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Introduction: Cocaine use disorder (CUD) is a chronic brain condition 
that severely impairs cognitive function and behavioral control. The neural 
mechanisms underlying CUD, particularly its impact on brain integration–
segregation dynamics, remain unclear.

Methods: In this study, we integrate dynamic functional connectivity and graph 
theory to compare the brain state properties of healthy controls and CUD patients.

Results: We find that CUD influences both integrated and segregated states, 
leading to distinct alterations in connectivity patterns and network properties. 
CUD disrupts connectivity involving the default mode network, frontoparietal 
network, and subcortical structures. In addition, integrated states show distinct 
sensorimotor connectivity alterations, while segregated states exhibit significant 
alterations in frontoparietal–subcortical connectivity. Regional connectivity 
alterations among both states are significantly associated with MOR and H3 
receptor distributions, with integrated states showing more receptor-connectivity 
couplings. Furthermore, CUD alters the positive-negative correlation balance, 
increases functional complexity at threshold 0, and reduces mean betweenness 
centrality and modularity in the critical subnetworks. Segregated states in CUD 
exhibit lower normalized clustering coefficients and functional complexity at a 
threshold of 0.3. We also identify network properties in integrated states that are 
reliably correlated with cocaine consumption patterns.

Discussion: Our findings reveal temporal effects of CUD on brain integration 
and segregation, providing novel insights into the dynamic neural mechanisms 
underlying cocaine addiction.

KEYWORDS

cocaine use disorder, resting-state functional MRI, integration–segregation, dynamic 
functional connectivity, graph theory

1 Introduction

Cocaine use disorder (CUD) is a chronic brain disorder characterized by compulsive 
cocaine use despite adverse consequences, difficulty in withdrawal, and intense cravings. With 
a worldwide prevalence of cocaine consumption rate surpassing 0.4% (World Drug Report, 
2023; Morelos-Santana et al., 2024), CUD has emerged as a major public health concern. In 
the United States, it is reported that over 1.4 million individuals aged 12 years and above 
experienced a CUD in 2021 (Morelos-Santana et al., 2024). CUD has widespread effects on 
individuals, including reduced reward sensitivity (Volkow et al., 2010), impaired emotional 
regulation (Koob, 2008), and memory deficits (Hyman, 2005). Moreover, patients with CUD 
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face an increased risk of developing mental and behavioral disorders 
(Oliva et al., 2021; Suchting et al., 2019). These severe cognitive and 
behavioral impairments highlight the necessity to elucidate the 
underlying neurobiological mechanisms of CUD, which will facilitate 
the development of novel therapeutic treatments.

Previous neuroimaging studies, primarily based on static functional 
networks derived from the total scan duration, have provided insights into 
the neural mechanisms of CUD to some extent. For instance, increased 
functional connectivity between the ventral caudate and the subgenual 
anterior cingulate cortex has been observed in CUD patients, indicating 
heightened impulsivity and higher relapse rates (Contreras-Rodríguez 
et al., 2015). Altered connectivity between reward networks and executive 
control networks has been associated with deficits in cognitive control 
(Hobkirk et al., 2019). Default mode network (DMN) related functional 
connectivity abnormalities have also been widely reported in addiction, 
impacting self-awareness and the regulation of negative emotions (Zhang 
and Volkow, 2019). Moreover, functional connectivity profiles in CUD 
have been found to correlate with the spatial densities of dopamine and 
serotonin receptors (Ricard et al., 2024). However, conventional static 
connectivity provides only an average representation of spatiotemporal 
patterns, neglecting the dynamic nature of neural processes. In contrast, 
dynamic functional connectivity (DFC) offers a more comprehensive 
examination of brain states by tracking changes in functional connectivity 
over time (Hutchison et al., 2013). One of the most widely used methods 
for investigating DFC is the sliding window approach (Allen et al., 2014), 
which divides functional magnetic resonance imaging (fMRI) time series 
into temporal windows, computes interregional correlations in each 
window, and generates a time-resolved sequence of connectivity matrices. 
A recent study using group ICA and a sliding window approach 
successfully identified distinct brain states in healthy controls and CUD 
patients, revealing state-dependent and state-shared hyperconnectivity 
patterns as well as differences in dynamic state proportions and duration 
(Cong et al., 2024).

Despite current progress, our understanding of brain dynamics 
underlying CUD remains incomplete. Specifically, the formal 
characterization of integration–segregation dynamics across time in 
CUD is still lacking. These two core attributes of brain function, 
commonly quantified using graph theory analysis, reflect distinct 
organizational principles (Sporns, 2013): integration supports efficient 
global communication across the whole network, while segregation 
facilitates specialized information processing within modules. For 
example, segregation is more prominent in simple motor tasks that 
involve independent processing of subsystems, whereas integration 
appears to dominate in cognitively challenging tasks that require 
coordination among multiple subsystems (Cohen and D’Esposito, 2016). 
Various addictive disorders have been shown to impact integration–
segregation processes in the brain based on static functional networks. 
Alcohol use disorder reduced segregation within sensorimotor and 
association networks while adversely affecting network integration and 
striatal efficiency (Wang et al., 2024; Sjoerds et al., 2017). Male patients 
with Internet gaming disorder exhibited reduced modularity segregation 
(Zeng et al., 2021). Analyses of white matter functional networks in 
nicotine addiction demonstrated reduced segregation but relatively 
intact integration (Fan et  al., 2023). In particular, analyses of static 
networks in CUD have provided substantial evidence of the altered 
integration and segregation. Connectome analyses revealed increased 
global connection strength and reduced global efficiency (the capacity 
for information transfer across the entire network, which reflects 
integration), local efficiency (the effectiveness of information processing 

within  local subnetworks, which reflects segregation), and small-
worldness (which quantifies the balance between local clustering and 
global integration, reflecting the integration–segregation tradeoff) in 
CUD cohorts (Wang et al., 2015). Differences in network efficiency were 
also observed between early and long-term abstinence in cocaine 
addiction (Zilverstand et  al., 2023). Module-level analyses revealed 
altered connectivity between the salience network and DMN (Liang 
et al., 2015), indicating a disrupted segregation function. Moreover, at the 
neurochemical level, CUD is characterized by dopaminergic 
hypofunction, which is suggested to be associated with increased global 
integration, decreased segregation, and enhanced connections between 
the normally negatively correlated task-positive and default-mode 
networks (Carbonell et al., 2014; Shine et al., 2019). These abnormalities 
in static network structure or neurotransmitter systems likely reflect or 
elicit integration–segregation deficits in a finer-grained temporal scale of 
cocaine addiction, yet empirical research remains lacking.

