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Background: Cognitive impairment substantially impacts quality of life in 
Parkinson’s disease (PD), yet current biomarker frameworks lack sensitivity 
for detecting early-stage cognitive decline. While peak alpha frequency 
(PAF) and alpha power spectral density (PSD) have emerged as potential 
electrophysiological markers, prior studies primarily focused on global cortical 
measures, neglecting region-specific variations that may better reflect the 
heterogeneous nature of PD-related cognitive impairment (PDCOG). To address 
this gap, we conducted the first multiregional comparative analysis of PAF and 
alpha PSD between PDCOG and PD with normal cognition patients (PDNC).

Methods: Data from 76 participants (44 PD, 32 healthy controls) at The Affiliated 
Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine 
(March–July 2024) were analyzed. PAF and alpha PSD were computed across 
brain regions; cognitive function was assessed via MoCA.

Results: Global PAF was reduced in PD vs. controls (p < 0.05) and correlated 
with cognition. PDCOG showed lower alpha PSD in parieto-occipital/posterior 
temporal regions (P3, P4, O1, T5, T6, PZ) vs. PDNC (p < 0.05), with these regions 
positively correlating with MoCA scores. ROC analysis identified P3, PZ, and 
T6 alpha PSD as optimal discriminators (AUC: 0.77–0.758). Executive function 
inversely correlated with alpha PSD in right posterior temporal/left occipital 
regions.

Conclusion: PAF differentiates PD from controls and links to global cognition, 
while regional alpha PSD (notably P3, PZ, T6) effectively distinguishes PDCOG 
from PDNC. These findings underscore regional QEEG’s utility in PD cognitive 
assessment, though sensitivity limitations warrant optimization.
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1 Introduction

Parkinson’s disease (PD), a multisystem neurodegenerative 
disorder, is defined by both motor deficits (Barone et al., 2009) and 
heterogeneous nonmotor symptoms, including cognitive decline 
(Chaudhuri et  al., 2006). Individuals with PD generally exhibit a 
heightened susceptibility to dementia compared to the general 
population, with PD-dementia (PDD) incidence reaching as high as 
46% in PD patients with a history exceeding 10 years (Williams-Gray 
et al., 2013). PD patients with cognitive impairment (PDCOG) may 
experience deficits across multiple cognitive domains (Harvey, 2019). 
These deficits profoundly impair quality of life (Chandler et al., 2021), 
incur significant socioeconomic burdens, and predict faster disease 
progression—even surpassing motor symptoms in early-stage impact. 
Current cognitive scales (e.g., MoCA) lack neurobiological specificity, 
failing to link deficits to underlying pathology [e.g., alpha rhythm 
dysregulation (Saredakis et al., 2019)]—a gap hindering precision care.

Quantitative electroencephalography (QEEG) is a renowned, 
non-invasive, and cost-effective technique for capturing the electrical 
activity of the brain. It offers quantitative insights into brain functions, 
including peak alpha frequency (PAF) and power spectral density 
(PSD). This method has gained notable attention in recent years due to 
its excellent spatial resolution in detecting neuronal electrical activity 
(Babiloni et al., 2020; Novak et al., 2021; Geraedts et al., 2018). Cognitive 
decline is associated with specific neurodegenerative patterns, such as 
corticostriatal pathway dysfunction and alpha rhythm dysregulation 
(Zhou et al., 2024). For instance, decreased occipital alpha/theta ratios 
are predictive of visuospatial deficits (Jaramillo-Jimenez et al., 2021), 
whereas parietal alpha PSD is correlated with overall cognitive function 
(MoCA scores) (Anjum et al., 2024). By distinguishing between PDCOG 
and PDNC, clinicians can identify patients at risk of rapid progression 
or PDD early on, thereby facilitating biomarker-driven monitoring.

PD patients exhibit globally reduced PAF, suggesting dopaminergic 
dysfunction (Kamei et al., 2010; Morita et al., 2011; Caviness et al., 
2015; Aarsland et al., 2021), while regional alpha PSD reductions in 
parieto-occipital regions specifically mark PDCOG (Jaramillo-Jimenez 
et al., 2021). These patterns align with cognitive domain vulnerabilities 
(Rea et al., 2021; Polverino et al., 2022; Yılmaz et al., 2020): low parietal 
alpha PSD predicts executive dysfunction, whereas posterior temporal 
declines associate with memory deficits. Such biomarkers bridge the 
gap between symptom-based scales and pathophysiology, offering 
tools for subtyping and targeted interventions.

