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Introduction: Substance use disorders (SUDs) are heterogeneous diseases with

overlapping biologicalmechanisms and often presentwith co-occurring disease,

such as cardiovascular disease (CVD). Gene networks associated with SUDs

also implicate additional biological pathways and may be used to stratify

disease subtypes. Node and edge arrangements within gene networks impact

comparisons between classes of disease, and connectivity metrics, such as

those focused on degrees, betweenness, and centrality, do not yield su�cient

discernment of disease network classification. Comparatively, the graph

spectrum’s use of comprehensive information facilitates hypothesis testing

and inter-disease clustering by using a larger range of graph characteristics.

By adding a connectivity-based method, network rankings of similarity and

relationships are explored between classes of SUDs and CVD.

Methods: Graph spectral clustering’s utility is evaluated relative to commonly

used network algorithms for discernment between two distinct co-occurring

disorders and capacity to rank pathways based on their distinctiveness. A

collection of graphs’ structures and connectivity to functionally identify the

relationship between CVD and each of four classes of SUDs, namely alcohol

use disorder (AUD), cocaine use disorder (CUD), nicotine use disorder (NUD),

and opioid use disorder (OUD) is evaluated. Moreover, a Kullback-Leibler (KL)

divergence is implemented to identify maximally distinctive genes (Dg). The

emphasis of genes with high Dg enables a Jaccard similarity ranking of pathway

distinctiveness, creating a functional “network fingerprint”.

Results: Spectral graph outperforms other connectivity-based approaches and

reveals interesting observations about the relationship among SUDs. Between

CUD and CVD, the gamma-aminobutyric acidergic and arginine metabolism

pathways are distinctive. The neurodegenerative prion disease and tyrosine

metabolism are emphasized between OUD and CVD. The graph spectrum

between AUD and NUD to CVD is not significantly divergent.

Conclusion: Graph spectral clustering with KL divergence illustrates di�erences

among SUDs with respect to their relationship to CVD, suggesting that despite a

high-level co-occurring diagnosis or comorbidity, the nature of the relationship

between SUD and CVD varies depending on the substance involved. The graph

clustering method simultaneously provides insight into the specific biological
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pathways underlying these distinctions and may reveal future basic and clinical

research avenues into addressing the cardiovascular sequelae of SUD.

KEYWORDS

disease-associated prioritization, substance use disorder, cardiovascular disease, graph

spectrum, functional fingerprint

1 Introduction

Complex diseases are caused by a variety of factors and

include a range of psychological and physical disorders such as

diabetes (Prasad and Groop, 2015), schizophrenia (Sullivan et al.,

2003), substance use disorders (Hatoum et al., 2023) (SUDs),

cardiovascular disease (CVD) (Musunuru and Kathiresan, 2019),

and others (Thaker, 2017; Andrews et al., 2023). These are often

co-occurring conditions (Hossain et al., 2020; Solovieff et al., 2013),

and due to the many-to-many relationships among genes and

disorders (Goh et al., 2007), identifying the specific biological

basis of these relationships presents challenges (Wormington et al.,

2024). Doing so would enable a refined classification of the

particular subtypes of disease that exist and also provide a greater

understanding of the nature and mechanism of comorbid disease

(Chen et al., 2025; Sánchez-Valle and Valencia, 2023). For example,

in various SUDs, there are associations to CVD, but for each

drug, the nature of this relationship may differ (Havakuk et al.,

2017; Toska andMayrovitz, 2023; Pando-Naude et al., 2021). There

are several approaches to comparing genetic studies to elucidate

the nature and extent of these relationships among complex

diseases (Gerring et al., 2024). For example, shared genetic liability

between SUD and CVD has been found using polygenic risk scores

and linkage disequilibrium, but even with shared multimorbid

association (Zhou et al., 2017), the shared functional mechanisms

are poorly understood (Morgan et al., 2022).

