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Introduction: Emotional working memory (WM) plays a critical role in cognitive 
functions such as emotion regulation, decision-making, and learning. Understanding 
how emotional stimuli, particularly negative ones, affect WM performance is crucial 
for identifying cognitive markers of mental health issues like anxiety and depression. 
Our objective is to determine whether trait anxiety and depression levels are 
associated with specific performance outcomes in emotional WM and whether 
behavioral and neural indicators demonstrate statistically significant correlations 
with individual anxiety and depression levels in university students.

Methods: In our research: Experiment 1 (n = 25) tested WM performance with 
both positive and negative emotional stimuli under different cognitive loads (2 
vs. 4 items), while Experiment 2 (n = 34) combined EEG recording to investigate 
the neural index of anxiety and depression during negative emotional WM.

Results: Results showed that negative emotional stimuli impaired WM 
performance, especially under higher cognitive loads, with anxiety level 
being linked to increased theta activity during encoding and depression level 
associated with decreased alpha activity during retrieval. Additionally, individuals 
with higher anxiety exhibited reduced sensitivity to cognitive load differences in 
WM tasks involving negative emotions.

Discussion: These results demonstrated that specific EEG patterns during 
negative emotional WM were significantly associated with individual anxiety and 
depression levels, suggesting the potential utility of EEG measures for identifying 
at-risk individuals of anxiety and depression in university student populations. By 
linking cognitive and neural indicators, the study contributes to the development 
of personalized interventions for mental health monitoring and treatment.
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Introduction

Working memory (WM) is an essential cognitive system believed to underlie many 
higher-order cognitive functions, including learning, reasoning, which also plays a crucial role 
in emotion regulation (Baddeley, 2012; Levens and Gotlib, 2010). WM involves three cognitive 
processes: encoding, maintenance, and retrieval. Each representing distinct cognitive 
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operations of information in WM and arising from separate neural 
sources (Hale et al., 1996; Bledowski et al., 2006a,b; Pinal et al., 2014).

Emotional WM is defined as the ability to effectively hold emotional 
contexts in WM (Schweizer et al., 2013; Barker and Bialystok, 2019), 
which imposes greater cognitive demands (Schweizer et al., 2013; Janus 
and Bialystok, 2018; Bai et al., 2019; Katie et al., 2019). The significance 
of emotional WM is particularly evident in education, for example, to 
assess whether students can resist emotional interference and manage 
emotional information processing effectively (Janus and Bialystok, 2018). 
In education contexts, emotional WM serves as tools for evaluating 
emotion regulation abilities and predicting real-life problem-solving 
skills and social adaptation competencies (Ladouceur et  al., 2009; 
Schweizer et  al., 2013; Engen and Anderson, 2018; Janus and 
Bialystok, 2018).

Previous studies have investigated the effects of emotional valence 
in image material on WM updating task, emotional stimuli can 
influence WM updating task performance due to the emotions they 
elicit. Some studies utilized emotional valence in images to induce 
affective states in participants, followed by tasks requiring 
memorization of neutral content (e.g., letters or colors; Xie and Zhang, 
2016; Huang et al., 2021; Plancher et al., 2019). In contrast, some 
researches focused on the direct memorization of emotionally 
valenced content, Rozovskaya et  al. (2016) examined whether 
emotional valence influences participants’ sensitivity to perceptual 
details in images, while Levens and Gotlib (2010) assessed the ability 
to continually update emotion representations in WM by requiring 
participants to identify facial emotions.

Mather et  al. (2006) found that high-arousal negative images 
impaired spatial WM for their locations compared to low-arousal 
images. Similarly, two related studies examined emotional interference 
in WM and found high-arousal negative emotional stimuli disrupted 
visual WM more than positive stimuli (Iordan and Dolcos, 2017; García-
Pacios et al., 2015). A recent study found performance differences in a 
2-back task that required matching the hue (blue or yellow) or valence 
(negative or neutral) of emotional images (Hur et  al., 2017). They 
observed slower performance in the N-back task when images were 
negative, suggesting that negative emotional materials might impair 
WM. Contrarily, Jackson et al. (2009) found that negative faces enhanced 
visual WM performance compared to happy and neutral faces. Gotoh 
et al. (2010) reported similar effects with textual materials, suggesting 
that negative affective valence may enhance WM performance.

Despite the growth in behavioral studies on WM in emotional 
disorders (Schweizer et  al., 2019), the conclusions are still under 
debate. This may be due to the difference in the way emotional stimuli 
are presented (related to or unrelated to the task, different ways of 
induction), and the difference in the setting of the control group 
(compared with neutral emotions or directly compared with positive 
and negative emotions), which makes it difficult to compare and form 
unity between different studies. In addition, the facilitative effect of 
emotional stimuli on the performance of emotional WM tasks may 
occur at specific stages of WM. A recent study revealed that the 
enhanced representations of emotional stimulus were found during 
the encoding and maintenance stages of WM, but not during retrieval 
(Jackson et al., 2014). Similarly, there is evidence that positive and 
negative emotional stimulus facilitate the resolution of interference 
during WM (Levens and Phelps, 2008). However, the 
neurophysiological underpinnings of encoding, maintenance, and 
retrieval processes of emotional WM in students not diagnosed as 
emotional disorder remain poorly understood.