Based on evidence suggesting that alpha oscillations are fundamental 
to cognitive control networks, previous studies have not sufficiently 
explored the role of PAF and alpha PSD in differentiating cognitive 
impairment levels in PD, we are exploring whether PAF and alpha PSD 
can objectively differentiate between PDCOG and PDNC. Through the 
association of regional QEEG signatures with cognitive profiles, our goal 
is to overcome the restrictions of present evaluations and move towards 
a pathology-informed approach for PD phenotyping.

2 Materials and methods

2.1 Participants and cognitive measures

A cross-sectional study design was employed in this research. 
From March to July 2024, this study recruited 44 participants with 

Parkinson’s disease (24 females and 20 males) from the Rehabilitation 
Hospital affiliated with Fujian University of Traditional Chinese 
Medicine. Additionally, 32 healthy controls (HC) (20 females and 12 
males), matched by age and gender were recruited. All subjects were 
fully informed and signed informed consent. The study was approved 
by the Ethics Committee of the Rehabilitation Hospital affiliated 
with Fujian University of Chinese Medicine (No. 
2023KY-056-002).

According to both the United Kingdom Parkinson disease (UKPD) 
Society Brain Bank criteria (Gibb and Lees, 1988) clinical diagnostic 
criteria for Parkinson’s disease (PD) (MDS-PD criteria) (Gill et al., 
2008), a total of 44 PD patients were recruited from the Rehabilitation 
Hospital affiliated with Fujian University of Chinese Medicine (Fuzhou, 
China). All the subjects were native Chinese speakers and right-handed. 
The inclusion criteria of the healthy control group were: (1) aged 
between 45 and 80 years; (2) The age and gender were matched with 
those in PD group; and (3) No history of neurological or mental illness.

We used MoCA to quantify cognitive condition among participants 
as it is more sensitive to cognitive deterioration in PD (Gill et al., 2008; 
Vásquez et al., 2019; Chou et al., 2010). We defined cognitive impairment 
(PDCOG) as MoCA scores < 26 scores and cognitive normal (PDNC) 
as MoCA scores (Nasreddine et al., 2005; Dalrymple-Alford et al., 2010; 
Chou et al., 2014). All subjects completed the MoCA scale and EEG 
examination within 3 days after enrollment. As reported by Lam et al. 
(2013), we have redefined the five cognitive domains associated with 
each MoCA score (Memory, Visuospatial, Language, Attention 
Executive). Clinical and demographic characteristics of enrolled PD and 
HC subjects are reported in Table 1 and Supplementary Table 1.

2.2 PAF and alpha PSD recordings and 
preprocessing

2.2.1 EEG acquisition process
In this study, three minutes of resting-state EEG activity were 

collected using the Cognitive and Autonomous Nervous Function 
Mapping EEG Monitor (NVX52 EEG Acquisition System, Nanjing 
NeuroMed Technology Group Co., Ltd., China). Nineteen standard 
EEG electrodes were placed on the scalp with an adjustable cap 
according to the internationally recognized 10–20 system, and an AA 
electrode was used as the reference (We use 2 electrodes, A1 and A2. 
AA = (A1 + A2) /2). During data collection, subjects were instructed 
to maintain a comfortable posture and were guided to close their eyes. 
The contact impedance between the electrodes and the scalp was 
strictly maintained below 20 KΩ (Lee et al., 2013).

2.2.2 PAF and alpha PSD analyses
The recorded EEG data were subjected to comprehensive spectrum 

PSD analysis, encompassing all 19 channels. The sampling rate used in 
the data acquisition process is 500 Hz. A broad band power spectrum 
(0.5–48 Hz) was obtained through Fast Fourier transformation of the 
time-series, from which absolute and relative spectral power were 
computed for six frequency bands (delta (0.5–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–48 Hz)). For FFT 
calculation we  use “Hann window function” with “Window 
length = 4 s with 50% overlapping.” And for “Window length = 4 s” the 
resolution of frequency about 0.25 Hz. Given our focus on alpha band, 
this study exclusively analyses the alpha band (Schleiger et al., 2014). 
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The PAF was identified as the frequency point exhibiting the highest 
PSD within the alpha band, ranging from 8 to 13 Hz.

