFNs and dFNs)

in WM and identifying discriminating FNs between HC and TLE (and lTLE and rTLE) using Fisher’s discriminant ratio (FDR). The processing steps are as

follows: (1) Time courses are extracted from ROIs of the atlas (Eve atlas). (2) Average ROI time courses were computed from WM regions. Panels A1

and A2 demonstrate the computation of average sFC and dFC, respectively. (3) Subject-wise ROI-based correlation (sFC) matrices were computed.

(4) sFC matrices are averaged across all subjects (M), resulting in an average FC. (5) ROI-based FC computation is performed in every sliding window.

(6) dFC with the standard deviation (STD) as a statistic across the windows was calculated. The average of the dFC matrices across all subjects was

then computed. (7) A K-means clustering was performed on the averaged sFC or dFC matrix using correlation as the distance metric and with 50

replications. The optimal value of K was found using 8-fold cross-validation with adjacency matrices as described in Section 2.5. (8) K number of

clusters (FNs) were derived from the K-means clustering using the optimal value of K with the lowest distortion from 100 replications. (9) Average time

courses were extracted from all clusters (sFNs or dFNs) in WM. Panels B1 and B2 demonstrate the sFC and dFC of network time series, respectively.

(10) FCs between the FNs were computed using Pearson’s correlation for every subject (m = 1 to M) of either the HC or TLE groups. Here xi and yj
are the BOLD responses of the clusters x and y at time points i and j, respectively. x̄, ȳ, and N are the mean of the time courses of clusters x, y, and the

total number of time points, respectively. Functional connectivities were Fisher’s Z-transformed with sex and age e�ects regressed out. (11) FC time

series were obtained using the sliding window method. All functional connectivities were Fisher’s z-score transformed. The standard deviation of the

FC time series was computed for every pair of clusters or dFNs for every subject (m = 1 to M) in the HC or TLE groups. Here, pn is the correlation

between two cluster time courses at the nth slide and p̄ is the average correlation across slides. w and s represent the length of the window and slide,

respectively. Gender and age e�ects were regressed out from the dFCs. (12) FDR ratios were computed between the HC and TLE groups and

between the left TLE (lTLE) and right TLE (rTLE) for every pair of FNs. (13) Finally, an FDR matrix was obtained across all pairs of FNs.
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FIGURE 2

Stability of the clustering FC for di�erent numbers of clusters. The average Dice coe�cient of the clustering solutions (adjacency matrices) for each

number of clusters ranging from K = 5 to 20. (a) Dice coe�cients from clustering sFC. (b) Dice coe�cients from clustering dFC. For both methods,

the optimal value of K, i.e., K = 11 for WM, was found using 8-fold cross-validation with adjacency matrices.

and clusters (FNs) were obtained with the lowest distortion from

100 replications.

2.5.1 sFC among the network time series and
FDR analysis

An average of the time series of all voxels within everyWM sFN

was computed. The sFNswere defined by the resulting clusters from

the K-means clustering, which produced K time courses for each of

the subjects in theWMregions. Then, for each subject (HC or TLE),

K cluster time courses from the sFNs are extracted. For each pair

of network time courses, an sFC value is obtained using Pearson’s

correlation. The sFCs were Fisher’s Z-transformed, and sex and

age effects were regressed out for all subjects. Lastly, a static FNC

(sFNC) matrix (K × K) was obtained for each subject, as depicted

in Figure 1, steps 9, 10, 12, 13. Once these sFNC matrices were

established, the Fisher discriminant ratio (FDR) was used to draw

a discriminant assessment between two individual groups: first for

comparing HC to the TLE group and again for comparing lTLE

with rTLE (FISHER, 1936; Das et al., 2024). FDR is a measure used

to assess the separability of classes or groups in pattern classification

problems. It is the ratio of between-group variance to within-group

variance. In our study, FDR values indicate which connectivity

between the networks is most altered (or discriminating) between

the two groups. A high FDR indicates that the two groups are

widely separated in connectivity. The FDR between HC and TLE

for each pair of clusters or sFNs i and j is as follows:

Ji,j =
|µHC − µTLE|

σ
2
HC − σ

2
TLE

, (1)

, where µHC and σ
2
HC are the mean and variance of the static

connectivity scores of the paired sFNs of HC, respectively.µTLE and

σ
2
TLE are the mean and variance of the static connectivity scores of

the paired sFNs of TLE, respectively. Similarly, the FDR between

lTLE and rTLE for every pair of clusters or sFNs i and j is

Ji,j =
|µlTLE − µrTLE|

σ
2
lTLE

− σ
2
rTLE

, (2)

, where µlTLE and σ
2
lTLE

are the mean and variance of the static

connectivity scores of the paired sFNs of lTLE, respectively. µrTLE

and σ
2
rTLE are the mean and variance of the static connectivity

scores of the paired sFNs of rTLE, respectively (can be seen in

Figure 1, steps 9, 10, 12, 13). These calculations result in an FDR

matrix being obtained for all pairs of sFNs.