In the current study, to investigate how individual differences in 
anxiety and depression modulate performance in emotional WM tasks, 
we  instructed participants to memorize emotional content. When 
selecting stimuli from standardized databases, we ensured balanced 
complexity and content categories (e.g., human, animals, scene) across 
negative and positive valences. Additionally, to mitigate potential 
interference from repeated exposure to identical stimuli, the encoding 
and retrieval phases within each trial of the emotional WM task 
were segregated.

In electrophysiological research, theta activity (4—7 Hz) has been 
closely associated with the control of information held in WM (Mitchell 
et al., 2008; Hsieh and Ranganath, 2013). Increased theta activities during 
WM tasks have been consistently observed across different experimental 
paradigms (Gevins, 1997; Jensen and Tesche, 2002) and sensory 
modalities (Bastiaansen et al., 2002; Sauseng et al., 2007). A frequently 
reported finding is the concurrent increase in theta activity with WM 
loads (Jensen and Tesche, 2002; Onton et al., 2005; Sauseng et al., 2007). 
Moreover, a positive relationship between theta activity and behavioral 
performance has been documented in multiple studies (Gevins, 1997; 
Smith et al., 1999; Itthipuripat et al., 2013). Some studies have recently 
utilized task-related frequency band measures to investigate how 
negative emotions such as anxiety and depression impact performance 
in WM tasks. Research has confirmed that induced stress conditions 
leading to decreased task performance are associated with reduced theta 
activity (Gaertner et al., 2014). On the other hand, recent research has 
identified oscillations in the alpha band (8–13 Hz) as a neural correlate 
of attention during WM processing (Figueira et al., 2020). Selective 
attention enhances the encoding of goal-relevant representations while 
preventing the storage of irrelevant or distracting information (Chadick 
and Gazzaley, 2011; Vogel et al., 2005). It is believed that changes in alpha 
power are inversely related to cortical excitability; specifically, an increase 
in alpha power is associated with cortical idling, whereas a decrease in 
alpha power correlates with heightened excitability in the visual cortex 
(Pfurtscheller et al., 1996). Although no recognition differences were 
found between emotional and neutral representations in the emotional 
WM tasks, it has been observed that increased alpha power may reflect 
a shift in attentional focus from emotional representations to processes 
requiring greater attention demands (Macedo-Pascual et  al., 2019). 
Therefore, our study aims to distinguish groups with varying levels of 
anxiety and depression using task-related frequency band measures.

Negative emotions inherent to an individual’s traits, such as 
depression and anxiety, have been shown to adversely affect general WM 
capacity. For example, clinical depression patients exhibit impairments 
in both visual and verbal WM capacity (Christopher and MacDonald, 
2005), and individuals with high math anxiety may show deficits in 
verbal WM (Ashcraft and Kirk, 2001; Elliman et al., 1997). Similarly, a 
study involving individuals with social anxiety, found that higher levels 
of anxiety symptoms were associated with poorer verbal WM 
performance (Waechter et al., 2018). Importantly, the decline in WM 
capacity across different cognitive loads in WM tasks was significantly 
correlated with the severity of anxiety and depression. Recent research 
has demonstrated that WM can regulate emotions through manipulation 
of cognitive loads (Ja and Pa, 2019). For instance, a recent study observed 
that, comparing to healthy controls, individuals with anxiety disorders 
exhibited impaired behavioral performances only in 3-back, but not in 
1-back (Vytal et al., 2016). In contrast, Van Dillen and colleagues found 
that as the cognitive loads of WM tasks increased, the intensity of self-
reported negative emotional responses decreased (Van Dillen et al., 2009; 
Van Dillen and Koole, 2007). Therefore, although the direction remains 
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unclear, the variable of cognitive load may play a crucial role in 
moderating the relationship between negative emotional states such as 
anxiety and depression, and performance on WM tasks. We proposed 
employing continuous variables to assess participants’ levels of anxiety 
and depression, instead of simply dichotomizing them, to explore more 
nuanced variations which were taken by manipulating cognitive load.

Importantly, the comorbidity rate between depression and 
anxiety has been estimated to reach as high as 60% for case-level 
disorders (Kessler et al., 2015), with the rate likely being even higher 
when including subthreshold cases. Previous research suggests that a 
transdiagnostic approach may offer greater utility in conceptualizing 
these disorders (Brand, 2015). Our study adopts a transdiagnostic 
approach to assess anxiety and depression as continuous variables. By 
utilizing this approach, we  can isolate the comorbid elements of 
anxiety and depression, thereby identifying the unique factors 
associated with each disorder. This methodological refinement 
enables a more precise evaluation of the independent effects of 
anxiety and depression on emotional WM.