The quality of the collected EEG data were manually inspected 
and preprocessed in EEGLAB. The Infomax Independent Component 
Analysis (ICA) module was used to decompose the EEG data and 
remove artifact components, including ocular and muscle artifacts 
(Delorme et al., 2007; Pion-Tonachini et al., 2019). The study focused 
on the frequency-power spectrum, particularly the peak frequency of 
the alpha wave, which was defined as the frequency point with the 
highest PSD within the alpha band, covering all 19 leads.

2.3 Statistical analyses

All analyses were performed using IBM SPSS Statistics (version 26.0) 
with a two-tailed significance threshold of p < 0.05. Continuous variables 
were compared between groups using independent samples t-tests for 
normally distributed data (assessed via Shapiro–Wilk test) and Mann–
Whitney U tests for non-normally distributed datasets. To identify 
predictor variables of cognitive outcomes, multiple linear regression 
models were constructed, incorporating peak alpha frequency (PAF) and 
alpha band power spectral density (PSD) as independent variables, with 
the MoCA total score and its subdomains serving as dependent variables.

The diagnostic utility of PAF and alpha PSD in predicting 
Parkinson’s disease-related cognitive impairment (PDCOG) was 
evaluated through receiver operating characteristic (ROC) curve 
analysis, with sensitivity and specificity quantified by the area under the 
curve (AUC). To address multiple comparisons in correlation analyses, 
associations between PAF, alpha PSD, and cognitive scale scores were 
examined using Pearson’s correlation with false discovery rate (FDR) 
correction; significant correlations were defined by both raw p < 0.05 
and FDR-adjusted q < 0.05, and the control error discovery rate was 5%.

3 Results

3.1 The results of demographic data and 
clinical assessment

This study included patients with PD (n = 44) and HC (n = 32). 
There was no difference in gender, age and education level between 

the two groups (p > 0.05). The MoCA score of the PD group was lower 
than that of the HC (p < 0.05), see Table 1.

Furthermore, a comparative analysis was conducted on 
demographic and clinical assessment data between PD with 
cognitive impairment (PDCOG, n = 31) and those normal 
cognition (PDNC, n = 13). There were no significant differences in 
gender, age, duration of disease, Hoehn-Yahr stage between the 
two groups (p > 0.05). However, the PDCOG group had 
significantly lower educational level and MoCA scores compared 
to the PDNC group (p < 0.05), see Table  1 and Supplementary  
Table 1.

3.2 Comparison of the peak alpha 
frequency between PD and HC

The results demonstrated that the PAF in the PD group was 
significantly lower than that in the HC group (p < 0.05). This reduction 
was observable in multiple brain areas, specifically the frontal region 
(FP1, FP2, F7) (p < 0.05), temporal region (T4, T5, T6) (p < 0.05), central 
region (C3, C4, FZ, CZ, PZ) (p < 0.05), and parietal-occipital region (P3, 
P4, O1, O2) (p < 0.05), see Figure 1 and Supplementary Table 2.

3.3 Comparison of the alpha PSD between 
PDCOG and PDNC

After the Mann–Whitney U test, significant differences were 
observed in P3α PSD (p = 0.019), P4α PSD (p = 0.030), PZα PSD 
(p = 0.035), O1α PSD (p = 0.030), T5α PSD (p = 0.025) and T6α PSD 
(p = 0.025) between the PDCOG group and the PDNC group, while 
no differences were found in other regions (P>0.05), see Figure 2 and 
Supplementary Table 3.

3.4 Correlation analysis between PAF and 
MoCA total score and subitems scores in 
PD group

The correlation analysis conducted in this study revealed notable 
negative correlations between MoCA scores and PAF values in the 

TABLE 1 Clinical characteristics of PD and HC.

