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Alzheimer’s disease recognition
via long-range state space model
using multi-modal brain images

Ziyin Ren, Meng Zhou, Sadia Shakil* and Raymond Kai-Yu Tong*

Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong,

Hong Kong SAR, China

As a persistent neurodegenerative abnormality, Alzheimer’s disease (AD) is

a�ecting an increasing number of elderly people. The early identification of

AD is critical for halting the disease progression at an early stage. However,

the extraction and fusion of multi-modal features at di�erent scales from brain

images remains a challenge for e�ective AD recognition. In this work, a novel

feature fusion long-range state space model (FF-LSSM) model is suggested for

e�ective extraction and fusion of multi-level characteristics from scannings of

MRI and PET. The FF-LSSM can extract whole-volume features at every scale and

e�ectively decide their global dependencies via adopted 3D Mamba encoders.

Moreover, a feature fusion block is employed to consolidate features of di�erent

levels extracted by each encoder to generate fused feature maps. A classifier is

cascaded at the end, using the fused features to produce the predicted labels.

The FF-LSSM model is optimized and evaluated using brain images of subjects

from the ADNI dataset. The inference result on the testing set reveals the FF-

LSSM accomplishes a classification ACC of 93.59% in CN vs. AD and 79.31% in

sMCI vs. pMCI task, proving its e�ectiveness in disease classification. Finally, the

introduction of the Grad-CAM method illustrates that the implied FF-LSSM can

detect AD- and MCI-related brain regions e�ectively.

KEYWORDS

Alzheimer’s disease, long-range sequential modeling, mild cognitive impairment, multi-

modal brain images, multi-modality integration

1 Introduction

Alzheimer’s disease (AD) is an irreversibly progressive central nervous system

degenerative disorder, which has become the major cause of most dementia among old

citizens: there are over fifty million AD sufferers worldwide, according to statistics (Dadar

et al., 2017; Zou et al., 2024). As patients progress to AD, their cognitive abilities and

memory gradually decline. Mild cognitive impairment (MCI) is the initial stage of this

decline. Depending on its severity and progression, MCI can be further classified as either

the earlier stable MCI (sMCI) stage or the later progressive MCI (pMCI) stage. After the

MCI stage, as the continuous neurodegeneration, patients will eventually progress to AD,

leading to a complete loss of self-care capabilities (Scheltens et al., 2021; Colom-Cadena

et al., 2020). The governments and families of AD patients will face significant financial

burdens due to the disease’s high incidence. Nowadays, there is no effective treatment for

AD; current medications only work to lessen symptoms and halt the disease’s progression

(Pawar et al., 2025). However, early diagnosis of Alzheimer’s remains essential as it can

provide early intervention and thus prohibit AD progression at an early stage. Recently,

the development of artificial intelligence (AI) has made it possible to detect AD using deep

learning (DL) methods.
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Brain imaging can provide rich information about patients’

pathological and anatomical status. Currently, many kinds of brain

imaging methods have been used in AD detection. The ability

of magnetic resonance imaging (MRI) to detect subtle structural

alterations in the brain, including AD biomarkers like atrophy

in the hippocampus, frontal lobe, and temporal lobe, makes it a

common diagnostic tool for AD (Hunter et al., 2024). Due to this

capability, several tools have been proposed using structural MRI

for AD detection in past years (Lin et al., 2018; Mofrad et al.,

2021; Inan et al., 2024). However, structural AD biomarkers often

appear after the disease has progressed; whenADprogression is just

getting started, these biomarkers are usually undetectable. Another

common neuroimaging method for identifying AD is Positron

Emission Tomography (PET). During PET imaging, a radiotracer

is administered into the patient’s body, and metabolic activity can

be measured by observing the accumulation of radio substances. In

practice, different radiotracers will be chosen according to distinct

imaging purposes. Among them, Fluorine-18 fluorodeoxyglucose

(18F-FDG) is one of the most popular radiopharmaceuticals. As

a glucose analog, the uptake of 18F-FDG is a marker for glucose

consumption and thus can highlight active brain regions during

PET imaging (Li and Tang, 2015). Recent research has shown that

brain 18F-FDG PET can detect signs of AD neuropathy in people

with MCI earlier than brain MRI, making it an informative tool

for early AD recognition (Nobili et al., 2018). Therefore, there

are an increasing number of methods based on 18F-FDG PET

modality for AD screening have been proposed (Chen et al., 2022;

Duan et al., 2023; Rogeau et al., 2024). However, PET imaging has

limitations in terms of resolution and signal-to-noise ratio, which

makes it difficult to obtain information on small scales. A potential

improvement is to fuse features from two imaging modalities. It

is possible to combine PET’s superior early-stage AD detection

capabilities with the high spatial resolution of MRI.