Although the impact of trait anxiety and depression on working 
memory has been observed in clinical populations (Amir and Bomyea, 
2011; Levens and Gotlib, 2010), how trait anxiety and depression, as 
continuous variables, affect emotional WM task performance in 
university students who were not diagnosed as emotional disorder 
remain unclear. A recent meta-analysis demonstrated a strong association 
between generally high anxiety and lower working memory capacity, 
with this association being weaker in subclinical populations compared 
to clinical populations (Moran, 2016). However, the boundary for 
categorizing individuals as trait anxious or non-anxious in different 
studies have not been consistent. In contrast, studying trait anxiety and 
depression as continuous variables in the general population is more 
reasonable. Following transdiagnostic methods for anxiety and 
depression among clinical populations, we examined trait anxiety and 
depression levels in the general population, extracting specific factors 
associated with anxiety and depression. The extent to which trait anxiety 
and depression are associated with emotional WM performance, and 
whether related EEG patterns show consistent correlations with these 
trait measures, requires further investigation.

Our study aims to investigate the neural mechanisms underlying 
emotional WM and the relationship between individual anxiety/
depression and emotional WM performance. Experiment 1 compares 
the impact of positive and negative emotional stimuli on WM task 
performance under different cognitive loads. Experiment 2 explores the 
influence of individual trait anxiety and depression levels on the 
performance of a negative emotional WM task and on neural activities 
based on time-domain electroencephalogram (EEG) signals. Our 
objective is to examine (a) the association between trait anxiety/
depression levels and specific performance measures in emotional 
working memory tasks, and (b) the potential relationships between 
behavioral/neural indicators and individual differences in anxiety and 
depression level.

Methods

Participants

Using G*Power 3.1 software (Faul et  al., 2007), the required 
sample size for the study was calculated. For Experiment 1 (a 2*2 
repeated measures ANOVA), with an effect size of 0.5, an alpha level 

of 0.05, and a desired power of 0.80, the minimum required sample 
size was determined to be  20 participants. For Experiment 2 (a 
paired-samples t-test), under the same parameters, the required 
sample size was calculated to be  34 participants. Based on these 
results, 25 students (ages: 18–24 years, mean age 21.04 years, 16 
females) participated in the experiment 1 and 35 students (ages: 
18–24 years, mean age 20.37 years, 17 females) participated in the 
experiment 2. All participants from Beijing Sport University were 
right-handed and had normal or corrected-to-normal vision. Written 
informed consent was obtained from all participants in accordance 
with the Declaration of Helsinki. Data from 1 participant from 
experiment 2 were excluded for further analysis because of low EEG 
quality. Therefore, EEG data from 34 participants (ages: 18−24 years, 
mean age 20.35 years, 17 females) were included in the final analysis 
of experiment 2 (Table 1). The study protocol was approved by the 
local Ethics Committee.

Questionnaire measurement

Participants completed a series of questionnaires before the 
formal experiment, which were primarily used for evaluating 
dimensions of emotion and some personality characteristics. The 
Patient Healthy Questionnaire (PHQ-9; Kroenke et al., 2001) is a 
10-item scale which assesses the severity of depression. General 
Anxiety Disorder-7 (GAD-7; Spitzer et al., 2006) is a 7-item scale 
assessing the presence of a clinically significant anxiety disorder. 
We used the Bifactor Model specifying a general p-factor and two 
orthogonal specific factors for anxiety and depression, which has been 
evident that is the best model for the comorbidity structure of anxiety 
and depression (Lee et al., 2024; Brodbeck et al., 2011; Simms et al., 
2008). This model includes 7 symptoms of anxiety and 9 symptoms of 
depression (Figure 1). Each item was specified to load simultaneously 
on a general p-factor and a specific factor (anxiety or depression), with 
cross-loadings constrained to zero to ensure structural clarity. To 
achieve model identification, the variances of the latent factors 
(p-factor, anxiety, and depression) were fixed to 1. We implemented 
this bifactor structure in Mplus using robust maximum likelihood 
estimation (MLR), which employs a sandwich estimator to adjust 
standard errors for potential non-normality and non-independence 
of observations. The MLR method further accounts for non-normal 
data distributions without requiring transformations.

Tasks

In experiment 1, participants completed the sequential emotion WM 
task (Figure 2), which employed a two-factor experimental design (WM 
loads: Load 2 vs. Load 4; emotional stimuli: positive vs. negative). The task 
consisted of evenly distributed trials/conditions, with a total of 6 blocks, 

TABLE 1 Demographic information (M ± SD).