CVD is a leading cause of death and a common multimorbid
and comorbid condition, with high prevalence in people with

SUD (Chelikam et al., 2022). While the impacts of SUD
and CVD concentrate in different tissues, they share similar

genetic associations (Hatoum et al., 2023; Sanchez-Roige et al.,

2022). Furthermore, the tremendous number of genetic variants

impacting the function of the nervous system and heart (Jonker
et al., 2023) presents challenges in prioritization of disease-

associated genes (Zhukovsky et al., 2024; Guo et al., 2021). A

functional enrichment provides foundational interpretation of

variant effects at the level of cellular and metabolic processing

underlying disease genes (Reimand et al., 2019). Furthermore, the

shared risk factors between psychiatric disorders is such that a

focus on specific disorders, independent of the context of comorbid

and multimorbid conditions, is insufficient for classification (Chen

et al., 2025). To compare disorders on a functional level, pathways

have been assessed by the intersection of genes, such as network

merging for “network fingerprinting”, which has shown that the

arrangement of nodes and edges impacts comparisons on similarity

scores (Cui et al., 2015). Moreover, the availability of data on

a large number of SUDs (Bough and Pollock, 2018; Hatoum

et al., 2023; Uffelmann et al., 2021) enables an assessment of the

influence between SUD specific functional pathways and a common

multimorbid condition, CVD (Minhas et al., 2024). Comparisons

between SUDs and cardiometabolic disease provides insight into

shared genes, which are highly translatable to therapeutic potential

(Sanchez-Roige et al., 2022; Peng et al., 2021).

Investigating and integrating genomic studies of disease can

improve disease diagnosis and characterization (Wirka et al.,

2018). From genome-wide associations (GWAS) (Uffelmann

et al., 2021) to curated database mining (Piñero et al., 2020),

discrete experimental investigations of disorders often converge

to a functional classification (Reimand et al., 2019). Enrichment

software then gauges biological pathways or functional terms that

have, more than by random chance, a significant representation

(Kuleshov et al., 2016; Wang et al., 2017; Raudvere et al., 2019;

Reimand et al., 2019). A functional characterization may focus on a

set of a gene’s medicinal, cellular, or biological significance (Wieder

et al., 2021; Baltoumas et al., 2021). Several databases are used as

a proxy for functional analyses, which include the following: the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa

and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2023), WikiPath

(Agrawal et al., 2023), Gene Ontology (GO) (Ashburner et al.,

2000; Consortium et al., 2023), and Reactome (Milacic et al., 2023),

among others (Geistlinger et al., 2021; Zhao and Rhee, 2023).

Spectral graph analysis presents a promising approach to

simultaneously compare disease based on the various genomic data

sources and to identify the biomolecular pathways that can be used

to classify them. Graph spectrum has been used for hypothesis

testing (Takahashi et al., 2012; Fujita et al., 2017), differentiating

diseases and tissues (Santos et al., 2015; Jardim et al., 2019),

identifying functional pathways (Fujita et al., 2017), and clustering

(Sato et al., 2013) in neurological disorders. The spectrum of

a graph contains information on several important dynamics

such as number of walks, diameter, and cliques (Takahashi

et al., 2012); therefore, the spectrum is more informative to

characterizing complex networks than modern metrics (Fujita

et al., 2017). Contemporary approaches have classified genes by

importance through nodal connectivity evaluations and pinpointed

dysfunction or distinguished biological conditions (Barabási and

Oltvai, 2004; Gu et al., 2012; Rahmatallah et al., 2013; Santos et al.,

2015).

Here, we present a functional analysis of five complex diseases

describing the genes underlying 4 SUDs and CVD, a commonly co-

occuring condition (Minhas et al., 2024). Moreover, we attempt to

elucidate key differences in classes of SUDs and their associations

to CVD, resulting in the prioritization of key disease-genes and

pathways through graph spectral clustering, which relies on graph

structure is and not limited to genomic intersections. We conduct a

graph spectral analysis of SUD and CVD related genomic studies

with functional KEGG pathways using the statGraph (Castro

Guzman et al., 2024) package and posit a comparative insight
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FIGURE 1

The framework of prioritizing pathways and genes using spectral clustering and a KL divergence. (A) Disorder-associated genes sets derived from

humans, acquired from DisGeNET and published sources, are prioritized from experimental analyses or from database mining and are subsequently

enriched for KEGG pathways. (B) Enriched pathways’ KGML files are then parsed in KNeXT as functional gene-gene networks. (C) KNeXT-generated

gene networks are hierarchically clustered through spectral clustering. (D) Post clustering, individual genes are assessed through KL divergence

against an opposing cluster, dotted green lines. (E) Genes in cluster k are compared to genes in cluster l and then the comparison is reversed where

genes in cluster l are compared to genes in cluster k. All genes with high Dg are compared to all pathways within its origin cluster. (F) The results of

this framework are Jaccard scores for all pathways in each cluster. KEGG pathways with a high Jaccard score have an abundance of top Dg genes,

which in turn, is driving distinction between clusters.

against other connectivity indices (Fujita et al., 2017) using high

fidelity pathways created by KNeXT (Castaneda and Baker, 2024).