In this study, we employed a graph theory-based framework to 
explore integration, segregation, and their dynamic instantiation (Shine 
et al., 2016). This method has been widely applied to extract reliable 
representations of predominantly integrated and segregated states from 
DFC, as well as the temporal transitions between them. These states have 
been shown to reflect cognitive and motor functions (Shine et al., 2016), 
exhibit different couplings with underlying structural connectivity 
(Fukushima et al., 2018), and be influenced by levels of consciousness 
(Luppi et al., 2019, 2021b) and psychedelics (Luppi et al., 2021a). Here, 
we aimed to explore the time-resolved effects of CUD on the brain’s 
integration–segregation states. We first examined differences in state 
time series between healthy controls and CUD. Subsequently, 
we evaluated the alterations of dynamic functional connectivity induced 
by CUD in each state and explored possible correlations with spatial 
receptor and transporter densities. We  also employed graph theory 
analysis to reveal aberrant network organization. Our focus was not only 
on the shared characteristics of integrated and segregated states but also 
on their differences to understand the temporal effects of CUD on brain 
function comprehensively. Finally, we correlated network properties with 
cocaine consumption patterns to show their potential for tracking 
disease trajectories.

2 Materials and methods

2.1 Methods overview

This study investigated the impact of cocaine use disorder (CUD) 
on brain dynamic integration and segregation. We analyzed resting-
state fMRI data from the publicly available SUDMEX-CONN dataset 
(National Institute of Psychiatry, Mexico City, Mexico) (Angeles-
Valdez et al., 2022) to test whether CUD would disrupt integrated and 
segregated functional states, leading to altered connectivity patterns 
and network topology. First, we preprocessed the functional images 
using fMRIPrep (Poldrack Lab, Stanford, CA, United States) (Esteban 
et al., 2019) and denoised them with XCP-D (Lifespan Informatics and 
Neuroimaging Center, Philadelphia, PA, United States) (Mehta et al., 
2024), followed by parcellation using brain atlases. Second, we analyzed 
dynamic functional connectivity using the sliding window approach 
(Allen et al., 2014) and cartographic profiling (Shine et al., 2016) to 
extract representative integrated and segregated states. Third, 
we employed network-based statistic (NBS) to analyze connectivity 
differences (Zalesky et al., 2010) and explored potential associations 
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with receptors and transporters. Finally, we examined differences in 
network properties using graph theory analysis and investigated their 
possible associations with cocaine consumption patterns.

2.2 Participants

This study utilized neuroimaging data from the publicly available 
SUDMEX-CONN dataset (Angeles-Valdez et  al., 2022). All 
procedures adhered to the Declaration of Helsinki and were approved 
by the Ethics Committee of the Instituto Nacional de Psiquiatría. All 
participants, including healthy controls (HCT) and patients with 
CUD, provided oral or written informed consent. The inclusion 
criteria of this study for CUD patients are the following: (1) Active 
cocaine use or abstinence duration less than 60 days prior to the scan; 
(2) minimum cocaine use frequency of 3 times weekly; and (3) no 
sustained abstinence periods exceeding 60 consecutive days within the 
last 12 months. The participants were required to abstain from any 
drug use prior to and on the day of the study. After excluding subjects 
with excessive head motion (mean framewise displacement 
>0.55 mm) (Ricard et al., 2024; Parkes et al., 2018), the final cohort 
comprised 130 subjects (62 HCT and 68 CUD, 83% male, mean 
age = 30.90 ± 7.69, age range = 18–50, years since the beginning of 
cocaine use: 10.24 ± 6.81, and cocaine age of onset: 21.13 ± 5.80).

2.3 MRI data acquisition

The structural and functional data were acquired using a Philips 
Ingenia 3 T MR system with a 32-Channel dS Head Coil (Philips 
Healthcare, Eindhoven, Netherlands). Briefly, the resting state fMRI data 
was acquired using a gradient recalled echo planar imaging sequence 
(dummies = 5, TR = 2,000 ms, TE = 30.001 ms, 3.0-mm isotropic voxels, 
flip angle = 75°, field of view [FOV] = 240 mm × 240 mm, slice 
acquisition order = interleaved (ascending), number of slices = 36, and 
phase encoding direction = AP). The participants viewed a fixation cross 
during the 10-min scan. T1w images were collected using a three-
dimensional Fast Field Echo with SENSitivity Encoding (FFE SENSE) 
sequence (repetition time [TR] = 7 ms, echo time [TE] = 3.5 ms, 
FOV = 240 mm × 240 mm, number of slices = 180, gap = 0, 
plane = sagittal, and 1.0-mm isotropic voxels [the first five participants 
were acquired with a voxel size = 0.75 mm × 0.75 mm × 1 mm]).

2.4 Preprocessing and time series 
generation

The fMRIPrep was utilized to perform data preprocessing 
(Esteban et al., 2019; Esteban et al., 2020). The TI-weighted (T1w) 
image preprocessing included intensity non-uniformity correction, 
skull stripping, tissue segmentation (cerebrospinal fluid, white matter, 
and gray matter), brain surface reconstruction, nonlinear registration, 
and normalization to standard volumetric spaces. Functional scans 
underwent head motion correction and slice-time correction and 
were co-registered to the T1w reference. Confound time series, 
including framewise displacement (FD) and component-based 
method (CompCor), were calculated.

The XCP-D was employed to denoise the preprocessed fMRI data 
with the “acompcor_gsr” strategy (Mehta et al., 2024). This process 

included discarding the first five non-steady volumes, removing the 
top 5 aCompCor components, and 6 motion parameters with their 
temporal derivatives. Spatial smoothing was applied using a Gaussian 
kernel (Full Width at Half Maximum [FWHM] = 8 mm). Following 
previous studies (Ricard et  al., 2024; Chan et  al., 2021), 
we implemented global signal regression, as evidence indicated that a 
substantial portion of the global signal reflects spatially non-specific 
noise induced by head motion (Power et al., 2014; Power et al., 2015; 
Power et al., 2017; Satterthwaite et al., 2013). Explicitly removing the 
global signal effectively minimizes these known artifacts (Power et al., 
2014; Satterthwaite et al., 2013; Yan et al., 2013).