Measures Experiment 1 
(n = 25)

Experiment 2 
(n = 34)

Age (year) 21.04 ± 2.15 20.35 ± 1.52

Depression level 4.88 ± 2.68 4.71 ± 4.13

Anxiety level 4.4 ± 2.90 3.82 ± 4.02

M, mean; SD, standard deviation.
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each load containing 30 trials, resulting in 180 trials in total. The rest 
period between two blocks was determined by the participants. 
Participants were seated approximately 60 cm from the screen. In each 
trial, a central fixation point was presented for 0.8–1.2 s. During the 
encoding phase, an emotional image was randomly presented at the 
center of the screen for 0.5 s. The images (10.16° height × 15.36° width), 
were selected from a set of 18 images with validated positive or negative 
emotional valence, with 9 images in each category (negative: valence 
M = 3.45, SD = 0.59, arousal M = 4.70, SD = 0.54; positive: valence 
M = 6.71, SD = 0.90, arousal M = 5.32, SD = 0.35). All images are from 
The International Affective Picture System (IAPS; Bradley and Lang, 
2007), which has been widely used (Rozovskaya et al., 2016; Xie and 
Zhang, 2016; Hendricks and Buchanan, 2016). Following the encoding 
phase, a fixation appeared for 1 s during the maintaining phase. Each 
cycle consisted of one encoding and one maintaining phase. Trials with 

Load 2 involved two cycles, while those with Load 4 involved four cycles. 
After the cycles, a number was randomly presented during the selection 
phase: either 1 or 2 in Load 2 trials, or 1 to 4 in Load 4 trials. This number 
indicated which image from the respective sequence the participants 
needed to recall. Subsequently, a one-second fixation was shown during 
the retrieval phase. In the probe phase, an image from the encoding 
phase’s source was randomly presented, and participants had to determine 
whether it matched the image recalled during the selection phase and 
respond accordingly. After the participants made their judgment, the trial 
concluded and the next trial began. The experiment concluded after 
completing all 6 blocks and 180 trials. The sole difference in task between 
experiment 1 and experiment 2 is that experiment 2 only has negative 
emotional materials. This was done to obtain enough trials to improve the 
signal-to-noise ratio of EEG data, mainly focusing on the relationship 
between negative emotional WM and depression and anxiety.

FIGURE 1

Bifactor model structure of anxiety and depression symptoms. The diagram illustrates a bifactor model with one general psychopathology factor 
(p-factor) and two orthogonal specific factors (Anxiety and Depression). Anxiety-specific factor indicators: I. Nervousness, II. Worry, III. Overworry, IV. 
Tension, V. Restlessness, VI. Irritability, VII. Apprehension (GAD-7 items). Depression-specific factor indicators: I. Anhedonia, II. Hopelessness, III. 
Insomnia, IV. Fatigue, V. Appetite changes, VI. Guilt, VII. Concentration difficulties, VIII. Psychomotor symptoms, IX. Suicidal ideation (PHQ-9 items). All 
items additionally load on the general p-factor (not shown for clarity). Roman numerals correspond to original questionnaire item numbers. Model 
constraints include: (a) no cross-loadings between anxiety items and depression factor (or vice versa), and (b) factor variances fixed to 1 for 
identification.

FIGURE 2

Emotional WM task. Trial sequences of the emotional WM task with Load 2 and Load 4.
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Transparency and openness

We report all data exclusions, manipulations, and measures used 
in this study. The study design was not preregistered. All stimulus 
materials, raw data, and analysis scripts are available on the Open 
Science Framework.1

EEG recording and preprocessing

In experiment 2, sixty-four channels Neuroscan (SynAmps2, 
NuAmps) and online acquisition software Curry7 were used for EEG 
recording, simultaneously recorded vertical and horizontal EOG 
(electrooculogram). CPz served as reference electrode during 
recording. EEG channels were named according to the closest 
corresponding channel in the 10–20 system (Chatrian et al., 1985). 
The signals were sampled at a rate of 1,000 Hz. The electrode resistance 
was reduced to less than 10 kΩ before beginning the formal experiment.

EEG preprocessing was conducted using custom Matlab scripts and 
the EEGLAB (Delorme and Makeig, 2004). EEG data were resampled 
at 500 Hz, then re-referenced to the average of the two mastoids and 
band-pass filtered between 0.1 Hz and 40 Hz. Additionally, a 48–52 Hz 
band-pass filter was applied to remove 50 Hz power line noise. The 
potential influence of EMG (electromyographic) activity in the EEG 
signal was minimized by using the available EEGLAB routines 
(Delorme and Makeig, 2004). Independent component analysis (ICA) 
was implemented to detect and remove artifactual EEG components, 
particularly those reflecting ocular activity (Hoffmann and Falkenstein, 
2008), using a semi-automated approach that combined ICLabel 
classification with visual inspection. Across all 34 participants, an 
average of 6.2 ± 1.9 independent components (range: 2–11) were 
rejected from 62 components per dataset. Subsequently, the EEG signal 
was downsampled to 500 Hz. Segments was chosen from −500 ms to 
1,500 ms of the onset of the encoding and selection phase. The moving 
window peak-to-peak function was used for artifact removal (voltage 
values exceeding ±100 μV). On average, 0.68% ± 2.80% (0–12.8%) of 
epochs per participant were rejected, leaving 88.9 trials for Load 2 and 
90.0 trials for Load 4 for further analysis.