2.5.2 Group di�erence in static functional
network connectivity in WM

The synchronous activation of sFNs was assessed using

two-sample t-tests between the sFNCs of two groups to

identify significant connections. sFCs were first Fisher’s Z-score

transformed, and gender and age effects were regressed out, and

two sample t-tests were performed between the HC and TLE

groups, HC and lTLE groups, HC and rTLE groups, and lTLE

and rTLE groups. The p-values were false discovery rate (FDR)

corrected using the Benjamini and Hochberg method (Benjamini

and Hochberg, 1995). Lastly, the significantly (p < 0.05) altered

connections were illustrated.

2.5.3 Functional connectivity strength using
static functional network connectivity

The WM sFNs obtained from K-means clustering are used

to quantify the degree of dysfunction in TLE compared to HC.

The functional alteration was estimated utilizing FDR analysis and

connectivity among WM-FNs, as described in Section 2.5.1 and

Section 2.5.2, respectively. The static FNs that reveal significant

alterations in terms of FCS were further analyzed. A two-sample

t-test was performed between the static FCS (sFCS) of the HC and

TLE groups to pinpoint the location of the alteration. The sFCS of

the WM-network i is given by the following equation:

sFCS(sWMi) =

K−1∑

j

sFNC(j,i), (3)

where, sFNC(j,i) represents the sFC between jth sWM-network and

ith sWM-network. T-statistics and p-values from the t-tests were
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TABLE 1 All static and dynamic functional networks (sFNs/dFNs) and the

regions corresponding to the FNs in the brain. The abbreviations of the

regions are also given.

WM
networks

Regions in the brain

sWM1 Left posterior corona radiata (lPCR), left

superior longitudinal fasciculus (lSLF),

left corpus callosum (splenium)

(CC(splenium))

sWM2 Forceps minor (FM), anterior corona

radiata (ACR), CC (genu)

sWM3 Left hippocampus (lHC), midbrain

(MB)

sWM4 Middle cerebellar peduncle (MCP),

brain stem (BS)

sWM5 Left thalamus (lT), left putamen (lP), left

caudate (lC), left pallidum (lPa)

sFNs sWM6 Left temporal sub gyral (lTSG)

sWM7 Right thalamus (rT), right putamen (rP),

right caudate (rC), right pallidum (rPa)

sWM8 Anterior parahippocampal gyrus

(APHCG)

sWM9 Superior corona radiata (SCR), CC

(body, left splenium), superior

longitudinal fasciculus (SLF),

right posterior corona radiata (rPCR)

sWM10 Right inferior longitudinal fasciculus

(rILF)

sWM11 Left inferior longitudinal fasciculus

(lILF)

dWM1 Left inferior longitudinal fasciculus

(lILF)

dWM2 Left temporal sub gyral (lTSG), left

thalamus (lThalamus), left pallidum

(lPa), left hippocampus (lH)

dWM3 Corpus callosum (splenium)

[CC(splenium)], brain stem (BS)

dWM4 Corpus callosum (body) [CC(body)],

superior corona radiata (SCR),

right superior longitudinal fasciculus

(rSLF)

dWM5 Forceps minor (FM), anterior corona

radiata (ACR), medial frontal gyrus

(MFG)

dFNs dWM6 Cingulum (hippocampus)

dWM7 Left putamen (lP), anterior

parahippocampal gyrus (APHCG), left

caudate (lC), frontal sub gyral (FSG)

dWM8 Right thalamus (rT), right putamen

(rP), right temporal sub gyral (rTSG),

right pallidum (rPa)

dWM9 Middle cerebellar peduncle (MCP)

dWM10 Left posterior corona radiata (lPCR), left

superior longitudinal fasciculus (lSLF)

dWM11 Right inferior longitudinal fasciculus

(rILF)

considered when investigating dysfunction. p-values were FDR-

corrected using the Benjamini-Hochberg method. A similar micro-

level analysis was also conducted between the subjects with lTLE

and rTLE.

2.6 Deriving WM networks using dFC

dFC was computed to quantify temporal fluctuations using

the sliding window approach with a window size of w samples

and a slide of s samples (Wang et al., 2021; Chang and Glover,

2010; Sakoğlu et al., 2010; Kiviniemi et al., 2011; Handwerker

et al., 2012; Hutchison et al., 2013). To employ the dynamic

characteristics of FC, the same WM parcellation mask (Eve

atlas), consisting of 128 equal-sized regions of interest (ROI),

was used. The average time series of the ROIs from the atlas

were extracted. FC among the ROIs was computed from each

window. The temporal variability of the FCs was computed as

the standard deviation of the matrices. The resulting connectivity

matrix encoded how widely the FC fluctuated over time. The

average standard deviation of the windowed FC matrices across all

subjects (including HC and TLE) was obtained and is referred to as

the group-level dFC. TheWMdynamic functional networks (dFNs)

were obtained by performing K-means clustering on the group-

level dFC. During the K-means clustering, the correlation was

used as the distance metric, and 50 replications were considered.

The number of clusters was chosen from 5 to 20. The optimal

number of clusters (K) was obtained using nf (number of folds

= 8) cross-validation and a chunk size (cz = 30). The value

of K that maximized the dice coefficient between adjacency

matrices, as described in Section 2.5, was determined to be the

optimal value of K. Finally, the clusters or dFNs were obtained

using the optimal K value with the lowest distortion from 100

replications. Figure 1, steps 1, 2, 5, 8 demonstrate the computation

of the dFNs.