To extract regional time series, we parcellated the cleaned data 
using a 232-node atlas (named Schaefer-232), which combines the 
Schaefer-200 cerebral atlas (Computational Brain Imaging Group, 
Singapore) (Schaefer et al., 2018) with the Melbourne subcortical atlas 
(scale-2) (systems lab, Melbourne, VIC, Australia) (Tian et al., 2020). 
This widely adopted atlas produces network topologies that are highly 
representative among available parcellation schemes (Luppi and 
Stamatakis, 2021). We applied band-pass filtering (0.01–0.08 Hz) to 
focus on the frequency range most relevant to resting-state functionality 
(Deco et  al., 2017; Deco et  al., 2021). For validation purposes, we 
provided results using a different Brainnetome atlas (Brainnetome 
Center, Beijing, China) (Fan et al., 2016) in Supplementary material.

2.5 Dynamic functional connectivity 
analysis

2.5.1 Sliding window approach
We employed an overlapping sliding window approach to 

construct dynamic functional connectivity (Allen et  al., 2014) 
(Figure  1A). A 44-s (22 TR) window with 1-TR steps was used, 
aligning with previous studies (Luppi et al., 2019, 2021a). Within each 
window, Pearson correlations between brain regions were calculated 
to generate dynamic connectivity matrices.

2.5.2 Cartographic profiling
The cartographic profile method was used to characterize the 

integration and segregation of dynamic networks (Shine et al., 2016; 
Fukushima et al., 2018; Luppi et al., 2019, 2021a; Zarkali et al., 2022). 
At each time t  we applied the Louvain algorithm to identify community 
structures, using an asymmetric version for signed networks (Rubinov 
and Sporns, 2011). The community label of each node is iteratively 
adjusted to maximize the modularity function, tQ :
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where v represents the total functional weight, ijw  denotes the signed 
connection weight between the regions i and j , ije  is the corresponding 
chance-expected connection weight, and 

i jM Mδ  equals 1 if the regions i 
and j  are in the same module and 0, otherwise; the symbols “+” and “–” 
represent the positive and negative edges, respectively.

The maximum tQ  value represents the optimal modular structure 
at the time t , characterized by strong positive within-module 
connections and weak or negative between-module connections 
(Sporns and Betzel, 2016). We generated a consensus partition by 
repeating this process 100 times with the resolution parameter γ = 1.
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Next, based on the identified network modules, we calculated the 
participation coefficient and within-module degree Z-score for each 
region. The participation coefficient was defined as
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where itK  represents the total positive weight of the region i at the 
time t , istK  represents the positive weight between the region i and the 
other regions in the module s at the time t , and Mn  is the number of 
modules in the network. The value of the participation coefficient 

ranges from 0 to 1, quantifying the dispersion of regional connections 
across modules. Higher participation coefficients suggest that 
connections are distributed across multiple modules, supporting 
intermodular information integration. The within-module degree 
Z-score was computed as

 ist
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where istK  represents the total connection weight between the 
region i and other regions in the module s at the time t , and istK  and 

istKσ  are the mean and standard deviation of K  across all nodes in the 

FIGURE 1

Integrated and segregated dynamic states identified using cartographic profile analysis. (A) Dynamic functional connectivity is computed using sliding 
window correlations. At each time window, participation coefficients and within-module degree Z-scores are calculated for each region and 
aggregated into a joint histogram as the cartographic profile. The k-means clustering (k = 2, 300 repetitions) was applied to the cartographic profiles of 
each subject, generating optimal subject-level state time series. (B) The mean profile and centroids in HCT and CUD groups for the integrated state. 
(C) The mean profile and centroids in HCT and CUD groups for the segregated state. Brain regions are organized by Yeo 7 functional networks and 
subcortical structures (VIS, visual network; SMN, sensorimotor network; DAN, dorsal attention network; VAN, ventral attention network; FPN, 
frontoparietal network; DMN, default mode network; SUB, subcortical structures).
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module s. A higher within-module degree Z-score indicates a crucial 
role in internal information flow.

The participation coefficients and within-module degree Z-scores 
of all nodes were aggregated into a joint histogram, representing the 
“cartographic profile” at the time t  (Shine et al., 2016) (Figure 1A). 
Each subject had 295 cartographic profiles.

2.5.3 Integrated and segregated states
We applied the k-means clustering algorithm to classify each 

subject’s cartographic profiles into two clusters, which correspondingly 
separated the dynamic functional connectivity (Shine et al., 2016; Luppi 
et al., 2019, 2021a) (Figure 1A). We used the Pearson correlation as the 
distance metric, repeated clustering 300 times with random 
initializations, and selected the optimal separation as the final solution. 
Clusters with higher mean participation coefficients were identified as 
“integrated” states, while those with lower coefficients were labeled as 
“segregated” states (Shine et al., 2016). In this study, we focused on 
cluster number k = 2, as it reflects two extremes of topological properties. 
Using the Silhouette score, we  also evaluated clustering quality for 
k = 2–7. We  calculated each subject’s average dynamic functional 
connectivity in each state as state-specific centroids. We organized brain 
regions according to the Yeo 7 functional networks (Computational 
Brain Imaging Group, Singapore) and subcortical structures. The 
functional networks included the visual network (VIS, involved in 
processing visual information and spatial perception); the sensorimotor 
network (SMN, responsible for motor control and somatosensory 
processing); the dorsal attention network (DAN, associated with goal-
directed attention and visuospatial processing); the ventral attention 
network (VAN, related to stimulus-driven attention and the detection of 
salient stimuli); the frontoparietal network (FPN, implicated in cognitive 
control and executive functions); and the default mode network (DMN, 
engaged in self-referential thinking and mind-wandering). Additionally, 
subcortical structures (SUB) were included to account for their role in 
regulating autonomic functions and reward processing. These 
abbreviations were used throughout the text and figures to facilitate the 
interpretation of network analysis results.

2.5.4 Dynamic measures
To characterize temporal dynamics of brain states, we computed 

five measures from the state time series obtained through k-means 
clustering: (1) fraction time (the proportion of time spent in each 
state), (2) dwell time (the average duration of continuous periods in 
each state), (3) total transitions (the number of transitions between 
states), (4) sample entropy (the regularity of state patterns), and (5) 
Lempel–Ziv complexity (pattern diversity in state sequences).