The fusion of multi-modal features for computer-aided

diagnosis has become increasingly popular, many approaches have

been suggested in recent years for detecting Schizophrenia (Kanyal

et al., 2024), ADHD (Sethu and Vyas, 2020; Yao et al., 2021),

ASD (Wang Q. et al., 2023; Abbas et al., 2023), and also AD

(Zuo et al., 2023a,b, 2024a,b; Zong et al., 2024). The current

multi-modal approaches for AD identification can be broadly

divided into two types: those that rely on conventional machine

learning (ML) and those that depend on DL. ML-based methods

usually use the constructed classifier for disease recognition after

extracting features from the brain’s pre-defined regions of interest

(ROIs). For example, a linear support vector machine is adopted

by Zhang et al. (2011) to incorporate multi-modal features such

as cerebrospinal fluid (CSF) biomarkers and 93 ROIs’ MRI tissue

volumes and PET intensity values for AD classification. The work

in Tong et al. (2017) utilized a framework based on non-linear

graph fusion to integrate biomarkers from different modalities and

adopted a random forest algorithm to distinguish MCI, AD, and

cognitive normal (CN) control. A multi-modal progressive graph-

based transductive learning method is suggested by Wang et al.

(2017) that can gradually learn latent intrinsic representations from

MRI and PET imaging to achieve optimized dementia classification.

The work in Shi et al. (2019) suggested diagnosing AD and MCI

using the interaction of coupled representations from MRI and

PET features. DL methods become more and more prevalent

in recent years because, in contrast to more conventional ML

approaches, DL-based approaches can not only automatically learn

representations from the input without manually designed features,

but they can also extract characteristics from the latent space to

capture the abstract expression of data. The work in Lu et al. (2018),

for example, suggested a multi-scale deep neural network (DNN)

that uses MRI and PET modalities to predict the conversion to

MCI and AD. By identifying the interaction between the multi-

modal images, Zhang and Shi (2020) proposed a feature fusion

model based on the residual network and attention mechanism.

The work by Fang et al. (2020) designed an ensemble classifier

for AD prediction by fusing each modality’s slice-wise probabilistic

score generated by three different deep convolution neural network

(CNN) models. The work by Hu et al. (2023) utilized VGG-16-

based CNN and multi-head self-attention mechanism to build a

VGG-TSwinformer model using T1- and T2-weighted MRI for

MCI transition prediction. However, many models concentrate

solely on modality-shared representations or modality-specific

information while neglecting feature integration. Additionally,

most previous methods divide input images into patches without

considering the extraction and amalgamation of features at various

scales from the voxel to the global level.

In the analysis of high-dimensionalmedical images, as the input

size increases, the computational complexity and convergence time

of traditional architectures, such as Transformer, grow drastically,

which limits their application potentials. Recently, a novel DL

framework, Mamba, has been proposed to tackle the challenge

of modeling long sequences (Gu and Dao, 2023). The basic

structure of Mamba is based on the state space model (SSM)

(Kalman, 1960), by introducing a selection mechanism and a

hardware optimization method, Mamba can capture global long-

range dependencies and achieve higher training and inference

efficiency. Although it was originally designed to handle long

sequence modeling problems, the linear complexity of SSM can

effectively handle the computational challenges brought by high-

dimensional medical images. Many studies have incorporated

Mamba frameworks into computer vision and medical image

applications, such as the Vision Mamba (Zhu et al., 2024), which

introduces the Vim block for enhanced location-aware visual

understanding. The work by Ma et al. (2024) proposed the U-

Mamba that integrates the Mamba layer into the nnUNet encoder

for 2D medical image segmentation. SegMamba is an innovative

architecture incorporating a 3D Mamba encoder for segmenting

3D medical images (Xing et al., 2024). The 3D Mamba encoder

can convert an input 3D feature map to three long sequences in

different orders and thus enable the SSM tomodel 3D features. Like

its extraordinary performance in long-sequence modeling of large

language models, it is observed that the SSM can not only extract

whole-volume 3D features at every scale but also effectively decide

their global dependencies. All these works together demonstrate

the great potential of the Mamba architecture in DL based medical

imaging analysis. Using high-resolution brain imaging data, such

as MRI and PET, to diagnose AD often requires capturing the

most subtle status changes over long sequences and processing

the relationship between multiple potential degeneration locations,

which is a task suitable for introducing SSM-based models.
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To tackle the challenge of global dependencies extraction