2.6.1 dFC among the network time series and
FDR analysis

Average time courses of all voxels within the WM-dFNs were

extracted, resulting in K-clustered (dFN) time courses. K time

courses from the dFNs were extracted for each subject (HC or TLE).

For each pair of dFNs, a dFC (standard deviation as a statistic)

value was obtained using the sliding window method, resulting in

a dFNC matrix (K × K) for each subject, as depicted in Figure 1,

steps 9, 11. For dFNC computations, the window was slid by s

samples, and the same analysis was repeated. All windowed FCs

were Fisher’s Z-score transformed, and one dynamic connectivity

score (standard deviation) was obtained over time. Age and gender

effects were regressed out from the dFCs for all subjects. A Fisher

discriminant ratio (FDR) between the HC and TLE groups and

between the lTLE and rTLE groups for every pair of clusters

or dFNs was computed, following Equations 1, 2, respectively

(Figure 1, steps 12, 13). For all pairs of dFNs, an FDR matrix (J)

was obtained.
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2.6.2 Group di�erence in dynamic functional
network connectivity in WM

The WM-dFNs, obtained from K-means clustering, were used

to quantify the degree of diverse variations in TLE fromHC or lTLE

from rTLE by means of FDR analysis, as described in Section 2.6.1.

The network time courses were then extracted to compute the

dFC between the networks. This dFNC signified how similarly

two functional networks change. If the dFC between two FNs

was high, it implied that they changed similarly; otherwise, they

changed diversely. This degree of variability is used to perform

two-sample t-tests between two groups, and significant connections

are identified. Here, all windowed FCs were Fisher’s Z-score

transformed. dFCs are obtained by considering standard deviation

as the dynamic characteristic, with gender and age effects being

regressed out from the dFC. Two-sample t-tests were performed

between the HC and TLE groups, HC and lTLE groups, HC and

rTLE groups, and lTLE and rTLE groups. The p-values were FDR-

corrected using the Benjamini-Hochberg method, and significantly

(p < 0.05) altered connections were illustrated.

2.6.3 Functional connectivity strength using
dynamic functional network connectivity

TheWMdFNs were derived fromK-means clustering and were

used to quantify the total variability of a network with respect to

other networks. This total variability was obtained by computing

the dynamic FCS (dFCS). Alterations between the TLE and HC

groups were also investigated using the dFCS. A two-sample t-test

was performed between the dFCS of the HC and TLE groups to

identify the alteration. The dFCS of theWM-network i is defined as

follows:

dFCS(dWMi) =

K−1∑

j

dFNC(j,i), (4)

, where dFNC(j,i) represents the dFC between WM-network j and

WM-network i. Here, all the windowed FCs were Fisher’s Z-scored

transformed, and dFCs were computed using standard deviation,

followed by the regression of gender and age effects. T-statistics

and p-values from the two-sample t-tests were used to investigate

dysfunction. p-values were FDR-corrected using the Benjamini-

Hochberg method, and significant dFNs were identified. A similar

analysis was then carried out to compare the subjects with lTLE and

rTLE.

2.7 Relationship between the FNCs and
clinical features

A correlation analysis was performed to explore the underlying

relationships between the FNCs (static and dynamic) and the

clinical variables for each pair network (FN). For each significant

pair of FNs, which was identified using either the FNCs analysis

or the FDR analysis, the FCs were extracted from the interacting

networks for every subject with TLE (left or right) and correlated

with the monthly frequency of complex partial seizures (CP

Freq) and the number of seizures captured (EEGSzCount). The

correlation values were then analyzed. Information on CP Freq was

only available for 35 subjects, and EEEGSzCount data was available

for 47 subjects.

3 Results

3.1 WM networks using sFC and dFC

The WM sFNs were obtained by performing K-means

clustering approaches on atlas-based average sFC in WM. The

optimal number of clusters, i.e., K, was achieved by maximizing

the Dice coefficient between the adjacency matrices using 8-fold

cross-validation. The Dice coefficients for different numbers of

clusters have been shown in Figure 2a. It can be observed that

the Dice coefficient attained its highest value (0.622) at K =

11. The optimal value of K = 11 was used to derive the

final clusters or sFNs. The resulting K clusters are presented in

Figure 3. The WM-dFNs were obtained by performing K-means

clustering on average ROI-wise dFC within the WM parcellations.

The optimal number of clusters was also obtained by maximizing

the Dice coefficient between the adjacency matrices in 8-fold

cross-validation. Figure 2b demonstrates the Dice coefficients with

different values of K. The Dice coefficient at the optimal K(= 11)

value is 0.375. The Dice coefficient was much lower in dFC-based

clustering than in sFC-based clustering due to the dFC encoding of

the standard deviation, which extends to a much lower range than

that of sFC (Pearson correlations). The resulting clusters obtained

from the K-means clustering of the dFC are presented in Figure 4.