2.6 Graph theory analysis

We employed multiple global graph metrics from the Brain 
Connectivity Toolbox (Computational Cognitive Neuroscience 
Laboratory, Bloomington, IN, United States) (Rubinov and Sporns, 
2010) to systematically examine network-level differences between 
HCT and CUD conditions. Our analysis focused on three aspects 
of brain network properties: strength and efficiency metrics, 
small-world properties, and community structure. Following prior 
recommendations (Van Den Heuvel et al., 2017), we used weighted 
matrices to preserve the continuous nature of functional 
connections. This analysis was applied to both integrated and 

segregated state centroids, as well as the corresponding 
subnetworks identified through NBS (Morand-Beaulieu et  al., 
2023; Myung et al., 2016; Román et al., 2017) (see Section 2). Note 
that it is meaningful to evaluate segregation metrics during 
integrated states or integration metrics during segregated states, 
as these properties are neither dichotomous nor mutually exclusive 
(Luppi et al., 2021a), allowing for a nuanced characterization of 
dynamic brain states.

Specifically, network measures related to strength and efficiency 
include positive strength ( posS , mean node-level positive strength), 
negative strength ( negS , mean node-level negative strength), global 
efficiency ( globalE , average inverse shortest path length in the whole 
network), local efficiency ( localE , average inverse shortest path length 
in the neighboring network), and functional complexity at different 
thresholds (Zamora-López et al., 2016) (functional complexity reflects 
the similarity between the empirical connectivity distribution and a 
uniform distribution). Small-world properties include the clustering 
coefficient (C, the mean tightness of connections between nodes and 
their neighbors), characteristic path length (L, average shortest path 
length between nodes in the network), normalized clustering 
coefficient (nC), normalized characteristic path length (nL), and 
small-worldness (SW, the ratio of the normalized clustering coefficient 
and normalized characteristic path length). The measures associated 
with community structure include mean betweenness centrality 
(Girvan and Newman, 2002) (mBC, the average role of nodes as 
intermediaries in the shortest paths) and modularity (Q, a measure of 
the quality of community partitioning). A detailed information on 
these graph theory measures is provided in Supplementary information.

2.7 Statistical analysis

Network-based statistic (NBS) was employed to examine cocaine-
induced differences in dynamic functional connectivity across 
integrated and segregated brain states (Zalesky et al., 2010). NBS is 
well-suited for network data, providing greater statistical power than 
multiunivariate analyses. This approach begins by performing single 
statistical tests for each connection to create a statistical matrix. 
Subsequently, it applies thresholding to identify significant 
connections and forms connected components, whose statistical 
significance is evaluated against null models generated through 
random permutations. We  conducted an analysis of covariance 
(ANCOVA) for edgewise statistical tests, controlling for age, sex, 
education, and mean framewise displacement, and chose the 
component forming threshold as 0.05. Robust analyses using the 
Brainnetome atlas and a stricter threshold (0.01) are provided in 
Supplementary material.

Inspired by previous research linking static connectivity 
patterns of CUD to neurotransmitter receptor densities (Ricard 
et  al., 2024), we  investigated associations between dynamic 
functional connectivity alterations and neurotransmitter 
expression in integrated and segregated states. Using Neuromaps 
(Markello et al., 2022), we extracted receptor and transporter data 
for nine neurotransmitters and parcellated them using the same 
atlas to derive their topological distribution. We  computed 
Spearman correlations between regional receptor and transporter 
densities and the number of significantly altered connections 
identified through NBS, as Spearman correlation is appropriate 
given the abnormally high values of these two measures observed 
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in specific brain regions (Ricard et  al., 2024). The statistical 
significance was determined using permutation tests (10,000 
permutations): spin-tests for cortical regions with spatial 
autocorrelation preserved (Váša et  al., 2018), and random 
shuffling for subcortical regions within each hemisphere 
(Alexander-Bloch et  al., 2018; Markello and Misic, 2021). The 
p-values were false discovery rate (FDR)-corrected for multiple 
receptors and transporters. For receptors and transporters with 
multiple density maps,we  performed additional correlation 
analyses as reproducibility tests. To further assess the robustness 
of our findings, we performed correlation analyses based on the 
Brainnetome atlas. The main text focused on significant 
correlations across discovery analysis, reproducibility tests (when 
multiple maps were available), and cross-atlas validation.

The graph theory metrics were compared between HCT and CUD 
groups using ANCOVA, adjusting for age, sex, education, and mean 
framewise displacement. FDR correction was applied for integrated 
and segregated states. We then conducted Pearson’s partial correlation 
analyses to investigate potential relationships between network 
metrics and cocaine consumption patterns (years since the beginning 
of cocaine use and cocaine age of onset). We  controlled age, sex, 
education, and mean framewise displacement as covariates and set the 
significance level at p < 0.05. Given the exploratory nature of the 
analysis, no multiple comparison corrections were applied (Luppi 
et  al., 2021a). To minimize false positives, only significant results 
across both atlases were reported in the main text, indicating 
robustness across different atlas types.

3 Results

3.1 Preserved integration–segregation 
dynamics under CUD

We employed cartographic profile analysis to classify dynamic 
functional connectivity into integrated and segregated states. This 
approach enabled us to investigate the underlying brain dynamics in 
cocaine use disorder (CUD).

We validated the effectiveness of this method by showing clustering 
performance. As shown in Figures 1B,C, the approach successfully 
identified clusters with distinct topological properties, despite subtle 
differences in their centroids. The mean cartographic profiles aligned 
well with previous findings (Shine et al., 2016; Luppi et al., 2021b), with 
integrated states showing significantly higher mean participation 
coefficients than segregated states in both healthy controls (HCT) and 
CUD groups (Supplementary Figure 1). The Brainnetome atlas analysis 
yielded similar results, confirming the robustness 
(Supplementary Figure 2). Moreover, cluster quality assessment using 
Silhouette scores (k = 2–7) revealed optimal clustering at k = 2 
(Supplementary Figure 3), supporting the integrated-segregated state 
classification. The fraction of time spent in the integrated state for HCT 
(mean = 0.64, standard deviation [SD] = 0.11) was also consistent with 
previous studies (Shine et al., 2016; Luppi et al., 2021a, 2021b).

The analysis of temporal dynamics, including fraction time, dwell 
time, total transitions, sample entropy, and Lempel–Ziv complexity, 
showed no significant differences between CUD and HCT 
(Supplementary Table  1), suggesting preserved temporal state 
dynamics in CUD.