Item PD (n = 44) HC (n = 32) t/x2 p

Total (n = 44) PDCOG (n = 31) PDNC (n = 13)

Gender (Male/

Female)
20/24 17/14 3/10 12/20 −0.69 0.495

Age (year) 66.25 ± 7.70 67.45 ± 5.71 63.38 ± 10.87 65.78 ± 8.96 0.25 0.807

Education level 

(year)
10.48 ± 4.67 9.74 ± 4.64 12.62 ± 3.38 11.97 ± 3.29 −1.63 0.126

Duration of disease 

(year)
4.34 ± 3.03 4.44 ± 3.19 4.12 ± 2.72

– – –

HY stage 2.32 ± 0.64 2.39 ± 0.67 2.15 ± 0.56 – – –

MoCA score 22.77 ± 4.50 20.65 ± 3.48 27.85 ± 1.63 25.63 ± 1.43 −3.94 <0.001*

t-test: Compared to PD bold value means *p < 0.05. While categorical variable is presented with number of patients. HC, healthy controls; PDCOG, PD with cognitive impairment; PDNC, PD 
with normal cognition; MoCa, Montreal Cognitive Assessment; HY, Hoehn and Yahr stage; MDS-UPDRSIII, the part III of the Movement Disorder Society-Sponsored Revision of the Unified 
Parkinson’s Disease Rating Scale; p value: difference between HCs and all PD groups.
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temporal–parietal region (T5, P4, PZ) as well as the midline region 
(CZ). Specifically, the correlation coefficients and corresponding 
p-values were as follows: (r = −0.321, p = 0.034), (r = −0.344, 
p = 0.022), (r = −0.345, p = 0.022), and (r = −0.336, p = 0.026), the 
results survived FDR correction (q = 0.034).

There were also significant negative correlations between the 
temporal–parietal region PAF (T5, P4, PZ) with visuospatial scores. 
The correlation coefficients and p-values were (r = −0.344, p = 0.022), 
(r = 0.361, p = 0.016) and (r = −0.35, p = 0.02), respectively, the results 
survived FDR correction (q = 0.022).

Additionally, temporal–parietal region PAF (T5, P3, P4, PZ) and 
midline region PAF (CZ) showed significant negative correlations 
with language scores. The correlation coefficients and p-values were 
T5 (r = −0.37, p = 0.013), P3 (r = −0.343, p = 0.023), P4 (r = −0.431, 
p = 0.004), PZ (r = −0.405, p = 0.006) and CZ (r = −0.369, p = 0.014), 
respectively, the results survived FDR correction (q = 0.018, q = 0.023, 
q = 0.015, q = 0.015, q = 0.018), see Figure 3.

3.5 Correlation analysis between PSD and 
MoCA subitems scores

The correlation analysis revealed that in the PDCOG group, alpha 
PSD in temporal–parietal-occipital region (P4, O1, T6, PZ) were 
negatively correlated with executive function scores (p < 0.05). The 
correlation coefficients and p-values were P4 (r = 0.363, p = 0.045), O1 
(r = 0.384, p = 0.033), T6 (r = 0.402, p = 0.025) and PZ (r = 0.366, 
p = 0.043), respectively, the results survived FDR correction (q = 0.045).

In contrast, alpha PSD in the parietal region (PZ, P3) showed a 
positive correlation with memory function (p < 0.05). The correlation 
coefficients and p-values were (r = 0.379, p = 0.036) and (r = 0.479, 
p = 0.006), respectively, the results survived FDR correction (q = 0.036, 
q = 0.012), see Figure 4.

3.6 ROC curves for PAF in the diagnosis of 
PD

We conducted ROC curve analyses to investigate whether P3PAF, 
P4PAF, T5PAF, CZPAF, PZPAF might facilitate discrimination 
between PD patients and HC (see Figure 5). The areas under the 
curves (AUC) for P3PAF was 0.673, with a sensitivity of 59.4%, a 
specificity of 68.2%, and a cutoff of 9.65. The AUC for P4PAF was 
0.701, with a sensitivity of 43.8%, a specificity of 84.1%, and a cutoff 
of 9.9. The AUC for T5PAF was 0.674, with a sensitivity of 87.5%, a 
specificity of 38.6%, and a cutoff of 8.9. The AUC for CZPAF was 
0.693, with a sensitivity of 87.5%, a specificity of 45.5%, and a cutoff 
of 8.9. The AUC for PZPAF was 0.694, with a sensitivity of 46.9%, a 
specificity of 81.8%, and a cutoff of 9.9 (details in Table 2).