Time frequency analysis

After preprocessing, epochs were used for calculating time-
frequency representations. Instantaneous power and phase were 
estimated within the 2–30 Hz frequency range using short-time 
Fourier transforms with Hanning taper data and a 0.5 Hz step. Power 
values were then normalized to the baseline period from –500 ms to 
0 ms of the encoding and retro-cue onset, respectively. Event-related 
spectral perturbation (ERSP) was calculated for each epoch relative 
to the baseline period across all electrodes and converted to decibels 
by multiplying the log ratio by 10 (Grandchamp and Delorme, 2011). 
In the time-frequency plots, power reductions relative to baseline are 
shown in blue, while power increases are shown in yellow. Alpha 
(8–13 Hz) and theta (4–7 Hz) power were extracted by averaging 
time-frequency representations in corresponding frequency band 

1 https://osf.io/fb6xj/

from posterior electrodes (According to the situation of the 
topographies, we  finally selected the following electrodes for 
analysis: P3/4, PO3/4, P5/6, PO5/6, P7/8, PO7/8, O1/2).

Statistical analysis

In experiment 1, our behavioral data analysis focused on the 
impact of emotional stimuli and WM loads on task performance. 
Therefore, we  calculated the accuracy and reaction time of 
participants under different WM loads and emotional stimuli, and 
conducted paired-sample t-tests for each condition. The behavioral 
data analysis in experiment 2 concentrated on the impact of WM 
loads on performance in the negative emotional WM task, so 
we calculated the accuracy and reaction time of participants under 
different memory loads and conducted paired-sample t-tests.

To elucidate the relationship between behavioral performance and 
individual characteristics, and to determine whether anxiety and 
depression affect performance on the emotional WM task, 
we  conducted correlation analyses on selected behavioral and 
questionnaire data. Firstly, we  calculated whether individual 
performance under different WM loads and emotional stimuli was 
significantly correlated with specific questionnaire metrics. Secondly, 
we assessed whether the difference in individual performance between 
different memory loads (under the premise that there is a significant 
and consistent directional difference in individual performance 
between different working memory loads) was significantly correlated 
with levels of anxiety and depression. This step aimed to investigate 
whether individuals with varying levels of anxiety and depression 
exhibit differential performance on specific emotional WM tasks.

Building on experiment 1, experiment 2 aimed to identify neural 
indicators associated with individual levels of anxiety and depression 
in task-related EEG. We conducted correlation analyses on selected 
behavioral, EEG and questionnaire data. First, we calculated whether 
individual levels of anxiety and depression were associated with certain 
EEG metrics. Second, we calculated whether differences in specific 
EEG metrics between different memory loads were significantly 
correlated with anxiety and depression levels. Lastly, we calculated 
whether high and low emotional subgroups (depression/anxiety) have 
different performance significantly in specific EEG metrics.

Results

Experiment 1

To examine the effects of load and stimulus type on behavioral 
performance, a repeated measures ANOVA was conducted. The means 
and standard deviations for accuracy and reaction time under each 
condition are presented in Table 2. Significant main effects of load were 
found on both accuracy (F(1,24) = 7.841, p = 0.010, η2p  = 0.246) and 
reaction time (F(1,24) = 9.337, p = 0.005, η2p  = 0.280), indicating that 
behavioral performance declined as memory load increased (Figure 3A). 
The main effect of stimulus type was not significant on neither accuracy 
(F(1,24) = 1.690, p = 0.206, η2p  = 0.066) nor reaction time (F(1, 
24) = 0.866, p = 0.361, η2p  = 0.035), suggesting that emotion might not 
significantly affect memory performance. No significant interaction was 
found (accuracy: F(1,24) = 0.001, p = 0.980, η2p  < 0.001; reaction time: 
F(1,24) = 0.142, p = 0.710, η2p  = 0.006).
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To elucidate the relationship between behavioral performance and 
individual characteristics, we conducted correlation analyses on selected 
behavioral and questionnaire data to determine whether anxiety and 
depression affect performance on the emotional WM task. Results 
showed that individuals with higher the anxiety scores exhibited smaller 
differences in the reaction time on negative emotional WM between 
different loads (accuracy: r = −0.356, p = 0.081; rt.: r = −0.497, p = 0.011; 
Figure  3B). These correlations were absent on positive stimulus 
(accuracy: r = 0.015, p = 0.943; rt.: r = −0.348, p = 0.088). These results 
suggested that individuals with higher anxiety levels are more sensitive 
to negative emotional stimuli, leading to smaller performance 
differences between different working memory loads. Therefore, in 
experiment 2, we focused on negative emotional WM and include EEG 
recordings to further explore the underlying neural indicators.

Experiment 2 behavioral results

Figure 4A showed the accuracy and reaction time for negative 
emotional WM under Load 2 and Load 4 in EEG experiment, and 
the depression and anxiety of the participants from Experiment 2 
was shown in Figure 4B. The accuracy for Load 2 and Load 4 was 
95.20 ± 5.06% and 92.49 ± 7.74% respectively, and the reaction 
times were 659.00 ± 174.00 ms and 641.78 ± 144.94 ms, respectively. 
Consistent with the behavioral results in Experiment 1, we found a 
significant decline on accuracy from Load 2 to Load 4 (t = 3.869, 
p < 0.001, Cohen’s d = 0.664). However, no significant difference 
was found on reaction time (t = 1.708, p = 0.097, Cohen’s d = 0.293).