3.2 Temporal effects of CUD on brain 
connectivity

Next, we  explored the effects of cocaine on brain states by 
examining functional connectivity patterns. Using NBS, we identified 
significant network alterations between HCT and CUD for both 
integrated and segregated dynamic states (integrated state p = 0.046; 
segregated state p = 0.017) (Figures  2A, 3A). The majority of 
significant connectivity showed increased strength in the CUD 
condition. Given the widespread connectivity alterations, 
we quantified the total count of altered edges for each brain region and 
mapped these onto cortical and subcortical structures (Figures 2B, 
3B). In the integrated state, the most pronounced changes occurred in 
the left prefrontal cortex, precuneus posterior cingulate cortex, and 
right precentral ventral region. The segregated state showed the 
highest edge counts in the right inferior parietal lobule, right 
precentral ventral region, prefrontal cortex, and left anterior putamen. 
Network-level analysis revealed that in the integrated state, significant 
connectivity alterations were most prominent between DMN-SMN, 
DMN-DAN, DMN-VAN, and SUB-FPN, as well as within DMN and 
SMN (Figure  2C). The segregated state showed major alterations 
between SUB-FPN, DMN-DAN, DMN-VAN, and within DMN 
(Figure 3C). These patterns were robust across the Brainnetome atlas 
and threshold 0.01 (Supplementary Figures 4, 5), except for weak 
DMN-VAN alterations in the segregated state using the Brainnetome 
atlas. While both dynamic states showed similar alteration patterns, 
notable differences emerged, especially within SMN and between 
SMN-DMN and SUB-FPN (Supplementary Figure 6).

We computed Spearman’s correlations between the spatial 
distribution of regional significant edge counts and neurotransmitter 
receptor and transporter densities (Figures  2D,E, 3D,E). In the 
integrated state, significant correlations (FDR-corrected) were found 
with receptor densities of 5HT4 (ρ = 0.25, p = 0.034), 5HT6 (ρ = 0.20, 
p = 0.034), MOR (ρ = 0.37, p = 0.008), H3 (ρ = 0.31, p = 0.008), 
mGluR5 (ρ = 0.23, p = 0.034), CB1 (ρ = 0.29, p = 0.013), and M1 
(ρ = 0.21, p = 0.043). These associations remained robust when tested 
using the Brainnetome parcellation (Supplementary Table  2) and 
additional positron emission tomography (PET) maps (when 
available) (Supplementary Table  3). In the segregated state, edge 
patterns significantly correlated with receptor and transporter 
densities of 5HT4 (ρ = 0.26, p = 0.015), MOR (ρ = 0.45, p = 0.002), 
NET (ρ = −0.25, p = 0.026), H3 (ρ = 0.31, p = 0.008), D1 (ρ = 0.27, 
p = 0.029), and CB1 (ρ = 0.33, p = 0.003). However, only MOR and H3 
receptor correlations remained consistent across the Brainnetome 
parcellation (Supplementary Table 4) and additional PET maps (when 
available) (Supplementary Table 5).

3.3 Network organization changes across 
different dynamic states

In addition to changes at the functional connectivity level, CUD 
may also disrupt the global topological organization of functional 
networks in both integrated and segregated states. To test this 
hypothesis, we compared three categories of topological properties 
between HCT and CUD conditions and examined whether these 
metrics showed variability across different states. Graph theory 
metrics were applied to both dynamic functional states and 
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FIGURE 2

Cocaine-induced changes in dynamic functional connectivity of the integrated state. (A) Network-based statistic (NBS) analysis showing significant 
connectivity differences (red: HCT > CUD; blue: CUD > HCT). These values were obtained by taking the differences between the Fisher Z-transformed 
correlation coefficients and converting them back to correlation values. (B) The count of significant edges at each region rendered on the cortical 
surface and subcortical regions. (C) Network-level analysis showing total significant edge count within and between functional networks. 
(D) Significance of correlations between regional edge counts and neurotransmitter receptor/transporter densities (FDR-corrected p-values shown as 
negative logarithms). Red squares indicate p < 0.05 across discovery, replication (when applicable), and cross-atlas analyses. (E) Spearman’s correlation 
coefficients between regional edge counts and receptor/transporter densities.

FIGURE 3

Cocaine-induced changes in dynamic functional connectivity of the segregated state. (A) NBS analysis showing significant connectivity differences 
(red: HCT > CUD; blue: CUD > HCT). (B) The count of significant edges at each region rendered on the cortical surface and subcortical regions. 
(C) Network-level analysis showing total significant edge count within and between functional networks. (D) Significance of correlations between 
regional edge counts and neurotransmitter receptor/transporter densities (the FDR-corrected p-values shown as negative logarithms). Red squares 
indicate p < 0.05 across discovery, replication (when applicable), and cross-atlas analyses. (E) Spearman’s correlation coefficients between regional 
edge counts and receptor/transporter densities.
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NBS-constrained subnetworks. While whole-network analysis 
revealed no significant differences between conditions (Supplementary  
Table 6), subnetwork analysis yielded several key findings. We also 
presented results of static subnetworks constrained by the 
corresponding NBS for comparison (Supplementary Table 7).

First, we  investigated subnetwork properties of strength and 
efficiency. CUD showed significantly higher positive strength 
(integrated: F = 9.84, p = 0.002; segregated: F = 7.76, p = 0.006) and 
lower negative strength (integrated: F = 13.97, p < 0.001; segregated: 
F = 13.09, p < 0.001) across both states (Figure 4A), suggesting altered 
balance between positive and negative correlation. Moreover, the 
global and local efficiency was higher in CUD compared to HCT 
during the integrated state (global: F = 15.71, p < 0.001; local: F = 5.54, 
p = 0.020) and no significant differences were found during the 
segregated state (Figure  4B). Analysis of functional complexity 
revealed threshold-dependent effects (Figure  4C). At threshold 0, 
CUD showed higher complexity across both states (integrated: 
F = 14.94, p < 0.001; segregated: F = 16.53, p < 0.001). However, at 
threshold 0.3, CUD exhibited significantly lower complexity only in 
the segregated state (F = 14.15, p < 0.001), indicating potential 
temporal preference. This result was robust across various thresholds 
(Supplementary Table 1). Moreover, no significant differences were 
observed in the complexity of static functional connectivity at the 
same high thresholds (Supplementary Table 7). The Brainnetome atlas 
analysis largely replicated our main findings (Supplementary Table 8), 
with the exception that global and local efficiency were significantly 
higher in CUD across both integrated and segregated states.