and multi-scale feature fusion, in this research, we propose a

Feature Fusion Long-range State Space Model (FF-LSSM) for AD

detection and MCI conversion prognosis using MRI and PET

images. According to our awareness, it is the first DL model that

incorporates the SSM into AD classification. The FF-LSSM takes

MRI and PET images of each subject as input. Features from two

modalities are extracted separately by two Mamba encoders based

on the Tri-orientated Spatial Mamba (TSMamba) block (Xing

et al., 2024). A feature fusion block based on the dynamic feature

fusion (DFF) module (Yang et al., 2024) is introduced to integrate

multi-scale features from distinct modalities. Then, a classifier is

introduced to generate the predicted labels from fused feature

maps. For better model explainability, we also employ the gradient-

weighted class activation mapping (Grad-CAM)method to plot the

brain areas that contribute the most to dementia classification.

The remaining paragraphs of this paper are expanded in the

sequence outlined below. In Section 2, we describe subjects and

image pre-processing methods applied in our research. In Section

3, we thoroughly illustrate the suggested DL model. In Section

4, we clarify the model implementation detail and experimental

outcomes. In Section 5, we collate the obtained results with those

reported in previous papers and discuss the proposed method’s

advantages and restrictions. In Section 6, a summary conclusion is

given by us.

2 Materials

2.1 Dataset

All data applied in this research is acquired from the public

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset,

which is a multi-center research program with the goal of

discovering and validating biomarkers for AD (Jack et al., 2008).

In ADNI, thousands of people from throughout North America

were brought together for clinical assessments and brain imaging.

This study uses MP-RAGE T1-weighted MRI and 18F-FDG PET

images from ADNI studies for model training and evaluation. Data

is obtained from the baseline MRI and PET acquisition of 656

individuals, which encompasses 197 from CN group, 162 from

sMCI group, 104 from pMCI group, and 193 from AD group.

We obtained labels for sMCI and pMCI groups from published

data of one previous study (Gao et al., 2021), which are defined

based on whether a subject progressed to AD within 36 months

after the initial assessment. Since not all volunteers in the ADNI

database have data from all modalities, we only screened out those

who had both MRI and PET brain images as subjects for this

study. The detailed specifics of the selected subjects, including their

gender, age, clinical dementia rating (CDR), and mini-mental state

examination (MMSE), are itemized in Table 1.

2.2 Image pre-processing

The 18F-FDG PET images provided by ADNI are all in a

slice-wise DICOM format, while the MP-RAGE MRI are in 3D

NIFTI format. To ensure the uniformity of the file type and

TABLE 1 Demographic information and clinical scores of studied groups

(mean ± std).

Group Gender (F/M) Age (Years) CDR MMSE

CN 102/95 74.1± 5.6 0.0± 0.1 29.1± 1.1

sMCI 55/107 74.6± 7.3 1.4± 0.8 27.5± 1.8

pMCI 43/61 74.7± 6.6 1.9± 1.0 26.8± 1.7

AD 96/97 74.9± 8.0 4.5± 1.7 23.2± 2.2

ease subsequent steps, we first use the SPM12 toolbox (Penny

et al., 2011) to alter PET files from DICOM to NIFTI format.

Subsequently, both MRI and PET images are read and manipulated

by script commands of FSL 6.0.7 (Smith et al., 2004; Woolrich

et al., 2009; Jenkinson et al., 2012). The pre-processing steps follow

a standard pipeline. First, the brain extraction is performed using

the BET algorithm (Smith, 2002) to strip the skull from the native

space of each subject. Then, all MRI images are linearly registered

to the MNI152 standard space by utilizing the FLIRT algorithm

(Jenkinson et al., 2002). Afterward, the PET images are first aligned

to their corresponding MP-RAGE files in the individual space and

then transferred into the template space using the transformation

matrix generated in the previous step. After all scannings are

registered to the standard space, we remove zero-valued voxels

close to the edges and leave the center of the volume with a size

of 153 × 180 × 150 mm. The remaining volumes are then down-

sampled and resized to a cubic shape of 128 × 128 × 128 mm

to reduce the computational complexity. At last, all voxel values

in each volume I are normalized between 0 and 1 to facilitate the

model training and evaluation. The image pre-processing pipelines

are summarized in Figure 1.