By leveraging the topological information, the arrangement of

nodes and edges, offered by KEGG graphs, we demonstrate that

the spectral distribution aids in defining key divergences, or its

absence, between four of the following SUDs: AUD, CUD, OUD,

and NUD with its comorbidity, CVD. Moreover, we elucidated the

biological relevance of principle divergent-driving elements and

outline functional class differences between CUD and OUD.

2 Materials and methods

2.1 Datasets

Homo sapiens gene sets were gathered from publicly available

repositories and published sources (Figure 1A). Data were collected

from DisGeNET (Piñero et al., 2020) using the Harmonizome

web service (Rouillard et al., 2016). DisGeNET has been widely

used as a benchmark database (Barua et al., 2022; Gentili et al.,

2022) due to its comprehensive and curated information on

gene-disease associations (Piñero et al., 2020). For each SUD, we

used affiliated search terms, noting that the current terminology

for CUD has evolved but is not always used in existing data

repositories (Deak and Johnson, 2021). These terms include the

following: “alcohol use disorder” for AUD, “cocaine abuse” [sic]

for CUD, “nicotine dependence” for NUD, and “cardiovascular

pathology” for CVD. We combined “heroin dependence”, “opioid

use disorder”, and “morphine dependence” for our OUD gene set,

see Supplementary Table S1 for full list. Genes were then uploaded

to g:Profiler, ignoring ambiguous gene queries, which was set to

a g:SCS (Set Count and Sizes) threshold of 0.05. Published KEGG

CVD pathways were gathered from (Barua et al., 2022), which used
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Gene Expression Omnibus microarray datasets for assessing CVD

and all its risk factors. Neurological KEGG pathways were acquired

using the following Biological Relation Inference and Classification

Engine (BRITE) terms: Nervous system, Substance dependence,

and Neurodegenerative diseases. Additionally, we included the

pathway Neuroactive ligand-receptor interaction. All neurological

pathways derived from BRITE terms were used for systematically

characterizing synapses across regions of the brain (Bar-Shira et al.,

2015).

2.2 KEGG networks

Here, we focus on KEGG’s database which hosts a series of

biological systems maps that offer specific molecular pathways

based on highly curated and experimentally verified gene-gene,

gene-compound, and gene-pathway interactions (Kanehisa and

Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2023). KEGG is an

important resource because all molecular associations are stored

for secondary parsing and analyzing in a standard language: KEGG

Markup Language (KGML). KGML files can be readily parsed and

used with robust software packages including the following: KEGG

NetworkX Topological (KNeXT) Parser (Castaneda and Baker,

2024), graphite (Sales et al., 2012), KEGGParser (Arakelyan and

Nersisyan, 2013), among others (Nersisyan et al., 2014; Chanumolu

et al., 2021). KNeXT, in particular, focuses on the spatiotemporal

dynamics reflected in a KGML file to create high fidelity pathways

(Castaneda and Baker, 2024). All KEGG pathways were parsed

using the KNeXT parser, see Figure 1B. KNeXT creates high fidelity

genes-only pathways (Castaneda and Baker, 2024). For simplicity,

all pathways used NCBI gene identifiers, contained no compounds,

and are unweighted and undirected. For full list of all KEGG

pathways, see Supplementary Table S2.