3.7 ROC curves for alpha PSD indices in the 
diagnosis of PDCOG

We conducted ROC curve analyses to investigate whether P3α PSD, 
P4α PSD, O1α PSD, T6α PSD and PZα PSD might facilitate 
discrimination between PDCOG patients and PDNC patients (Figure 6). 
The areas under the curves (AUC) for P3α PSD was 0.77, with a 
sensitivity of 53.8%, a specificity of 90.3%, and a cutoff of 20.25. The 
AUC for P4α PSD was 0.747, with a sensitivity of 61.5%, a specificity of 
83.9%, and a cutoff of 18.35. The AUC for O1α PSD was 0.743, with a 
sensitivity of 76.9%, a specificity of 64.5%, and a cutoff of 11.9. The AUC 
for T6α PSD was 0.758, with a sensitivity of 61.5%, a specificity of 93.5%, 
and a cutoff of 15.9. The AUC for PZα PSD was 0.758, with a sensitivity 
of 61.5%, a specificity of 80.6%, and a cutoff of 9 (details in Table 3).

4 Discussion

The inherent rhythms captured in resting QEEG data offer invaluable 
neurophysiological insights into human cognition (Dringenberg, 2000; 
Schreckenberger et al., 2004; Klimesch et al., 2007). In recent years, the 
assessment of cognitive function using PAF and alpha PSD has emerged 
as a prominent area of research, garnering significant attention. 
Numerous studies have established a positive correlation between alpha 
activity and cognitive function (Williams Roberson et al., 2022). PAF and 
PSD parameters not only demonstrate the ability to differentiate between 

FIGURE 1

Violin plot of the PAF for PD and HC. The PAF in the bilateral frontal 
(FP1, FP2, F7), temporal (T4, T5, T6), parietal-occipital (P3, P4, O1, O2) 
and central (C3, C4, FZ, CZ, PZ) regions were significantly lower in 
PD than in the HC (p < 0.05). PAF, peak alpha frequency. * p < 0.05, 
** p < 0.01, *** p < 0.001.

https://doi.org/10.3389/fnins.2025.1575815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2025.1575815

Frontiers in Neuroscience 05 frontiersin.org

PD patients and healthy individuals, but also show promise as biomarkers 
for identifying cognitive deficits in PD (Arnaldi et al., 2017; Chaturvedi 
et al., 2017; Waninger et al., 2020; Schumacher et al., 2020). However, the 
question remains regarding the optimal utilization of PAF and PSD’s 
discriminatory capabilities in various EEG regions, particularly in 
differentiating between healthy controls and PD subjects, as well as 
between cognitively normal and impaired PD subjects. Our study 
presents distinct findings on this complex and contentious issue.

4.1 Characteristics of PAF and PSD in PD 
patients

In our study, we  examined the disparities in PAF between 
healthy individuals and those diagnosed with PD. Our findings 
uncovered a significant decrease in overall PAF among PD patients 
relative to HC. The PAF serves as a highly sensitive indicator of 
cognitive performance. Moreover, the PAF fluctuates in accordance 
with the level of cognition (Klimesch, 1997). PAF is commonly 
understood as the frequency demonstrating the peak PSD within the 
8 to 13 Hz alpha band. This frequency is thought to correlate strongly 
with cognitive processes (Keitel et al., 2019; Ramsay et al., 2021; 
Finley et al., 2024). Research has shown that PD patients without 
dementia display a lower frequency of alpha spikes compared to HC 
(Ye et al., 2022). Our findings revealed a discernible difference in 