3.1.1 Static and dynamic functional networks in
WM and FDR

The obtained sFNs using clustering of the sFCs in WM have

been demonstrated in Figure 3. The sFNs include the following

networks: sWM1, sWM2 . . . .sWM11. The sFNs and regions lying

within the networks are also shown in Table 1. FDR was computed

using interactions between network (sFN) time series. The FDR

matrix between HC and TLE is demonstrated in Figure 5a.

The connectivity between sWM2 and sWM11 (sWM2–sWM11)

attained an FDR value of 0.221, revealing the highest alteration

between the TLE and HC groups in the WM region. Another

interaction of WM-sFNs, sWM4 and sWM8 (sWM4–sWM8),

attained an FDR value of 0.142. The FDR matrices between

lTLE and rTLE using sFC in the WM regions are demonstrated

in Figure 5b. It can be observed that the interaction between

sWM4 and sWM7 (sWM4–sWM7) revealed higher alteration

(0.41) compared to the FDR values between HC and TLE, implying

greater separability between lTLE and rTLE. In contrast, the dFNC-

driven FDR exhibited higher values (0.43) for HC and rTLE,

suggesting more dynamic changes between HC and rTLE (can

be seen in Supplementary material). Interactions of sWM4–sWM9

and sWM4–sWM11 demonstrate alterations in WM, producing

the FDR values of 0.244 and 0.2, respectively, when discriminating

between lTLE and rTLE (Figure 5b). Figure 4 demonstrates 11

WM-dFNs obtained from clustering the WM parcellations based

on stability characteristics. The dFNs and regions falling within the

corresponding networks are also shown in Table 1. Using dFC, FDR

was computed using interactions between the cluster time series, as
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described in the method Section 2.6.1. The FDR matrices between

HC and TLE and lTLE and rTLE using dFC are demonstrated in

Figures 5c, d, respectively. The connectivity between the clusters

dWM4 and dWM5 (dWM4 - dWM5) attained the highest FDR

value of 0.205 betweenHC and TLE, revealing the highest alteration

in theWM region using dynamic characteristics. Other interactions

of WM-dFNs, i.e., dWM2–dWM8 and dWM6–dWM8, attained

the FDR values of 0.195 and 0.187, respectively. TheWM-dFNs can

find alteration between left and right TLE in terms of the network

interactions. The network pairs, dWM3–dWM11 and dWM2–

dWM11, reveal FDR values of 0.215 and 0.20, respectively, and can

find the alterations in the left TLE from the right TLE.

3.1.2 FNCs using static and dynamic features in
WM

Using sFNs and static features from WM regions, we

investigated network connections and identified static connections

that significantly differ in TLE compared to HC, as discussed in

Section 2.5.2. These connections are demonstrated in Figures 6a,

c, e, g. The averaged network-based sFC for the HC and TLE

groups is shown in Figures 6a, c, respectively. In Figures 6e, g,

t-scores and their corresponding p-values of the two-sample t-

tests are illustrated. It can be observed that the connectivities

between FM - ACR - CC(genu) and lILF (sWM2 - sWM11)

exhibit high t-scores with low p-values (p < 0.05), indicating

significant alterations in TLE from HC (Figures 6e, g). The sFC

between the networks decreased by 0.34 in TLE. No significant

connections were observed between the HC and lTLE/rTLE, and

lTLE and rTLE groups; the results have been demonstrated in

Supplementary material. Diverse changes in connectivity between

dFNs were investigated, as discussed in Section 2.6.2, and dynamic

connections that were significantly altered in TLE from HC are

demonstrated in Figures 6b, d, f, h. The averaged dFNC for the

HC and TLE groups is shown in Figures 6b, d, respectively.

Two-sample t-tests were conducted between groups, and t-scores

and their corresponding p-values are illustrated in Figures 6f,

h, respectively. It can be observed that the dFC between the

network CC(body) - SCR - rSLF and FM - ACR - MFG

(dWM4 - dWM5) decreased significantly (p < 0.05) by 0.09

in TLE from HC. The connectivity between the lTSG - lT

- lPa - lH and rT - rP - rTSG - rPa networks (dWM2 -

dWM8) exhibited low t-scores with low p-values (p < 0.05),

indicating significant alterations in TLE from HC (Figures 6f, h).

The dFC between the networks increased by 0.06 in TLE. The

dynamic connectivity between the Cingulum (hippocampus) and

rT - rP - rTSG - rPa networks (dWM6 - dWM8) increased

significantly by 0.051 (p < 0.05). We could not find any

significant dFNC changes between the HC and lTLE/rTLE, or

between lTLE and rTLE groups; the results have been demonstrated

in Supplementary material.