Next, we investigated the small-world properties of subnetworks 
(Figure 5). CUD exhibited higher clustering coefficients specifically in 
the integrated state (F = 15.31, p < 0.001), consistent with the pattern 
observed for local efficiency, as both metrics reflect specialized 
information processing capacity. However, when normalized by 
random networks, clustering coefficients were reduced in CUD during 
the segregated state (F = 8.95, p = 0.003). These results indicate that 
while CUD patients exhibited increased local connections, these 
connections may lack specificity and efficient organization. We did not 
find any significant differences in characteristic path length and 

normalized characteristic path length (Supplementary Figure 7). This 
discrepancy from global efficiency patterns may be  attributed to 
differences in computational approaches, particularly given the 
exclusion of infinite distances. No significant differences were found in 
small-worldness for dynamic states (Figure  5). Interestingly, static 
functional network analysis revealed significantly reduced small-
worldness in CUD (Supplementary Table 7), suggesting this alteration 
becomes more apparent when considering the entire scan duration. 
Validation using Brainnetome parcellation confirmed these findings 
(Supplementary Table 8), except that both the clustering coefficient and 
its normalized version showed significant differences across both states.

Finally, we examined community-related measures. Both mean 
betweenness centrality (integrated: F = 8.30, p = 0.005; segregated: 
F = 9.16, p = 0.003) and modularity (integrated: F = 7.79, p = 0.006; 
segregated: F = 13.34, p < 0.001) were significantly reduced in CUD 
compared to HCT (Figure  6). These cocaine-related alterations 
remained consistent across integrated and segregated states, suggesting 
uniform disruption in community structure across time. The 
Brainnetome atlas analysis replicated these findings 
(Supplementary Table 8).

3.4 Correlations with cocaine consumption 
patterns

In this section, we  presented exploratory analyses of the 
associations between network properties in the CUD condition and 
cocaine consumption patterns to understand their physiological 
significance. To ensure reproducibility, we analyzed data using both 
the Schaefer-232 and Brainnetome atlases, focusing on correlations 
that remained significant across both parcellations (Supplementary  
Figure 8). The reported Pearson’s partial correlation coefficients and 
p-values were calculated using the Schaefer-232 atlas. We  also 
performed the Shapiro–Wilk test for variables of identified significant 
associations and showed that the residuals of these measures did not 
deviate from the normal distribution (Supplementary Table  9), 
providing justification for this methodology.

FIGURE 4

Strength and efficiency alterations in NBS subnetworks induced by cocaine. (A) Violin plots of positive and negative strength across different conditions 
and dynamic states. (B) Violin plots of global and local efficiency across conditions and states. (C) Violin plots of functional complexity with various 
thresholds across conditions and states. The colored dots represent individual data, box limits indicate the 25th and 75th percentiles, horizontal lines 
mark the medians, white dots represent the mean, and whiskers cover the 1.5 interquartile range. The p-values were FDR-corrected using the 
Benjamini–Hochberg procedure; *p < 0.05 and **p < 0.001.
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FIGURE 5

Aberrant clustering coefficients of NBS subnetworks induced by cocaine. Violin plots comparing clustering coefficients, normalized clustering 
coefficients, and small-worldness between conditions for integrated and segregated states. The colored dots represent individual data, box limits 
indicate the 25th and 75th percentiles, horizontal lines mark the medians, white dots represent the mean, and whiskers cover the 1.5 interquartile 
range. The p-values were FDR-corrected using the Benjamini–Hochberg procedure; *p < 0.05 and **p < 0.001.

FIGURE 6

Cocaine-induced alterations in community structure. Violin plots showing mean betweenness centrality and modularity across conditions and states. 
The colored dots represent individual data, box limits indicate the 25th and 75th percentiles, horizontal lines mark the medians, white dots represent 
the mean, and whiskers cover the 1.5 interquartile range. The p-values were FDR-corrected using the Benjamini–Hochberg procedure;*p < 0.05 and 
**p < 0.001.

https://doi.org/10.3389/fnins.2025.1572463
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2025.1572463

Frontiers in Neuroscience 10 frontiersin.org

We found reliable correlations exclusively in the integrated state 
(Figure 7). Specifically, years since the beginning of consumption of 
cocaine were negatively correlated with negative strength (r = −0.34, 
p = 0.0096), mean betweenness centrality (r = −0.26, p = 0.0484), and 
modularity (r = −0.30, p = 0.0235), while positively correlated with 
functional complexity at threshold 0 (r = 0.28, p = 0.0319). Cocaine 
age of onset showed positive correlations with negative strength 
(r = 0.34, p = 0.0081) and modularity (r = 0.26, p = 0.0451).

4 Discussion

In this study, we  employed sliding-window analysis and 
cartographic profiling to characterize dynamic brain states with 
distinct topological configurations (integration vs. segregation) in 
healthy controls (HCT) and cocaine use disorder (CUD) groups. 
We found that CUD impacted both integrated and segregated states, 
with state-specific alterations in both connectivity and topological 
properties, providing novel insights into the dynamic neural 
mechanisms underlying cocaine addiction. Regarding functional 
connectivity, CUD significantly altered connectivity patterns 
involving the DMN, FPN, and SUB across both states. Besides, the 
integrated state showed distinct SMN connectivity alterations, and 
the segregated state exhibited pronounced FPN-SUB connectivity 
alterations. Notably, regional connectivity alterations showed 
significant correlations with spatial distributions of multiple 
neurotransmitter receptors, particularly in integrated states. 
Regarding network properties, CUD altered the positive–negative 
correlation balance, increased functional complexity (threshold 0), 
and reduced mean betweenness centrality and modularity across 
both states. While global efficiency, local efficiency, and clustering 
coefficient were increased in the integrated state, the normalized 

clustering coefficient was significantly reduced, particularly in 
segregated states, suggesting compromised functional organization. 
Additionally, CUD consistently exhibited reduced functional 
complexity with high thresholds in the segregated state. Notably, the 
network properties in the integrated state showed a significant 
correlation with cocaine consumption patterns, indicating their 
potential utility as quantifiable biomarkers for addiction 
development trajectories.