PAF between the PD and HC groups, moreover, this difference was 
significantly correlated with cognitive assessment outcomes. 
Physiologically, PAF not only indicates heightened brain arousal and 
vigilance, facilitating visual information processing in the parietal, 
temporal, and occipital cortical regions, but is also associated with 
attention and cognitive performance (Babiloni et al., 2022). Our 
findings revealed a negative correlation between the posterior 
temporal pole and superior parietal PAF, and MoCA scores in PD 
patients. This primarily reflects a negative association with visual–
spatial abilities. Furthermore, the superior parietal PAF also shows 
a negative correlation with language scores. These observations 
suggest that heightened neural electrophysiological activity in 
specific brain areas may play a role in compensatory mechanisms for 
cognitive decline. In some neurodegenerative diseases, the brain 
may maintain its function through some compensatory mechanisms. 
For instance, when the function of certain brain regions is impaired, 
other brain regions may increase their activity to compensate for this 
loss. In our study, the reduction of PAF might be  related to the 
excessive synchronization of activity in certain brain regions, which 
could be a compensatory response by the brain to maintain cognitive 
function. However, such compensatory mechanisms may not always 
be effective and might even have a negative impact on cognitive 
function in some cases. These findings align with previous research 
(Zhang et al., 2020). A study investigated the correlation between 
resting-state PAF, PSD, aging, and cognition, revealing a negative 

FIGURE 2

Violin plot of peak alpha PSD for PDCOG and PDNC. The PSD in the parieto-occipital region (P3, P4, PZ, O1), temporal (T3, T4, T5, T6), parietal-
occipital (P3, P4, O1, O2) and the temporal region (T5, T6) regions were significantly lower in PDCOG than in the PDNC (p < 0.05). PSD, power spectral 
density. * p < 0.05.
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association between alpha power and processing speed, particularly 
prominent in the frontal region (Cesnaite et al., 2023). However, our 
results specifically highlight a negative association between PSD and 

cognitive performance at the occipital pole. Additionally, 
we observed a positive correlation between PAF and both right and 
left temporal regions, related to interference suppression during 

FIGURE 3

Correlation analysis between PAF and MoCA and subitems scores in PD group. (A–C): A significant negative correlation was found between P4PAF and 
MoCA scores (A), visuospatial scores (B), language scores (C) in patients with PD. (D–F): A significant negative correlation was found between T5PAF 
and MoCA scores (E), visuospatial scores (F), language scores (G) in patients with PD. (G–I): A significant negative correlation was found between 
PZPAF and MoCA scores (G), visuospatial scores (H), language scores (I) in patients with PD. (J): A significant negative correlation was found between 
CZPAF and MoCA scores in patients with PD. (K): A significant negative correlation was found between CZPAF and language scores in patients with PD. 
(L): A significant negative correlation was found between P3PAF and language scores in patients with PD. q: FDR corrected p value with Benjamini-
Hochberg. q<0.05*.
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working memory tasks. While our study did not directly establish a 
link between PAF and memory, we did find a noteworthy positive 
correlation between PSD and memory performance in PD patients, 
which merits further investigation.

However, no such difference was observed when comparing 
PDCOG and PDNC. Hence, we hypothesize that dopamine may also 
regulate PAF in PD (Wacker, 2018), but further research is required to 
verify this.

4.2 Reduced parieto-occipital alpha PSD in 
PDCOG patients

To distinguish PDCOG patients from PDNC patients based on their 
cortical electrical activity, our study compared the brain networks of the 
two subject groups through the analysis of ICA. In PDCOG patients 
we found a reduction of the alpha component in the parietal and occipital 
region. This result aligns with the findings reported by Yılmaz et al. (2020) 
and Babiloni et al. (2017). Furthermore, the reduction of alpha PSD 
amplitude especially in the posterior regions has been identified as one of 
the parameters that can discriminate between PDNC and PDCOG 
(Aarsland et  al., 2017). The alpha rhythm prevails during relaxed 
wakefulness and serves as an indicator of the subject’s attentional capacity 
and the seamless integration of sensory-motor data, which facilitates the 
activation of cortico-thalamic and cortico-cortical connections. 
Consequently, it is unsurprising to observe alterations in this rhythm 
among patients experiencing cognitive impairment (Mostile et al., 2019).