2.3 Spectral discrimination

In this study, we used the statGraph (Castro Guzman

et al., 2024) package in R version 4.3.1 (R Core Team, 2023).

statGraph features several tests for conducting spectral analyses

of graph lists. From this package, we used the Analysis Of

Graph Variability (anogva), Takahashi Test (takahashi.test), and

heirarchical clustering (hclust). anogva performs a statistical test

on a set of two or more graphs to determine if they are generated

by the same random process (Fujita et al., 2017). takahashi.test

conducts a statistical test to determine if two sets of graphs are

generated by the same random process (Takahashi et al., 2012;

Fujita et al., 2017). All tests used a seed set at one. hclust conducts

a hierarchical clustering of a list of graphs based on their spectral

distribution (Figures 1C, D). We used default parameters, which

include complete agglomerative clustering method with Silverman

bandwidth and exact spectral density.

2.4 Algorithmic comparisons

For baseline comparisons, we used common indices, which

included the following: degree, average betweenness centrality,

and closeness centrality (Fujita et al., 2017; Zito et al., 2021).

Implementation of these metrics was through NetworkX (Hagberg

et al., 2008). We used the Jensen-Shannon (JS) distance in the

SciPy version 1.5.0 package (Virtanen et al., 2020) to create distance

matrices for input into the AgglomerativeClustering function in the

Scikit-learn package (Pedregosa et al., 2011). The same parameters

to the hclust package were used with complete linkage.

2.5 Statistical comparisons

Statistical comparisons for graph performance was measured

using the Adjusted Rand Index (ARI) (Warrens and van der Hoef,

2022). For R analyses, we used the fossil package version 0.4.0

(Vavrek, 2011), and for Python analyses, we used the Scikit-learn

package (Pedregosa et al., 2011). Bothmetrics measure the accuracy

of clustering with ARI being adjusted for randomness. An ARI ≤ 0

is equivalent to random assignments (Yeung et al., 2003). ARI has

been used for comparisons of clustering performance in previous

works (Wu and Wu, 2020; Zelig et al., 2023).

2.6 Gene and pathway prioritization

To prioritize genes and pathways in biological clusters, we

modified a method developed by Dey et al. (2017), which uses KL

divergence to compare the distinctiveness of a gene, g, with respect

to any cluster l see Equation 1. Here, we used the entropy function

in the Scikit-learn package (Pedregosa et al., 2011).

KLg[k, l] =
∑

x∈X

pSk (x)× log
pSk (x)

pSl (x)
(1)

Let S = {S1, S2, S3, ...Sn} be a collection of KEGG pathways in

cluster k with vertex set, X. p is the degree distribution for any X

in any pathway in S compared to any X in any pathway in cluster l.

Thereby, for each cluster k, we measure the distinctiveness of each

gene as the minimum divergence (Equation 2).

Dg[k] = min
l 6=k

KLg[k, l] (2)

Thereby, genes with a maximum distinctiveness (Dg) are the

genes with the largest role in distinguishing cluster k from cluster

l. After identifying the genes with the highest Dg we use a Jaccard

index to determine the set similarity (Equation 3). Dk is the set of

genes with the highest Dg in cluster k and Sk is some pathway in

cluster k, see Figures 1D–F.

J(Dk, Sk) =
|Dk ∩ Sk|

|Dk ∪ Sk|
(3)

3 Results

3.1 Comparisons of KEGG enriched
pathway from DisGeNET derived gene sets

Our first analysis was to determine the significance of the

divergence between the four SUDs and CVD KEGG pathway
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TABLE 1 Results of test for the JS divergence between groups.

Source Comparison JS p

DisGeNET

Alla < 0.001 < 0.001

AUD vs CVD 0.016 0.39

CUD vs CVD 0.027 0.005

NUD vs CVD 0.030 0.12

OUD vs CVD 0.021 0.036

Benchmarked Brainb vs. CVDc 0.022 0.038

aAll refers to AUD vs CUD vs CVD vs NUD vs OUD. bPublished in Bar-Shira et al. (2015).
cPublished in Barua et al. (2022). Benchmarked: KEGG pathways used in published studies.

Bolded values emphasize statistical significance.

lists. Here, divergence refers to the disparate random processes

underlying a collection of graphs as defined by Takahashi et al.