Experiment 2 time-frequency 
representations during encoding and 
maintaining

We first focused on the time-frequency representations during the 
encoding and maintaining phases of negative WM. Figures 5A,C showed 
time-frequency representations and corresponding topographic maps. A 
significant positive cluster appeared in the theta band (4–7 Hz) between 
100 and 300 ms after stimulus onset (Load 2: t = 9.552, p < 0.001, Cohen’s 
d = 1.638; Load 4: t = 9.290, p < 0.001, Cohen’s d = 1.593), and two 
significant negative clusters appeared in the alpha band (8–13 Hz) 
between 200 and 500  ms (Load 2: t = −7.962, p < 0.001, Cohen’s 
d = −1.366; Load 4: t = −8.356, p < 0.001, Cohen’s d = −1.433) or 
between 500 and 1,200 ms (Load 2: t = −7.279, p < 0.001, Cohen’s 
d = −1.248; Load 4: t = −8.154, p < 0.001, Cohen’s d = −1.398).

To examine how WM loads (Load 2 vs. Load 4) affected performance 
in the negative emotional working memory task (Figure  5B), 
we calculated ERD and ERS for the relevant frequency bands. During the 
encoding phase (200–500 ms), the decibel values for the alpha band were 
−3.36 dB for Load 2 and −3.59 dB for Load 4. Paired-sample t-tests 

showed that ERD was significantly higher for Load 4 than for Load 2 
(t = 2.56, p = 0.015, Cohen’s d = 0.438). However, we  did not find 
significant differences between the Load 2 and Load 4 in the theta band 
of the encoding phase (Load 2: 1.81 dB, Load 4: 1.86 dB, t = −0.344, 
p = 0.733, Cohen’s d = −0.059) and the alpha band of the maintaining 
phase (Load 2: −2.45 dB, Load 4: −2.61 dB, t = 1.704, p = 0.098, Cohen’s 
d = 0.292). These results suggested the alpha band in the encoding phase 
is more sensitive to WM loads.

Experiment 2 time-frequency 
representations during selection and 
retrieval

ERSP activities were clearly observed during the selection and 
retrieval phases. Figures 6A,C showed time-frequency representations 
and corresponding topographic maps. A significant positive cluster 
appeared in the theta band (4–7 Hz) between 100–300 ms after 
selection onset (Load 2: t = 5.495, p < 0.001, Cohen’s d = 0.942; Load 
4: t = 5.057, p < 0.001, Cohen’s d = 0.867), and a significant negative 
cluster appeared in the alpha band (8–13 Hz) between 200–500 ms 
(Load 2: t = −4.709, p < 0.001, Cohen’s d = −0.808; Load 4: t = −6.633, 
p < 0.001, Cohen’s d = −1.138) or between 500–1,500 ms (Load 2: 
t = −4.195, p < 0.001, Cohen’s d = −0.719; Load 4: t = −6.029, 
p < 0.001, Cohen’s d = −1.034).

We also calculated ERD and ERS for the relevant frequency bands 
(Figure 6B). During the selection phase (300–500 ms), the decibel values 
for the alpha band were −1.68 dB for Load 2 and −2.44 dB for Load 4. 
Paired-sample t-tests indicated that ERD was significantly stronger for 
Load 4 than for Load 2 (t = 3.33, p = 0.002, Cohen’s d = 0.572). However, 
we did not find significant differences between the Load 2 and Load 4 in 
the theta band of the selection phase (Load 2: 1.13 dB, Load 4: 0.98 dB, 
t = 0.839, p = 0.408, Cohen’s d = 0.144) and the alpha band of the retrieval 
phase (Load 2: −1.07 dB, Load 4: −1.42 dB, t = 1.688, p = 0.101, Cohen’s 
d = 0.290). These results suggested the alpha band in the selection phase 
is more sensitive to WM loads.

Experiment 2 correlations between EEG 
index and questionnaires

Using transdiagnostic methods, we derived depression-specific 
and anxiety-specific factors as continuous variables and found that they 
were associated with certain frequency bands during specific stages of 
the negative emotional working memory task (Figure 7). Note that 
both depression-specific and anxiety-specific factors were obtained by 
controlling common parts of depression and anxiety. The depression-
specific factor was negatively correlated with the alpha power during 
the retrieval phase of Load 2 (r = −0.494, p = 0.003). The anxiety-
specific factor was positively correlated with the theta power during the 

TABLE 2 Behavioral results (M ± SD).

Measures Load 2 P Load 2 N Load 4 P Load 4 N

Accuracy (%) 94.79 ± 3.97 93.84 ± 5.34 92.53 ± 6.89 91.55 ± 6.58

Reaction time (ms) 608.82 ± 162.43 618.47 ± 166.28 649.81 ± 175.86 654.46 ± 187.06

Behavioral outcomes of accuracy and reaction time for Load 2 positive trials, Load 2 negative trials, Load 4 positive trials and Load 4 negative trials. M, mean; SD, standard deviation.
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encoding phase of both Load 2 (r = 0.343, p = 0.047) and Load 4 
(r = 0.498, p = 0.003). These findings indicated that individuals with 
higher levels of depression had lower alpha power during the selection 
phase of Load 2, while individuals with higher levels of anxiety had 
higher theta power during the encoding phase of both Load 2 and Load 
4 trials, which may reflect distinct electrophysiological patterns 
associated with depression and anxiety from the transdiagnostic view.