4.3 Diagnostic efficacy and limitations of 
PDCOG based on QEEG markers

Although significant differences in PAF and PSD characteristics 
were observed between the two PD groups at the group level, translating 
these findings into a practical measure for clinical diagnosis in PDCOG 
remains challenging at this time. Notably, PSD in the alpha frequency 
range and dominant frequency demonstrated the highest diagnostic 
accuracy, yet they only achieved moderate AUC values of approximately 
0.77. Certain lead measures exhibited remarkably high specificity for 
PDCOG (reaching up to 93.5% for alpha PSD in T6 with a cutoff below 
15.9), indicating that a pronounced shift of PSD towards slower 

FIGURE 4

Correlation analysis between the peak alpha PSD and MoCA and subitems scores in PDCOG group. (A–D): A significant negative correlation was found 
between P4αPSD (A), O1αPSD (B), T6αPSD (C), PZαPSD (D) and executive scores in patients with PDCOG. (E): A significant positive correlation was 
found between PZαPSD and memory scores in patients with PDCOG. (F): A significant positive correlation was found between P3αPSD and memory 
scores in patients with PDCOG. q: FDR corrected p value with Benjamini-Hochberg. q<0.05*.

FIGURE 5

ROC curve analysis was used to measure the AUC of PAF. The AUC 
was 0.673 for P3PAF (blue curve), 0.701 for P4PAF (purple curve), 
0.674 for T5PAF (green curve), 0.693 for CZPAF (yellow curve) and 
0.694 for PZPAF (orange curve).
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frequencies strongly suggests a diagnosis of PDCOG. However, 
sensitivity was generally lower, meaning that differentiating between 
PDCOG and PDNC can be difficult when facing a more typical QEEG 
pattern. These findings indicate that while changes in PAF and PSD 
characteristics are specific to cognitive decline, sensitivity is somewhat 
limited. Therefore, a comprehensive diagnosis should incorporate 
additional clinical indicators with higher sensitivity.

Compared with previous studies, the diagnostic efficacy of 
unimodal QEEG in this study (AUC = 0.77) was comparable to 
multimodal fusion models [e.g., QEEG+MRI combined AUC = 0.77 
(Zhang et al., 2021)]. The specificity was significantly higher than that 
of blood biomarkers [93.5% vs. 77.3% (Liu et  al., 2022)]. This 
difference highlights: The unique advantages of QEEG: low cost, high 
specificity, suitable for primary care screening; Inherent limitations of 
a single mode: Heterogeneity in neurodegenerative diseases requires 
multi-dimensional data complementation.

4.4 The link between PAF, alpha PSD and 
cognition

The modulation of alpha activity by cognitive processes has been 
well-documented in the literature, suggesting a broad association 
between alpha activity and various cognitive domains (Klimesch, 2012). 

Our findings reveal that MoCA scores exhibit a positive correlation with 
increasing alpha PSD in parieto-occipital leads (P3, O1, O2, T5, T6, PZ), 
corroborating previous reports (Yılmaz et al., 2020). Furthermore, a 
study indicates that patients with PD may experience inefficient resource 
allocation, potentially due to reduced functional inhibition mediated by 
parietal alpha activity (Weber et al., 2021).

This study unequivocally confirmed the crucial roles of the 
parieto-occipital region, which has a complex association with PD 
cognition. An investigation into brain function networks uncovered 
distinct differences in the parietal and occipital regions between 
individuals with PD and HC. This discovery implies a possible 
dysfunction of the parieto-occipital region in PD patients.

Executive dysfunction has been considered the core feature of the 
cognitive impairment in PD (Arrigoni et al., 2024). Vriend et al. (2015) 
reported in their study that patients with PD demonstrated compromised 
performance in comparison to controls while performing a stop-signal 
task within the inhibition domain. This impairment was accompanied 
by reduced activation in brain areas linked to inhibitory control. This 
study discovered a negative correlation between alpha-band PSD and 
executive function, particularly in specific brain regions such as the right 
posterior temporal pole, parietal pole, and left occipital pole. This 
correlation may be  attributed to the inactivation of these regions, 
resulting in a decreased inhibition process (de-inhibition) (van Eimeren 
et al., 2009). Furthermore, dopaminergic depletion in PD may disrupt 
the default mode network function, resulting in an inability to properly 
adjust its activity during executive function tasks. Notably, our research 
revealed a negative correlation between the executive function score and 
the alpha-band PSD of the parietotemporal region. This intriguing 
discovery might be connected to non-disease-specific or compensatory 
changes in the PD default mode network, ultimately leading to reduced 
task performance. Interestingly, we found that the executive function 
score is negatively correlated with the alpha-band PSD of the 
parietotemporal region. This finding could also be  associated with 
non-disease-specific or compensatory alterations in the PD default mode 
network, which are linked to diminished task performance.