(2012); Fujita et al. (2017). We compared each KEGG pathway list

derived from highly supported DisGeNET (Piñero et al., 2020) gene

sets. First, we used anogva to test the spectrum of all data. anogva

controls for Type I errors and is robust for unbalanced data (Fujita

et al., 2017). The results showed a significant JS divergence between

all five sets of graphs, see Table 1. Moreover, Takahashi’s Test

revealed a significant JS divergence between CUD andOUD against

CVD but not for AUD and NUD, see Table 1, which parallels past

epidemiological studies signifying the strong relationship between

AUD, NUD, and CVD (Yeates et al., 2015). Post Takahashi’s

Test, we then conducted a hierarchical agglomerative clustering

on the significant SUDs. Clustering quality was determined by

the ARI against commonly used algorithms (Fujita et al., 2017).

CUD had the highest ARI and outperformed all other connectivity

metrics, and OUD generated the highest ARI compared to baseline

measures (Figure 2).

3.2 Comparisons of benchmarked KEGG
pathways

From the perspective of KEGG pathway enrichment, there are

several factors that may generate inconsistent pathway inclusions

(Mubeen et al., 2022). In order to show the inherent functional

divergence between neurobiologically-derived gene sets and CVD,

we conducted an analysis on what we term “benchmarked” KEGG

pathways. Pathways are retrieved from published surveys or

extensive analyses which focused on KEGG function and require no

enrichment profiling. Additionally, these pathways have been used

or compared to benchmark data (Bar-Shira et al., 2015; Barua et al.,

2022). Takahashi’s test illustrates that KEGG pathways involved

in the brain are significantly divergent from KEGG pathways

involved in CVD, see Table 1. Furthermore, benchmarked KEGG

pathways scored the highest ARI of all other pathways (Figure 2).

Hence, evidence suggests that the sub-network of KEGG pathways

involved in the brain are structurally different when compared to

CVD, which is captured by the graph’s spectrum.

3.3 Analysis of top driving genes

For OUD and CUD, the two SUDs that significantly

differed in divergence, we used the highest Dg (Dey et al.,

FIGURE 2

Comparison of spectral clustering to commonly used algorithms.

DisGeNET-derived pathway groups include cocaine use disorder

(CUD) and opioid use disorder (OUD) compared to cardiovascular

disease (CVD). Benchmarked groups (BEN) are groups derived from

BRITE terms for nervous system classes and surveyed CVD

pathways. Spectral clustering outperformed all other algorithms.

2017) of each cluster to create gene sets which in turn

were used to rank each pathway by their composition using

Jaccard similarity. The results of an agglomerative clustering

between CUD and CVD illustrate two pathways, hsa00220

(arginine biosynthesis) and hsa00330 (arginine and proline

metabolism), are divergent from the rest of the maps, see

Figure 3. The top driving genes created gene sets that had the

highest similarity with arginine biosynthesis in cluster one and

gamma aminobutyric acid (GABAergic) synapse in cluster two

(Figure 3).

From the top driving genes in OUD vs CVD, the

pathways with the highest Dg defined tyrosine metabolism

and prion disease (Figure 4). In addition, the top driving

genes belonging to the GABAergic synapse in CUD are

similarly reflected in the benchmarked gene sets with

Glutamatergic synapse, another organismal/nervous system

pathway, being highly divergent (Supplementary Figures S1,

S2). Given that NF-kappa B signaling pathway was a top

driving pathway whose class is not similar to any SUD,

this implies an inherit distinctiveness between classes

of SUD and the brain in their comparison to CVD

(Supplementary Figures S1, S2).

3.4 Functional fingerprint

We illustrate a “network fingerprint”, as described in Cui

et al. (2015) between SUDs and CVD (Figure 5). CUD and OUD,

Figures 5A, B, respectively, differ based on the pathways included

in each cluster. Furthermore, the division is solely in metabolic

pathways in CUD, Figure 5A, while OUD differs in both human

diseases and metabolism (Figure 5B). A comprehensive difference

was generated between CUD and OUD (Figure 5C). An interesting

aspect is the role metabolism plays in both CUD and OUD’s largest

magnitude of difference, see Figure 5C.
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FIGURE 3

Agglomerative hierarchical clustering for CUD vs. CVD. The top driving genes are genes that have a high Dg and are listed according to their cluster,

which is color and shape coordinated. Furthermore, pathways with a high Jaccard index are bolded. Pathway hsa00220 is arginine biosynthesis and

hsa04727 is GABAergic synapse.

4 Discussion

Here, we demonstrated the utility of graph spectral clustering

for differentiating between the bases of comorbidity of disease.