We found no significant differences between CUD and HCT 
groups in the integration–segregation dynamics, including fraction 
time, dwell time, total transitions, sample entropy, and Lempel–Ziv 
complexity of state sequences. These findings suggest that integration–
segregation dynamics remain preserved in CUD, consistent with 
recent observations of maintained dynamics under LSD 
administration (Luppi et al., 2021a). Moreover, graph theory metrics 
at the whole-network level showed no significant differences between 
groups in either integrated or segregated states. This finding is 
consistent with previous studies that reported relatively preserved 
static functional network properties in both CUD and alcohol use 
disorder (AUD) compared to healthy controls (Sjoerds et al., 2017; 
Rasgado-Toledo et al., 2024; Morris et al., 2018). While the whole-
network topology seemed resilient to CUD, our analyses revealed 
substantial alterations at the subnetwork level, indicating complex and 
nuanced effects of cocaine on brain network organization.

Using NBS, we identified significant connectivity alterations in 
CUD across both integrated and segregated states, demonstrating the 
pervasive impact of cocaine across time. The majority of affected 
connections exhibited increased connectivity strength in CUD, 
aligning with previous studies showing widespread functional 
hyperconnectivity in CUD patients in both static and dynamic 
networks (Cong et al., 2024; Wang et al., 2015). At the regional level, 
brain states showed pronounced connectivity alterations in the 

FIGURE 7

Relationships between cocaine consumption patterns and network properties in the integrated state after controlling age, sex, education, and mean 
framewise displacement. (A) Scatterplots of residualized years since the beginning of consumption of cocaine (Residualized Years.Begin) vs. 
residualized negative strength, functional complexity with threshold 0, betweenness centrality, and modularity. (B) Scatterplots of residualized cocaine 
age of onset (Residualized Coc.Age.Onset) vs. residualized negative strength and modularity. The r-values were Pearson’s partial correlation 
coefficients, and shaded areas represent 95% confidence.
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prefrontal cortex (PFC), precuneus, posterior cingulate cortex (PCC), 
and precentral ventral regions, highlighting the pivotal role of these 
regions in addictive behaviors. In line with our results, widespread 
PFC dysfunction was observed in CUD patients, associated with 
impaired task performance and elevated relapse risk (Goldstein and 
Volkow, 2011). Increased connectivity in PCC and precuneus was 
linked to heightened drug craving and impaired goal-directed 
behavior (Zhai et  al., 2021). CUD patients also exhibited altered 
activity in the precentral gyri during multisensory tasks (Mayer et al., 
2013). At the network level, both states showed significant functional 
reorganization between DMN-DAN, DMN-VAN, SUB-FPN, and 
within DMN. The DMN is a task-negative network crucial for self-
reflection, emotional processing, and attentional allocation (Zhang 
and Volkow, 2019). The DMN-related alterations could reflect 
impaired capacity for introspective processes and negative emotion 
regulation, as well as enhanced attentional bias and craving for drug-
related cues, facilitating cocaine-related memories (Zhang and 
Volkow, 2019; Cong et al., 2024; Zhai et al., 2021). Recent studies on 
cocaine addiction have reported altered connectivity between the 
cognitive control network and DMN, and within DMN, further 
supporting our findings (Cong et al., 2024; Xu et al., 2024). Besides, 
FPN governs higher-order cognitive control functions, including 
decision-making and task switching, while the subcortical network is 
essential for reward and motivation regulation. Abnormal connectivity 
between FPN and SUB could impair the ability to balance drug use 
and cognitive task demands. This result is supported by previous work 
examining craving or abstinence networks across various addictive 
disorders, including Internet gaming disorder, opioid use disorder, 
and cocaine use disorder (Zhou et al., 2022; Lichenstein et al., 2021; 
Yip et  al., 2019). These investigations have consistently identified 
abnormal FPN-SUB connectivity, aligning with our result and 
suggesting a common neural mechanism underlying addiction 
disorders. We also identified state-specific functional reorganization. 
The integrated state showed characteristic changes between 
SMN-DMN and within SMN, suggesting that cocaine-induced 
disruptions in sensory processing and motor control predominantly 
emerge during integration. Previous fMRI research based on finger-
tapping tasks has shown motor function abnormalities induced by 
chronic cocaine use (Lench et  al., 2017). A recent study showed 
increased SMN-DMN connectivity across all brain states in CUD 
patients (Cong et  al., 2024); our result expands this pattern by 
revealing its temporal preference in integration. The segregated state 
exhibited pronounced alterations between FPN-SUB, indicating that 
cognitive control deficits and aberrant reward processing in CUD 
predominantly manifest during network segregation (Feil et al., 2010). 
Our results, collectively, revealed state-general and state-specific 
neural changes across large-scale functional networks, providing 
insights into the potential role of integration and segregation in the 
pathophysiology of CUD.

We further explored the contributions of various neurotransmitter 
receptors and transporters to functional network reorganization. 
We  identified consistent correlations for H3 and MOR receptors 
across both dynamic states. The mechanism of cocaine involves 
inhibiting dopamine, serotonin, and norepinephrine reuptake, 
triggering cascading effects across multiple receptor systems that 
collectively influence neuroplasticity and brain dynamics. Extensive 
evidence suggests that chronic cocaine exposure increases MOR 
receptor binding, which serves as a predictor for drug craving and 

treatment outcomes (Unterwald, 2001; Zubieta et al., 1996; Volkow, 
2010). Moreover, H3 receptor antagonists demonstrated potential in 
addiction prevention by suppressing dopaminergic neuronal activity, 
thereby blocking dopamine-mediated feedforward mechanisms 
(Ellenbroek and Ghiabi, 2014). Notably, the integrated state revealed 
additional receptor associations, including mGluR5, CB1, M1, 5HT4, 
and 5HT6, suggesting the temporal preference in receptor-
connectivity couplings. Extensive animal studies have shown strong 
associations between these receptors and cocaine addiction (Soria 
et al., 2005; Wang et al., 2013; Zacarias et al., 2012; Cunningham et al., 
1992). In particular, the 5HT6 receptor, serving as a direct target of 
cocaine, modulates dopamine release, thereby enhancing sensitivity 
to the reinforcing properties of cocaine (Brodsky et al., 2016; Valentini 
et  al., 2013). Recent research identified significant associations 
between 5HT4 and 5HT6 receptors and static connectivity alterations 
in CUD (Ricard et  al., 2024), supporting our findings. This 
investigation also reported a significant positive correlation with the 
D2 receptor. Our results showed a similar positive correlation, 
although it did not achieve statistical significance, likely due to 
variations in data preprocessing and analytical approaches. Overall, 
these findings revealed potential links between receptor systems and 
dynamic functional networks, advancing our understanding of the 
neurophysiological characteristics of CUD and highlighting potential 
therapeutic targets.