3.1.3 Static and dynamic functional connectivity
strengths of networks in WM

Static functional connectivity strengths were computed for

every sFN as described in Section 2.5.3. Average sFCS for

four cohorts (HC, TLE, rTLE, and lTLE) and 11 sFNs are

illustrated in Figure 7a. Two-sample t-tests were conducted, and

the resulting t-scores and corresponding p-values (rounded to

two decimal places) are shown in Figures 7c, e, respectively. lILF

(sWM11) exhibits a significant (p < 0.05) alteration in TLE

from HC by decreasing its average sFCS by a significant extent

of 1.35. Other sFNs couldn’t find any significant dysfunction

among the remaining group pairs. Total variation in FCs was

also computed for every dFN as described in Section 2.6.3

using the dFCS measure. Average dFCS for four cohorts

(HC, TLE, rTLE, and lTLE) and 11 dFNs are illustrated

in Figure 7b. Two-sample t-tests were conducted, and the

resulting t-scores and corresponding p-values are demonstrated

in Figures 7d, f, respectively. Group pairs are demonstrated

from top to bottom, and FNs are shown from left to right in

Figures 7c–f. The CC(splenium)-BS (dWM3) network exhibited

a significant (p < 0.05) alteration in TLE compared to

HC with an increased dFCS of 0.26. We could not find any

other dFNs significantly dysfunctioning among the remaining

group pairs.

3.1.4 Dependency between clinical features and
static and dynamic FNCs

The monthly frequency of complex partial seizures (CP Freq)

and the number of seizures captured (EEGSzCount) in subjects

with TLE were correlated with the sFNCs and dFNCs, respectively.

Comparatively, high correlations were observed between the sFNC

and CP Freq for the sFN pair MCP - BS (sWM4) and SCR -

CC (body, splenium) - SLF - rPCR (sWM9) (Figure 8a). The

correlation value for this connection was 0.305 (p corrected

= 0.20). For dFNC, a high correlation (0.282, p corrected =

0.15) was observed in CP Freq between the CC (splenium) -

BS (dWM3) and rILF (dWM 11) networks (Figure 8b). dFNC

and EEGSzCount showed a high correlation (0.318, p corrected

= 0.032) between the dFN pair CC (body) - SCR - rSLF

(dWM4) and FM - ACR - MFG (dWM5), as observed in

Figure 8c. The dataset included information on the “number of

current anticonvulsant medications,” “Age at the onset of the

first seizure,” and “Age at the onset of recurring seizures” used

by individuals with TLE. The current number of anticonvulsant

medications was classified into 4 categories from 1 to 4. As

the reviewer suggested, we performed a correlation analysis with

this, with different resting state network connectivities (static and

dynamic), and did not find any significant correlations. We also

performed a correlation analysis between disorder duration from

the onset of the first seizure and the onset of the recurring

seizure with the FNC. The disorder durations were obtained by

subtracting the current age from the “Age at the onset of the

first seizure” and “Age at the onset of the recurring seizure,”

respectively. We observed no significant relation of the FNC

with the number of current anticonvulsant medications, but we

observed a negative correlation of the FNC with the disorder

durations (Supplementary Figures 19–27). All the FCs and clinical

variables are shown after outlier elimination. Data values that

were more than three scaled median absolute deviations were

considered outliers.
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FIGURE 3

Clusters (sFNs) obtained from K-means clustering of the sFC in WM. The WM networks (sFNs) are, from left to right and top to bottom: lPCR - lSLF -

CC(splenium) (sWM1), FM - ACR - CC(genu) (sWM2), lHC - MB (sWM3), MCP - BS (sWM4), lT - lP - lC - lPa (sWM5), lTSG (sWM6), rT - rP - rC - rPa

(sWM7), APHCG (sWM8), SCR - CC (body, left splenium) - rPCR (sWM9), rILF (sWM10), and lILF (sWM11). All details of the abbreviations for the regions

are provided in Table 1.

4 Discussion

In this study, we obtained resting-state functional networks

by clustering resting-state fMRI data based on static and dynamic

functionality within WM and subcortical GM regions. Using the

average time courses for the various WM parcelations, both static

and dynamic FC were computed. Static FC assumes that the

FCs are stationary and estimates the time-averaged FC over the
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FIGURE 4

Clusters (dFNs) obtained from K-means clustering of the dFC in WM. The WM networks (dFNs) are, from left to right and top to bottom: lILF (dWM1),

lTSG - lT - lPa - lH (dWM2), CC (splenium) - BS (dWM3), CC (body) - SCR - rSLF (dWM4), FM - ACR - MFG (dWM5), cingulum (hippocampus) (dWM6),

lP - APHCG - lC - FSG (dWM7), rT - rP - rTSG - rPa (dWM8), MCP (dWM9), lPCR - lSLF (dWM10), and rILF (dWM11). All details of the abbreviations for

the regions are provided in Table 1.

entire scan. In contrast, the dFC assumes that these connections

are non-stationary and captures temporal variations of FC at

shorter time windows, providing more insights into neuronal

activity patterns (Hutchison et al., 2013; Allen et al., 2012; Reinen

et al., 2018; Choe et al., 2017). The window-based dFC has been

demonstrated to facilitate the identification of distinct brain states
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FIGURE 5

FDR matrices between HC vs. TLE and lTLE vs. rTLE using the sFC and dFC, respectively. Every element in the matrix was obtained for a pair of

networks (sFNs or dFNs), and the FDR matrix was computed across all pairs of networks. (a) FDR matrix between HC and TLE using sFC, (b) FDR

matrix between lTLE and right rTLE using sFC, (c) FDR matrix between HC and TLE using dFC, and (b) FDR matrix between lTLE and right rTLE using

dFC in the WM. (a) Using sFC (HC and TLE). (b) Using sFC (lTLE and rTLE). (c) Using dFC (HC and TLE). (d) Using dFC (lTLE and rTLE).

and explain the dynamics of brain network properties (Allen

et al., 2012; Choe et al., 2017; Damaraju et al., 2014). The dFC-

based clustering offers FNs within which the voxel connectivities

change in a similar pattern, and the dFNCs elucidate how similarly

connectivity of two networks changes or behaves. Our study first

identifies the altered sFNCs in subjects with TLE. It then explores

the dFNCs that change diversely between WM dFNs in subjects

with TLE.