Moreover, our study revealed a fascinating insight: while PAF has 
historically been regarded as a reliable measure for evaluating cognitive 
function, and there is a significant difference in PAF between individuals 
with PD and healthy controls, this metric is unable to differentiate 
between PD patients with and without cognitive impairment. This study 
found a negative correlation between resting-state PAF and the language 
dimension score of MoCA in PD patients, which may reflect the 
oscillation-cognition decoupling phenomenon during disease 
progression. The degeneration of the thalamus-cortex-basal ganglia 
circuit in PD patients may lead to the dysfunction of α rhythm regulation 
(Dirkx et al., 2017), causing the elevated resting-state PAF (>10 Hz) to 
lose its cognitive enhancement effect as seen in healthy individuals. 
Research (Ni et al., 2018) found that basal ganglia neural modulation 

TABLE 2 ROC curve thresholds and corresponding TPR/FPR values for PAF.

Indices AUC Cut-off value p Sensitivity Specificity 95%CI

P3PAF 0.673 9.65 0.01 0.594 0.682 (0.553, 0.793)

P4PAF 0.701 9.9 0.003 0.438 0.841 (0.585, 0.817)

T5PAF 0.674 8.9 0.01 0.875 0.386 (0.555, 0.794)

CZPAF 0.693 8.9 0.004 0.875 0.455 (0.576, 0.810)

PZPAF 0.694 9.9 0.004 0.469 0.818 (0.577, 0.811)

Detail data of ROC curves of PAF for the discrimination of PD and HC. AUC, areas under the curves.

FIGURE 6

ROC curves for the evaluation of the utility of alpha PSD indices for 
the discrimination of PDCOG from PDNC. ROC curve analysis was 
used to measure the AUC of the alpha PSD indices. The AUC was 
0.77 for P3 α PSD (blue curve), 0.747 for P4α PSD (red curve), 0.743 
for O1α PSD (green curve), 0.758 for T6α PSD (yellow curve) and PZα 
PSD (black curve).
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could significantly alter the power and frequency of the cortical α band, 
suggesting that dopaminergic drugs may induce oscillation rigidity 
through a similar pathway, thereby impairing complex cognitive 
functions. Future studies should combine task-state EEG with 
multimodal imaging (such as fMRI-PET) to further explore the dynamic 
relationship between α frequency and the language network at different 
stages of PD. On the other hand, the PSD index has demonstrated 
remarkable effectiveness in assessing the cognitive abilities of PD 
patients, indicating its usefulness in identifying cognitive deficits unique 
to PD. We aim to explore further the variations in the alpha spectrum 
and PSD between PD and other types of cognitive impairment, as well 
as examine the distinct electrophysiological characteristics of cognitive 
impairment in different diseases.

Our study has certain limitations. First, we utilized the MoCA score, 
which does not assess specific cognitive domains and may therefore 
have limited diagnostic accuracy, as a measure of global cognitive 
function. In our future endeavors, we aim to incorporate more targeted 
scales for assessment purposes. Second, as an exploratory study, this 
research aims to preliminarily construct a diagnostic model and identify 
key features; therefore, cross-validation was not performed. Although 
this design may limit the direct assessment of the model’s generalizability, 
the results provide an important foundation for subsequent validation 
studies. Future work will incorporate larger sample sizes and cross-
validation methods to systematically optimize the clinical application 
potential of the model. Finally, the absence of pathological confirmation 
in the current study prevents us from establishing the multifactorial 
pathological mechanism underlying early cognitive decline in PD 
patients. To address this limitation in future research, we  intend to 
include additional evaluation indicators, such as serological and imaging 
markers, to explore multimodal markers of PD cognitive impairment.

5 Conclusion

In conclusion, the present findings reveal a clear association between 
alpha PSD and PD cognitive function. These results strongly imply that 
alpha PSD could be  a key factor in evaluating cognitive abilities. 
Moreover, this study identified the P3α PSD, T5α PSD and T6α PSD as 
highly promising tools for assessing cognitive function in PD. These 
indicators may serve as useful auxiliary measures for future assessment.
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