3 Method

After the data pre-processing steps are finished, an FF-LSSM

framework with four parts is proposed for multi-modal AD

classification, as demonstrated in Figure 2. Our suggested DL

framework is comprised of the subsequent four elements: (1) two

3D Mamba encoders constructed with down-sampling layers and

TSMamba blocks to obtain and combine multi-level features from

the voxel to the global level, (2) one feature fusion block based on

the DFF module, and (3) one classifier to generate desired labels.

The following subsections describe each block’s specifics in detail.

3.1 Mamba encoder

As the backbone of the proposed model, two Mamba encoders

(Xing et al., 2024) are adopted separately to obtain latent features

from the pre-processed MRI and PET volumes. In the Mamba

encoder, the input 3D volume first passes a stem 3D convolution

layer that has a large kernel size of 7, a stride length of 2, and a

padding of 3. In this research, we empirically set the output channel

number to 16 for this stem layer. Thus, the stem layer can extract

an initially down-sampled feature map z0 ∈ 16× D
2 × H

2 × W
2 for

each input volume I ∈ 1× D× H ×W.
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FIGURE 1

The pipeline of image preprocessing applied in this research. The BET method is applied for extracting the brain, and the FLIRT algorithm is used for

linear registration. To reduce the computation complexity, all images are first cropped and then down-sampled and reshaped to a size of 128 × 128

× 128 mm. At last, all voxel values are normalized between 0 and 1.

FIGURE 2

Architecture of the suggested FF-LSSM framework. The FF-LSSM contains two 3D Mamba encoders for feature extraction, one feature fusion block

to fuse multi-modal features, and one classifier to generate predicted labels.
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Following the stem layer, the scaled feature map z0 is fed into a

TSMamba block. As demonstrated in Figure 2, the TSMamba block

comprises a Gated Spatial Convolution (GSC)module followed by a

Tri-orientatedMamba (ToM)module and amulti-layer perceptron

(MLP). To facilitate the training and convergence of the model,

residual connections and the layer normalization (LN) operation

are also introduced. The GSC module in the TSMamba block is

applied to preliminarily process spatial features and relationships

in input feature maps. The output of GSC is divided into two

parts, one is retained as the residual link, and the other one is fed

into a ToM module after the LN operation. Unlike the original

Mamba module that is proposed for modeling long time-series

1D sequences, the ToM module is a modified Mamba layer that

can calculate feature dependencies from three directions, making it

applicable for modeling 3D volumes. For a given 3D input feature

map x, the ToM module first flattens it into voxel sequences in

three directions, representing the forward xf , reverse xr , and inter-

slice xs sequences. Each sequence is processed by an independent

Mamba module to extract features and relationships at each level.

Finally, the outputs of three Mamba modules are added to achieve

the feature integration, which computational descriptions can be

denoted as (Xing et al., 2024):

ToM(x) = M(xf )+M(xr)+M(xs) (1)

where M means the 1D Mamba module. Output of the ToM

module is also split into two sections, one is fed into an MLP

after the LN operation, and the other one is used as the residual

connection. For a given input feature map yi, the computational

expression of the TSMamba block is as follows (Xing et al., 2024):

ŷi = GSC(yi) (2)

ỹi = ToM(LN(ŷi))+ ŷi (3)

yi+1 = MLP(LN(ỹi))+ ỹi (4)

where yi+1 represents the output. In this work, we set the input

and output channels of all layers in a TSMamba block to be the

same, so for an input z0 ∈ 16× D
2 × H

2 × W
2 , an output z1 ∈

16× D
2 × H

2 × W
2 of the same size is returned. Details of the

TSMamba block can be found in the salient work of Xing et al.

(2024) and will not be repeated here.

For further down-sampling and feature extraction, the feature

extracted by the first TSMamba block then passes through a down-

sampling 3D convolution layer of kernel 3, stride 2, and padding

1. For the extracted feature of the first TSMamba module z1 ∈

16× D
2 × H

2 × W
2 , the scaled feature z2 ∈ 32× D

4 × H
4 × W

4 is

generated by this down-sampling layer. Then, the scaled feature

passes through the second TSMamba module for further feature

interaction and feature fusion. The output of the second TSMamba

module can be denoted as z3 ∈ 32× D
4 × H

4 × W
4 .