Some of the FNs derived from clustering the dFC were similar

to those obtained from clustering the sFC (Figures 3, 4). The left

and right ILF (sWM11, sWM10 in sFNs and dWM1 and dWM10

in dFNs, respectively), FM - ACR - CC (genu) (sWM2) and FM -

ACR - MFG (dWM5), lPCR - SLF - CC (left splenium) (sWM 1)

and lPCR - lSLF (dWM10), as well as MCP -MS (sWM4) andMCP

(dWM9), showed significant similarity in both clustering methods.

This similarity suggested that they were synchronous and changed

in the same manner. Although many similarities were observed in

the estimated networks derived from the clustering of static and

dynamic FC, we also noted differences between the FNs, such as

the rT - rP - rC - rPa, representing sWM7 in sFNs. In contrast, the

corresponding right temporal subgyral area (dWM8) differed in the

dFNs. In sWM9 of the sFNs, most of the corpus callosum (except

the genu) was present, whereas only the corpus callosum (body)

appeared in dWM4 of dFNs, and the corpus callosum (splenium)

was present with a significant portion of the brain stem in dWM3

of the dFNs, implying that not all parts of the corpus callosums

connectivity change in the same way. The left TSG represents

sWM6 of the sFNs, but this same network appears alongside the

left thalamus, pallidum, and hippocampus and represents dWM2

of the dFNs, implying that their connectivity changes in the same

way.

By evaluating the FDR between FNs and comparing the control

and TLE groups (Figure 5), we observed the highest alterations in

WMwhen considering the static interaction between the FM - ACR

CC (genu) and lILF (sWM2 - sWM11), providing an FDR value

of 0.22. However, the highest distinguishability between the lTLE

and rTLE was observed while considering the static interaction

between the MCP - BS (sWM4) and rT - rP - rC - rPa (sWM4 -

sWM7), as well as the MCP - BS and SCR - CC (body, splenium)

- SLF - rPCR (sWM4 - sWM9), raising the FDR value to 0.41
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FIGURE 6

The FNC (static and dynamic) matrices were computed using the average time courses from the 11 WM networks obtained from the sFC and dFC

clustering of ROIs. The 11 sFNs include the following networks: lPCR - lSLF - CC (splenium) (sWM1), FM - ACR - CC (genu) (sWM2), lHC - MB

(sWM3), MCP - BS (sWM4), lT - lP - lC - lPa (sWM5), lTSG (sWM6), rT - rP - rC - rPa (sWM7), APHCG (sWM8), SCR - CC (body, left splenium) - rPCR

(sWM9), rILF (sWM10), and lILF (sWM11). The 11 dFNs include the following networks: lILF (dWM1), lTSG - lT - lPa - lH (dWM2), CC (splenium) - BS

(dWM3), CC (body) - SCR - rSLF (dWM4), FM - ACR - MFG (dWM5), cingulum (hippocampus) (dWM6), lP - APHCG - lC - FSG (dWM7), rT - rP - rTSG -

rPa (dWM8), MCP (dWM9), lPCR - lSLF (dWM10), and rILF (dWM11) in WM. The left and right columns illustrate the sFNC and dFNC, respectively. From

top to bottom, the figures illustrate the following: subjects’ averaged sFNCs and dFNCs (after Fisher’s Z-score transformation, and gender and age

e�ects regressed out from FCs) of (a, b) HC and (c, d) TLE subject groups, respectively. (e, f) t-scores and (g, h) p-values of the two-sample t-tests

between HC and TLE after FDR correction with the Benjamini and Hochberg method. We did not observe any significant di�erences between the

lTLE and rTLE cohorts using both the sFC and dFC.

and 0.24, respectively. The dFNs have also exhibited alterations

between HC and TLE subjects in the dynamic interaction between

CC (body) - SCR - rSLF and FM - ACR - MFG (dWM4 - dWM5),

resulting in an FDR of 0.205. The alteration in lTLE from rTLE was

found in the dynamic connections between the CC (splenium) -

BS and rILF (dWM3 - dWM11) networks, with an FDR of 0.215.

This implies that dynamic connectivity was altered in subjects with

TLE. The WM regions in the superior and anterior corona radiata,

inferior and superior longitudinal fasciculus, temporal subgyral

areas, forceps minor, and brainstem are primarily responsible for

these changes.