Given the extensive functional connectivity alterations identified 
by NBS, we  conducted a graph theory analysis on the NBS 
subnetworks. We found a common pattern in which CUD exhibited 
increased positive strength and decreased negative strength compared 
to HCT. In typical resting-state brains, DMN shows widespread 
negative correlations with task-positive regions; the shifted balance 
between positive and negative correlation may suggest impaired 
inhibitory control and cognitive dysfunction (Zhai et  al., 2021). 
We also found that CUD patients exhibited higher global efficiency, 
local efficiency, and clustering coefficients, particularly in the 
integrated state, and greater functional complexity at threshold 0 in 
both states. These patterns suggest that the brain tends to establish 
richer connections to support efficient global and local information 
communication. These results may reflect neural pathological 
alterations associated with chronic cocaine use, where additional 
resources are allocated either to mitigate cognitive decline or to 
reinforce addiction-related circuits (Dayan, 2009). Notably, 
we observed a reliable decrease in functional complexity at higher 
thresholds in the segregated states, which contrasts with the result at 
threshold 0, suggesting that the diversity of efficient information 
transfer remains impaired despite compensation. Additionally, we did 
not observe similar phenomena in the integrated or static state, 
highlighting the importance of dynamic analysis. Interestingly, CUD 
showed significantly lower normalized clustering coefficients than 
HCT, indicating a lack of specific and effective network organization. 
We did not find differences in small-worldness between the two states. 
However, static network analysis revealed a reduction in small-
worldness in CUD. This result is consistent with findings in heroin 
(Jiang et al., 2013), cocaine (Wang et al., 2015), and methamphetamine 
addiction studies (Luo et al., 2024), reflecting dysfunction in local 
specialization and global integration. Our analysis suggests that the 
small-worldness alterations in CUD tend to reflect in time-averaged 
characteristics rather than in time-resolved patterns. Finally, we found 
that CUD showed a decreased mean betweenness centrality and 
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modularity in both integrated and segregated states. Nodes with high 
betweenness centrality usually serve as connector hubs between 
functionally specialized modules, facilitating global information 
integration (Sporns et al., 2007; GeethaRamani and Sivaselvi, 2014). 
The reduced hub functionality coupled with modular structure 
disruption indicates compromised capabilities of brain networks in 
both specialized processing and global information integration. 
Overall, our results provided network topological changes from the 
dynamic integration and segregation perspective, revealing 
widespread network communication abnormalities induced by CUD.

Our analysis revealed significant associations between network 
metrics and cocaine consumption patterns, providing critical insights 
into the potential neural alterations associated with chronic cocaine 
exposure. Specifically, years since the beginning of cocaine use 
negatively correlated with negative strength, betweenness centrality, 
and modularity while positively correlated with functional complexity 
at threshold 0. Conversely, cocaine age of onset exhibited positive 
relationships with negative strength and modularity. Notably, 
consistent associations were observed only in the integrated state, 
indicating its superior sensitivity in capturing systematic alterations 
in brain functional architecture linked to long-term cocaine use. 
Furthermore, the robust associations of negative strength and 
modularity with cocaine consumption patterns suggest their potential 
utility as neuroimaging biomarkers for tracking disease progression 
and treatment outcomes, potentially facilitating early intervention 
strategies and personalized therapeutic approaches.

These findings could be synthesized into a unified hypothetical 
framework that highlights that the pathological brain network 
disruption and reorganization induced by chronic cocaine exposure 
is primarily characterized by functional hyperconnectivity 
(CUD > HCT) (Ricard et al., 2024; Cong et al., 2024; Wang et al., 
2015). We validated and extended this hypothetical model from a 
dynamic integration and segregation perspective. Our results 
demonstrated that CUD-induced dynamic connectivity alterations 
manifest predominantly as enhanced functional connectivity patterns. 
On the one hand, these hyperconnected pathways exhibited stronger 
associations with regional receptor density distributions compared to 
hypoconnected connections (Supplementary Tables 10–13), 
emphasizing the fundamental neurophysiological constraints 
underlying network reorganization. The integrated state showed more 
receptor-function couplings, indicating the potential therapeutic 
interventions through selective receptor agonists or inhibitors to 
mitigate addiction-related neural signatures. On the other hand, the 
pervasive enhancement of functional connectivity could drive 
systematic alterations in global network architecture, leading to 
increased positive strength, efficiency-related metrics, and functional 
complexity at threshold 0, concurrent with decreased negative 
strength. The non-specific nature and disorder of such functional 
reorganization also disrupted the original brain network structure, 
resulting in reduced functional complexity at threshold 0.3, and 
decreased mean betweenness centrality and modularity. The 
topological alterations in the integrated state were consistently linked 
to cocaine consumption patterns, suggesting their utility as potential 
neuroimaging biomarkers for tracking disease trajectory and 
treatment response. While this paragraph focuses on 
hyperconnectivity, we  also observed significant hypoconnectivity. 
Future research should further explore the interplay and distinctions 
between hyperconnectivity and hypoconnectivity to gain a more 

comprehensive understanding of the neural impact of CUD. Our 
study has several limitations. First, our analysis was confined to 
resting-state fMRI data of CUD patients meeting specific inclusion 
criteria of the dataset; future research should examine network 
dynamics across different stages of cocaine use, including acute intake 
and withdrawal periods. Meanwhile, incorporating task-based 
paradigms would provide complementary insights into the CUD’s 
neural mechanisms, particularly regarding reward processing and 
“cognitive control”. In addition, global signal regression (GSR) is a 
common preprocessing step in fMRI data analysis that helps remove 
physiological noise and motion artifacts (Ricard et al., 2024; Chan 
et al., 2021). However, recent studies suggest that the global signal 
contains meaningful neural activity components, such as arousal 
fluctuations and vascular signals (Liu et al., 2017; Huber et al., 2024). 
GSR may lead to the loss of meaningful signals. Future research 
should develop more refined analytical frameworks to account for 
connectivity differences while incorporating the global signal. Finally, 
we  focused on global network properties aligned with previous 
research (Luppi et  al., 2021a, 2021b); future investigations should 
extend to node-level analyses to identify regional contributions to 
network dysfunction.
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