Experiment 2 control analysis from the 
traditional diagnostic method

To further support the correlation results from the transdiagnostic 
view, we divided our data into high and low depression/anxiety subgroups. 
Consistent with our correlation findings, alpha power during retrieval at 
Load 2 showed a significant difference between high and low depression 
subgroups (t = 2.200, p = 0.035), and theta power during encoding also 
showed significant differences between high and low depression 
subgroups (Load 2: t = 1.968, p = 0.058; Load 4: t = 2.201, p = 0.035).

Discussion

The current study examined electrophysiological patterns during 
emotional WM and their associations with depression and anxiety 
level among university students. The results revealed significant 
relationships between individual differences in anxiety and depression 
and specific neural and behavioral indicators during emotional WM 
tasks. Specifically, we  found that individuals with higher levels of 
anxiety and depression exhibited distinct patterns in both behavioral 
performance and EEG signals, which underscores the complex 
interplay between emotional states and cognitive functions. Our 
research offers new insights into the use of EEG as a non-invasive and 
cost-effective tool for assessing neural activity, which offers a 
promising approach for early detection and monitoring of anxiety and 
depression. This has significant application value in campus mental 
health screening, the measure of continuous change in symptoms of 
depression and anxiety, and subsequent intervention target 
determination. By integrating neural and behavioral data, clinicians 
can gain a comprehensive understanding of an individual’s cognitive 

FIGURE 3

The results of experiment 1. (A) Behavioral outcomes of accuracy and reaction time for Load 2 positive trials, Load 2 negative trials, Load 4 positive 
trials and Load 4 negative trials. (B) Correlation between the difference in individual performance on negative emotional WM between different 
memory loads and anxiety index, ∗ p < 0.05. Load 2 P indicates the positive stimulus in Load 2 condition; Load 2 N indicates the negative stimulus in 
Load 2 condition (Load 4 P and Load 4 N indicate in a similar way).

FIGURE 4

The results of experiment 2. (A) Behavioral outcomes of accuracy and reaction time for Load 2 trials and Load 4 trials. (B) Participants’ performance on 
P factor, depression special factor and anxiety special factor, which are transformed by depression and anxious scales, ∗ p < 0.05.
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and emotional functioning, leading to more personalized and effective 
treatment strategies. In the field of education, supplementing 
traditional psychological health questionnaires with targeted EEG 
cognitive paradigm assessments for students with high scores in 
depression and anxiety can more effectively and accurately screen 
potential high-risk groups for depression and anxiety.

Previous studies have shown significantly prolonged response times 
and lower accuracy when processing negative emotional stimuli 
compared to neutral or positive counterparts (Rozovskaya et al., 2016; 
Xie et al., 2023). Our findings further revealed that emotional stimuli 
significantly impacted WM performance with the increasing cognitive 
loads. Participants showed varying accuracy and reaction times, 
depending on the emotional valence of the stimuli and the cognitive 
load. Notably, negative emotional stimuli under higher cognitive loads 
resulted in poorer performance, suggesting that negative emotions might 
exacerbate cognitive demands, thereby impairing WM. This aligns with 
prior studies indicating that negative emotions can hinder cognitive 
performance by increasing cognitive loads and attentional demands 
(Mather et  al., 2006; Hur et  al., 2017). Moreover, previous research 
showed that anxiety can lead to impaired cognitive flexibility and 
increased susceptibility to emotional interference (Waechter et al., 2018), 
while individuals with depression exhibit slowed disengagement from 
sad stimuli and accelerated disengagement from happy stimuli compared 

to non-depressed controls, reflecting maladaptive and protective working 
memory biases that may impede affective regulation (Levens and Gotlib, 
2010). Our correlation analyses revealed a linear relationship between 
anxiety levels and performance in negative emotional WM tasks, higher 
levels of anxiety were associated with smaller performance differences 
between different memory loads for negative emotional tasks. This 
suggests that individuals with higher anxiety may have a diminished 
capacity to adjust their cognitive resources in response to varying task 
demands, potentially due to heightened sensitivity to negative 
emotional WM.

The EEG data provided deeper insights into the neural 
mechanisms underlying emotional WM. Time-frequency 
representations revealed significant differences between different 
cognitive loads. Specifically, during the encoding and retrieval phases, 
individuals with higher anxiety and depression levels exhibited 
distinct patterns in the theta and alpha bands, respectively.