3.2 Feature fusion block

The DFF module (Yang et al., 2024) is introduced in the feature

fusion block to fuse features extracted by the Mamba encoders. The

principle of DFF is using global information from the input itself as

a guide to adaptively fuse local features at multi-scales. The progress

of feature fusion involves the dynamic selection of essential features

by considering their global information. The outputs of the first

TSMamba block in both MRI and PET Mamba encoders are used

as the input of the first DFF module. We can denote two input

features of the first DFF module as F11 ∈ 16× D
2 × H

2 × W
2 and

F12 ∈ 16× D
2 × H

2 × W
2 . As shown in Figure 3A, a concatenation

operation is performed on the channel dimension of inputs F11 and

F12 , resulting in the feature with a dimension of 32× D
2 × H

2 × W
2 .

By letting the concatenated input pass through an average pooling

operation, a convolution layer with 32 output channels, and a

Sigmoid activation in sequence, the global channel information w1
ch

that describes the importance of features can be extracted (Yang

et al., 2024):

w1
ch = Sigmoid(c1×1×1(AVGPool[F11; F

1
2])) (5)

where c stands for the convolution layer. The product of w1
ch

and the concatenated input then passes through a 1 × 1 × 1

convolution layer with 16 output channels to make the channel

number the same as the original one. In this way, the global

channel information guides the retaining of highlighted features

while removing useless interference. The following equation can

represent the process (Yang et al., 2024):

F1 = c1×1×1(w1
ch · [F

1
1; F

1
2]) (6)

Besides channel information, spatial information is also crucial

in the DFF process. While generating global channel information,

F11 and F12 also pass through two 1 × 1 × 1 convolution layers

with 16 output channels, respectively. The summation of these

two convolution layers’ outputs then passes through a Sigmoid

activation to generate the global spatial informationwsp (Yang et al.,

2024):

w1
sp = Sigmoid(c1×1×1(F11)+ c1×1×1(F12)) (7)

The global spatial information is thenmultiplied with F1, which

integrates the spatial and channel information, thereby highlighting

critical locations on the feature map. Thus, the first DFF module’s

output can be calculated by Yang et al. (2024):

F̂1 = w1
sp · F

1 (8)

The output of the first DFF module then passes through the

same down-sampling 3D convolution layer. This convolution layer

resizes the feature map tomake it have a dimension of 32× D
4 ×

H
4 ×

W
4 , the same size as the outputs of the second TSMamba module

in both Mamba encoders. The outputs of each Mamba encoder’s

second TSMamba module are then supplied into the second DFF

module together with the fused feature map generated by the first
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FIGURE 3

Architecture of the applied (A) DFF module (Yang et al., 2024) and (B) classifier. The DFF consists of two paths. In one path, the global channel

information wl
ch

is extracted from concatenated input features. In another path, the global spatial information wl
sp is extracted from input features by

separate convolution layers. The final output F̂l integrates both the channel and spatial information. The superscript l indicates the l-th DFF module.

The classifier first adopts a down-sampling layer to reshape the feature map. The scaled features are then processed by three convolution layers, one

self-attention branch, and an MLP to generate the predicted label.

DFF module. For the second DFF module, which has three inputs,

Equations 5–8 can be replaced by:

w2
ch = Sigmoid(c1×1×1(AVGPool[F21; F

2
2; F

2
3])) (9)

F2 = c1×1×1(w2
ch · [F

2
1; F

2
2; F

2
3]) (10)

w2
sp = Sigmoid(c1×1×1(F21)+ c1×1×1(F22)+ c1×1×1(F23)) (11)

F̂2 = w2
sp · F

2 (12)

Since the second DFF module has an additional input

path compared with the first one, the channel number after

concatenation becomes 96. Therefore, in the branch that calculates

the global channel information, the convolution layers’ input and

output channels are adjusted appropriately to make sure the size of

the output stays constant. The final output for the feature fusion

block can be denoted as z4 ∈ 32× D
4 × H

4 × W
4 .