The sFNC reveals a significant decrease in connectivity between

the FM - ACR - CC (genu) and lILF (sWM2 - sWM11) in

TLE (Figures 6a, c, e, g), but there was no significant connection

between the lTLE and rTLE. The ILF has a long-range tract in

the temporal lobe, strongly associated with the WM pathway,
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FIGURE 7

The average static and dynamic functional connectivity strength (sFCS and dFCS) for the 11 sFNs [lPCR - lSLF - CC(splenium) (sWM1), FM - ACR -

CC(genu) (sWM2), lHC - MB (sWM3), MCP - BS (sWM4), lT - lP - lC - lPa (sWM5), lTSG (sWM6), rT - rP - rC - rPa (sWM7), APHCG (sWM8), SCR - CC

(body, left splenium) - rPCR (sWM9), rILF (sWM10), and lILF (sWM11)) and 11 dFNs [lILF (dWM1), lTSG - lT - lPa - lH (dWM2), CC (splenium) - BS

(dWM3), CC (body) - SCR - rSLF (dWM4), FM - ACR - MFG (dWM5), cingulum (hippocampus) (dWM6), lP - APHCG - lC - FSG (dWM7), rT - rP - rTSG -

rPa (dWM8), MCP (dWM9), lPCR - lSLF (dWM10), and rILF (dWM11)] in WM. The left and right columns illustrate the sFCS and dFCS, respectively. (a, b)

Subject-averaged sFCS and dFCS of the various networks (left to right) in di�erent groups (top to bottom), respectively. To compute the FCS, all sFCs

and dFCs were Fisher’s Z-score transformed, and the e�ects of gender and age were regressed out. (c, d) t-scores and (e, f) corresponding p-values

obtained from two-sample t-tests between di�erent subject groups (top to bottom) and various sFNs and dFNs, respectively (left to right).

FIGURE 8

Scatter plot showing the relationship between FC and clinical features of TLE subjects. (a) Correlation (0.305) between the sFNC and the monthly

frequency of complex partial seizures (CP Freq) for the sFN pair MCP - BS and SCR - CC (body, splenium) - SLF - rPCR (sWM4 - sWM9), (b)

Correlation (0.282) between the dFC and the monthly frequency of complex partial seizures (CP Freq) for the dFN pair CC(splenium)-BS and rILF

(dWM3 - dWM11), (c) Correlation (0.318) between the dFNC and the number of seizures captured (EEGSzCount) for the dFN pair CC(body) - SCR -

rSLF and FM - ACR - MFG (dWM4 - dWM5). (a) CP Frequency vs. sFC. (b) CP Frequency vs. dFC. (c) dFC vs. EEGSzCount.

connecting the occipital and temporal areas of the brain to the

anterior temporal regions. Previous studies have indicated that the

ILF may be vulnerable to pathological changes in subjects with

TLE (Kreilkamp et al., 2017). Dynamic connections between the

CC(body) - SCR - rSLF and the FM - ACR - MFG (dWM4 -

dWM5) decreased significantly in subjects with TLE (Figures 6b,

d, f, h). This decrease implies that this connection behaves

diversely with lower variability in TLE. Conversely, the dynamic

connections between the lTSG - lT - lPa - lH and rT - rP

- rTSG - rPa (dWM2 - dWM8), cingulum(hippocampus), and

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2025.1571682
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Das et al. 10.3389/fnins.2025.1571682

rThalamus-rP-rTSG (dWM6 - dWM8) increased significantly,

suggesting these two connections changed with higher variability

in TLE than in HC. A previous study showed that WM regions

exhibited greater dynamics in FC (Wang et al., 2021), and

we observed that these dynamics were more pronounced for

alterations in TLE, particularly in the anterior corona radiata,

CC(body), and temporal subgyral (contralateral) areas. The

GM subcortical regions, including the hippocampus, thalamus

(contralateral), right putamen, and right pallidum, exhibited

alterations in dynamic connectivities. The sFC-based analysis

showed one significant connection between HC and TLE, whereas

the dFC-based analysis revealed three significant connections

associated with five networks: CC(body) - SCR - rSLF, FM -

ACR - MFG, lTSG - lT - lPa - lH, rT - rP - rTSG - Pa, and

cingulum (hippocampus). In both analyses, the FM-ACR was

common and exclusively a WM network. Besides this network,

other significant networks in the dFC analysis were associated with

subcortical GM regions, highlighting the crucial role of subcortical

networks in TLE (Pulsipher et al., 2007; Dreifuss et al., 2001;

Dabbs et al., 2012). In a previous study, TLE was also shown to

be associated with increased hippocampal connectivity involving

the limbic network, frontal lobes, angular gyrus, basal ganglia,

thalamus, brainstem, and cerebellum, while exhibiting reduced

connectivity involving visual, somatosensory, auditory, primary

motor, and precuneus regions (Haneef et al., 2014). Additionally,

the discrepancy in the number of significantly different networks

between the sFC and dFC-based analyses highlights the ability of

dFC-based analysis to quantify additional variations in functional

networks, particularly regarding temporal changes, compared to

static functional networks (Hutchison et al., 2013). Consequently,

the dFC analysis may indicate which WM regions are more

susceptible to transient and temporal fluctuations in neuronal

activity due to TLE, in comparison to healthy controls. This

localization can subsequently allow for a better understanding

of the etiology of TLE as a whole, with further exploration

of the causes behind such altered connectivity serving as a

potential biomarker for TLE diagnosis. However, despite these

network differences between TLE and HC, the sFNC and dFNC

did not exhibit significant alterations between lTLE and rTLE.