The technique outlined reveals the effectiveness of assessing

the distinctions between classes of SUDs and a commonly

co-occurring disease, CVD. We have shown this method to

outperform other commonly used algorithms in classifying

KEGG pathways derived from SUDs and CVD gene sets.

Furthermore, we leveraged spectral clustering to rank pathways

according to their distinctiveness between the two conditions,

revealing a “network fingerprint” comparison, similarity described

in Cui et al. (2015). Our analysis pipeline finds differences

among disorders and identifies key pathways, which may have

therapeutic or diagnostic consequences. The facilitation of a

“network fingerprint” diagram aids in hypothesis building and

identifying key functional pathways. From these clusters, we can

characterize the associations between two diseases, which are

unmatched by KEGG pathway lists alone and other topology-based

methods.

KEGG is an important tool for disease study from a functional

perspective (Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa

et al., 2023). Surveys of KEGG pathways and disease interactions

infer novel association of overlapping risk factors (Barua et al.,

2022) and common disorders, (Li et al., 2008) given sets of

prioritized genes (Cirincione et al., 2018). Moreover, other analyses

rank and prioritize pathways by significance levels (Chu et al.,

2024). While these approaches are useful to generate new insights

in highly related diseases that have strong pathway sharing

within tissues, they do not provide adequate discernment for

two convergent disorders involving different tissues, which share

common and distinct biomarkers (Moon et al., 2025; Riley et al.,

2022; Gu et al., 2021; Daneshafrooz et al., 2022). Here, we have

emphasized pathways through graph connectivity, which does not

rely merely on pathway member composition. Hence, we propose

future usage for comparisons between disorders that exist in

different tissues and experience limited functional overlap, such

as certain comparisons of fibrotic disease (Gu et al., 2021) and

frontotemporal dementia (FTP) and amyotrophic lateral sclerosis

(ALS) (Daneshafrooz et al., 2022). While epidemiological studies

demonstrate a strong comorbidity between SUDs, defined here

as AUD, NUD, CUD, and OUD, and CVD (Gan et al., 2021;

Chelikam et al., 2022), our approach distinguishes the more

granular separation of SUDs and CVD based on their KEGG
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FIGURE 4

The results of the agglomerative hierarchical clustering for OUD vs. CVD. The top driving genes are genes which have a high Dg and are listed

according to their cluster, which is color coordinated. Furthermore, pathways with a high Jaccard index are bolded. Pathway hsa03050 is tyrosine

metabolism and pathway hsa05020 is prion disease.

pathway representations. We provide evidence to show that CUD

and OUD are significantly divergent to CVD while AUD and NUD

are not. This divergence may be explained by differences in how

these substances interact with the cardiovascular system (Havakuk

et al., 2017; Toska and Mayrovitz, 2023; Jalali et al., 2021) and areas

of the brain (Pando-Naude et al., 2021). Additionally, we highlight

the specific metabolic and neurological pathways and genes driving

these distinctions. The profile of these clusters would be useful in

disease state transition surveilling (Guo et al., 2021) and model

organism testing. For example, knockouts of genes involved in

these pathways may show insights for vulnerabilities to CVD for

a given SUD (Cacheiro et al., 2023).

While the main focus of this work was the divergence

created by each KEGG pathway, network merging is a crucial

aspect of heterogeneous graph development where integrating and

comparing graphs is essential (Chang et al., 2016; Zitnik et al.,

2024). Moreover, existing software analyses have limited scalability

on large data sets (Chang et al., 2016; Smedley et al., 2015). The

technique examined here may be applicable for automated KEGG

enrichment data set preprocessing, trimming, and curation (Orouji

et al., 2024).

Biologically, a synergism exists between the representative

genes from pathways with several high Dg genes. For example,

tyrosine metabolism disruption (Rathor and Ch, 2023) and

OUD is known to affect circadian rhythms (Puig et al., 2023).