During the encoding phase, the significant positive cluster observed 
in the theta band between 100 and 300 ms after stimulus onset suggests 
that encoding emotional stimuli involves substantial cognitive effort, 
particularly in individuals with higher anxiety. This finding suggests that 
individuals with higher anxiety may require greater neural effort to 
encode emotional information, which is reflected in increased theta 
activity. Theta oscillations are associated with cognitive control and the 

FIGURE 5

ERSP activity in encoding and maintaining phase. (A) The difference in the time-frequency representations of Load 2 and Load 4 workload. (B) The 
difference in the decibel of alpha and theta band in load-2 and load-4 workload, ∗ p < 0.05. (C) EEG topography in Load 2 and Load 4 trials during 
encoding and maintaining of negative emotional working memory task.
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integration of emotional information (Cavanagh and Frank, 2014). This 
heightened theta activity indicates that anxious individuals may be more 
sensitive to emotional stimuli, requiring greater neural resources to 

process and encode emotional stimuli effectively. Previous studies have 
also linked increased theta activity with heightened emotional arousal and 
cognitive demand (Mitchell et al., 2008).

FIGURE 6

ERSP activity in selection and retrieval phase. (A) The difference in the time-frequency representations of Load 2 and Load 4 workload. (B) The 
difference in the decibel of alpha and theta band in Load 2 and Load 4 workload, ∗∗p < 0.01. (C) EEG topography in Load 2 and Load 4 trials during 
selection and retrieval of negative emotional working memory task.

FIGURE 7

The correlation between emotion and EEG index. ∗ p < 0.05, ∗∗ p < 0.01.
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Depressed individuals did not show a similar increase in theta activity 
during the encoding phase. Instead, their neural response was 
characterized by reduced alpha activity during the retrieval phase. Alpha 
oscillations are typically associated with inhibitory control and the 
suppression of irrelevant information (Akil et al., 2024; Hwang et al., 
2014). Lower alpha activity in individuals with higher depression suggests 
a potential deficit in inhibiting irrelevant information and maintaining 
task-relevant information, which aligns with the cognitive control deficits 
commonly observed in depression (Berman et al., 2011). This difference 
in neural response patterns between anxious and depressed individuals 
highlights the distinct neural mechanisms underlying anxiety and 
depression (Foland-Ross and Gotlib, 2012; Davidson, 2002), with anxiety 
primarily affecting cognitive control and emotional processing through 
theta oscillations and depression impacting inhibitory control and 
information filtering through alpha oscillations (Canen and Brooker, 
2017; Mizuki et al., 1997; Horvath et al., 2015; Bland and Oddie, 2001; 
Kaiser et al., 2018; Possel et al., 2008).

The observed correlations between neural indicators and 
behavioral performance provide valuable insights into the underlying 
mechanisms of emotional WM in anxious and depressed individuals. 
From a transdiagnostic perspective (Brand, 2015; Cuijpers et  al., 
2023), assessing anxiety and depression as continuous variables offers 
certain advantages over simple binary classification. For instance, in 
educational practice, students experiencing subclinical emotional 
issues (Albaugh et al., 2017) may not meet clinical diagnostic criteria 
but exhibit tendencies toward depression and anxiety (a group often 
overlooked until symptoms worsen to meet clinical criteria). Using 
continuous variables allows for a more effective assessment of this 
population. Additionally, this approach controls for comorbidities 
more effectively, enabling more targeted management of symptoms 
related to depression and anxiety.

The use of EEG as a non-invasive and cost-effective tool for 
assessing neural activity offers a promising approach for early 
detection and monitoring of anxiety and depression. The distinct 
electrophysiological patterns differentiating anxiety and depression 
symptoms during emotional WM tasks may represent quantifiable 
physiological features associated with subclinical emotional 
problems. The characterization of electrophysiological patterns 
associated with emotional processing differences may contribute to a 
more nuanced understanding of anxiety and depression 
manifestations, potentially guiding future research on targeted 
interventions. For instance, interventions aimed at enhancing 
cognitive flexibility and emotional regulation could be tailored based 
on an individual’s neural and behavioral profile, thereby improving 
treatment outcomes.

Despite the significant findings, several limitations should 
be acknowledged. First, the sample size was relatively small, which may 
limit the generalizability of the results. Future studies with larger and 
more diverse samples are needed to validate and extend these findings. 
Additionally, the study focused on a specific population of university 
students, which may not be  representative of other age groups or 
individuals with clinical diagnoses of anxiety and depression (Foland-
Ross and Gotlib, 2012; Rawlings, 2017; Divers et al., 2022). Another 
limitation is the reliance on self-report measures of anxiety and 
depression, which may be subject to response biases. Future research 
should incorporate objective measures, such as clinical interviews or 
physiological assessments, to provide a more accurate assessment of 
emotional states. Finally, the study focused primarily on negative 
emotional stimuli. While this is relevant for understanding the impact 

of anxiety and depression, future research should also examine the 
effects of positive emotional stimuli and how they interact with 
different cognitive loads and individual differences in emotional states.

Overall, the present study advance our understanding of 
electrophysiological and behavioral patterns during emotional WM 
processing in relation to anxiety and depression. The findings 
underscore the importance of considering individual differences in 
emotional states when examining cognitive functions and highlight 
how task-sensitive EEG signatures may enhance our capacity to 
characterize individual variability in subclinical symptom dimensions. 
By advancing our understanding of the complex interplay between 
emotion and cognition, this research contributes to the development 
of more effective and personalized interventions for mental health.
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