Future studies that account for more rTLE subjects may discover

differences between these and lTLE.

The investigation of the sFCS across different networks revealed

that the total static functional connectivity of the lILF with other

networks was significantly altered in subjects with TLE, suggesting

that the overall connectivity of lILF with other networks decreased

in TLE (Figures 7a, c, e). Similarly, the investigation using dFC

explored that the CC(splenium) - BS network was significantly

altered in TLE, indicating that the total dynamic connections of

this network in comparison to all other networks may vary notably

(Figures 7b, d, f).

The two clinical variables (CP Freq and EEGSzCount) of

the subjects with TLE showed higher correlations in the WM

regions where high alterations were exhibited (Figure 8). CP

Freq exhibited a higher correlation with the sFC obtained

from the interaction between the MCP - BS and SCR -

CC (body, splenium) - rSLF (sWM4 - sWM9). A higher

correlation was also found between the dynamic connection of

CC (splenium) - BS and rILF (dWM3 - dWM11). EEGSzCount

exhibited a higher correlation with dFC obtained from the

interaction between CC (splenium) - BS and FM - ACR - MFG

(dWM3 - dWM5). These observations suggest that the WM

regions: ILF, the superior and anterior corona radiata, and the

corpus callosum show changes in connectivity related to the

clinical variables.

TLE is classified into two forms: (1) Mesial temporal lobe

epilepsy (mTLE), the most common subtype of TLE, accounts

for temporal lobe seizures and involves the medial or internal

structure of the temporal lobe. In mTLE, seizure activity often

originates from a hippocampal or parahippocampal focus (Jackson

et al., 2005). (2) Neocortical TLE (nTLE), where the epileptic

focus is located in the lateral temporal lobe neocortex, the

outer part of the temporal lobe (Kennedy and Schuele, 2012;

Tatum, 2012), represents about 10% of TLEs (Téllez-Zenteno

and Hernández-Ronquillo, 2012). The location of any temporal

lobe ictal onset is mostly unknown for the subjects in the ECP

dataset; therefore, we explicitly did not categorize the TLE subjects

as mTLE.

The physiological origins of the WM-BOLD response are

still not clearly known. Therefore, methodological aspects like

the respiration signal and head motion artifacts merit further

investigation (Jiang et al., 2019b). fMRI signals are believed to come

from post-synaptic potentials (mainly in GM) rather than action

potentials (Logothetis et al., 2001; Smith et al., 2002). However,

studies present the probable sources of hemodynamic fluctuations

in the WM, including vasculature and perfusion, astrocytes, and

a higher glia-to-neuron ratio (Harris and Attwell, 2012; Engl and

Attwell, 2015), nitric oxide-producing neuronal activity, and the

metabolic demands of spiking activities (Gawryluk et al., 2014;

Grajauskas et al., 2019). Other findings also support the hypothesis

that fluctuations in WM-BOLD signals represent tract-specific

responses to neuronal activity and hemodynamic responses to

short stimuli (Gore et al., 2019). It has been demonstrated that

the WM provides an intrinsic functional organization composed

of interacting long-distance WM tracts (Peer et al., 2017; Concha

et al., 2009). The studies also demonstrated that these networks

were highly correlated to the resting state-gray matter (rs-GM)

networks. Ding and colleagues have shown strong FC between

WM tracts and cortical regions in the resting state, and the

FC between specific regions was enhanced by specific functional

loading (Ding et al., 2018). We found evidence in support

of our hypothesis that the static and dynamic characteristics

of brain activity are altered differently in deep temporal and

extra-temporal regions.

The choice of window length for dFC computation is

always a challenge. If the sliding window is too short, it

may produce spurious values; however, if it is too long, it

may overlook crucial dynamics. In this study, the window

length used to demonstrate the dFC-based clusters and dFC-

based FDR was 40 TR. This length was based on an earlier

study (Laufs et al., 2014). Different window lengths can be used to

analyze robustness.

We did not include any structural or behavioral information,

such as IQ and handedness, both of which can influence

alterations in functional connectivity due to their impact on
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the brain. While the diagnosis of epilepsy syndromes relies on

multidisciplinary expertise and may slightly affect our findings,

we believe that our primary results regarding group differences

(HC vs. TLE) would remain unchanged. We have demonstrated

the connectivity (both static and dynamic) between functional

networks in WM; however, the interaction between GM and WM

has not yet been characterized. In the future, we will explore

this interaction.

This methodology could serve as a framework to identify

patterns of altered connectivity for further studies on other

neurological disorders, potentially expanding the scope of

network analysis in clinical research. Our study presented

the altered FC (both dynamic and static) in WM regions

at the FN level. Our results indicate that the dynamic

characteristics in WM matter may reveal alterations in cohorts

with TLE.
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