Neurodegeneration-related pathways are linked to OUD-mediated

circadian rhythm disruption (Puig et al., 2023). The prioritized

pathways might imply novel transitory genes that are implicated

in circadian rhythm disruption as several glutaminergic synaptic

signaling genes were prioritized alongside the implications of

aromatic amino acid metabolism (Humer et al., 2020; Puig et al.,

2023). Moreover, “network fingerprinting” (Cui et al., 2015)

clustered prion disease with Type 2 diabetes and amyotrophic

lateral sclerosis, which implicates neurodegeneration playing a role

in complex diseases. In our CUD clusters, arginine has been studied

for its role in CVD prevention and treatment (Tousoulis et al.,

2007; Bahadoran et al., 2016). GABA plays a role in both CVD

(Bu et al., 2021) and CUD (Wydra et al., 2024). GABA has shown

promise as pharmacotherapy for addiction (Wydra et al., 2024),

and accordingly, arginine has been shown to synaptically interact

with GABA in the brain of rats (Shen et al., 1997). The synergism

of these pathways and their divergent-driving genes might have
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FIGURE 5

All similarity results sorted by KEGG class. Pathways that cluster separately are highlighted in yellow. (A) Similarity results for CUD. As shown, two

metabolism pathways diverged compared to the rest of the results. (B) Similarity results for OUD. For OUD, metabolism and two human disease

pathways drove the cluster separation. (C) The di�erences in magnitude of Jaccard similarity between CUD and OUD. As shown, metabolism plays

the largest role in the di�erences between both CUD and OUD.
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implications in co-occurring (Stoychev et al., 2021) CVD and CUD

treatment and study (Wilson et al., 2001).

A limitation of this study is the statistical tests in statGraph

do not account for multiple group memberships. Hence, diseases

with high overlap of KEGG pathways will create difficulties

in using the tools outlined in this analysis. An additional

limitation of this study is the high redundancy of KEGG pathways

(Karp et al., 2021), which creates issues in finding differences

in topology, gene-gene connectivity, as suggested by low ARI

scores. Moreover, several software exist for KEGG enrichment

(Mubeen et al., 2022), and the pathway database itself may

be biased to understudied genes, such as non-coding RNA

genes (Li et al., 2022). Consequently, the topology and genomic

composition of KEGG pathways are not comprehensive (Wilk

and Braun, 2017; Gable et al., 2022). While a survey of all

enrichment software and KEGG parsers is beyond the scope of

this article, we note that use of different combinations of software

and thresholds may produce varying results. Moreover, discrete

combinations of search terms for disorders in DisGeNET may

yield larger or smaller gene sets, which would render disparate

amounts and combinations of KEGG pathways. Hence, the use of

benchmarked data served solely to indicate an inherent divergence

in pathways representing the brain (Bar-Shira et al., 2015) and

pathways underlying a comprehensive study of CVD (Barua et al.,

2022).

We have demonstrated how underexplored network features

(Santos et al., 2015) may be employed to prioritize or differentiate

disorders. In previous functional studies, SUDs are coalesced

(Li et al., 2008), which overlooks underlying differences. We

leveraged the divergence of the collection of KEGG graphs to

prioritize genes that are implicated in driving the functional

clustering between SUD and CVD. The pathway and genes

prioritized are biologically relevant and might have implications

for future studies in knockout or other experimental analyses.

Additionally, the pathway and gene rankings could justify inclusion

or exclusion in large-scale or heterogeneous network analyses of

multiple disorder studies (Xiong et al., 2019; Gu et al., 2022).

Furthermore, the magnitude of the pathway ranking differences

decomposes the complexity of a collection of KEGG graphs,

conferring critical visualization and processing where KEGG lists

alone cannot provide.

The graph spectrum reveals a distinction among disorders that

are co-occurring and can allow visualization of the relationships

among multiple disorders simultaneously. Spectral clustering

outperformed other commonly used algorithms in classifying

clusters of a psychiatric disorder and a common multimorbidity

or comorbidity in CVD, and thus its application to other

comorbidities observed in SUDs, psychiatric disorders, and other

complex disease is promising. Furthermore, the method can

characterize the pathways that drive each cluster’s distinction

to reveal insights about their biological implications, potential

diagnostic, and therapeutic targets. In contrast to many pathway

overlap approaches that rely on data from disease that involve

a limited tissue or cell population, the method introduced here

has implications for identifying genes that drive co-morbid

conditions in distinct diseases encompassing a diverse range of

tissues and embodying systems networks that have little functional

pathway overlap.
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