3.3 Classifier

After the feature fusion block, a classifier is accessed to generate

the predicted result from combined and learned feature maps. As

demonstrated by Figure 3B, the input feature map of the classifier

first goes through another down-sampling 3D convolution layer,

which produces the further rescaled feature map denoted as

z5 ∈ 64× D
8 × H

8 × W
8 . Subsequently, this feature map asses

through two convolution blocks (each consisting of one 3 × 3

× 3 convolution, one normalize, and one ReLU layer) and then

one last 3 × 3 × 3 convolution layer followed by an MLP. The

fully connected MLP outputs two classes with a Softmax function

to produce output labels. Moreover, the classifier adopts a self-

attention branch with two cascaded 1 × 1 × 1 convolution layers

followed by the Sigmoid activation. This attention branch can

highlight important features and thus facilitate modeling multi-

level and long-range correlations.

4 Experiments and results

4.1 Implementation

We deploy the suggested DL model leveraging the Pytorch

toolkit in a Python 3.10.14 environment. The experimental

environment is built on anUbuntu 18.04 platformwith anNVIDIA

GeForce RTX3090 GPU accelerated by the CUDA framework.

All models are trained and evaluated on two tasks of binary

classification: AD detection (CN vs. AD) andMCI prognosis (sMCI

vs. pMCI). In both tasks, subjects from the corresponding groups

are randomly assigned to the training and testing sets in a 4:1

ratio. The same training and testing sets are used for all models’

optimization and inference processes. In the model training, we

adopt an Adam optimizer, its learning rate is set to 1 × 10−4, and

a weight decay parameter of 0.02 is added. The training batch size

is set to 4, i.e., the brain images of 4 subjects. We define the cross-

entropy between the model’s output and the subject’s real label as

the loss function:

LCE(p, q) = −

n∑

i=1

pi log qi (13)

where n implies the class number, pi refers to the real label, and

qi indicates the label predicted by the model. To quantitatively
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TABLE 2 Comparison of results for classification of CN vs. AD and sMCI vs. pMCI tasks using uni- and multi-modal images as input.

Modality
CN vs. AD (%) sMCI vs. pMCI (%)

ACC SEN SPE AUC ACC SEN SPE AUC

MRI 88.46 86.84 90.00 92.96 72.41 69.56 74.29 69.07

PET 91.03 89.47 92.50 95.10 77.59 73.91 80.00 74.91

PT-DCN 92.31 89.74 94.87 95.20 77.59 78.26 77.14 79.13

FF-LSSM 93.59 92.11 95.00 96.18 79.31 86.96 74.29 80.62

Bold values indicate the highest value of each metric.

TABLE 3 Results of the ablation study in CN vs. AD and sMCI vs. pMCI classification tasks.

Method
CN vs. AD (%) sMCI vs. pMCI (%)

ACC SEN SPE AUC ACC SEN SPE AUC

CNN+Concat 84.62 79.49 89.74 90.86 70.69 60.87 77.14 63.73

CNN+DFF 85.90 84.62 87.18 91.49 72.41 69.57 74.29 71.30

GSC+Concat 87.18 89.74 84.62 93.16 74.14 73.91 74.29 70.56

GSC+DFF 89.74 87.18 92.31 93.03 75.86 65.22 82.86 72.17

TSMamba+Concat 92.31 92.11 92.50 96.55 77.59 73.91 80.00 77.39

FF-LSSM 93.59 92.11 95.00 96.18 79.31 86.96 74.29 80.62

Bold values indicate the highest value of each metric.

FIGURE 4

ROC curves of di�erent methods applied in the ablation study. All models are evaluated on both (A) CN vs. AD and (B) sMCI vs. pMCI.

measure model performance, we calculate four commonly used

indicators on the test set, which are accuracy (ACC), sensitivity

(SEN), specificity (SPE), and area under the curve (AUC).

4.2 E�ectiveness of disease classification

To investigate the efficacy of the suggested FF-LSSM in AD

detection, we first examine its performance on CN vs. AD task.

Meanwhile, to verify the advantages of multi-modality methods

over uni-modality ones, we also evaluate variant models using only

MRI or PET as input. In the variant uni-modality models, we

remove one Mamba encoder from them. Since one input path is

eliminated, the channel number of their DFF module’s convolution

layers is adjusted accordingly. Besides, we also implement a SOTA

method, the pathwise transfer dense convolution network (PT-

DCN) (Gao et al., 2021), on the same training and testing dataset for

comparison. Since the input size of the original PT-DCN is different

from ours, we change part of its structures and try our best effort

to restore its deployment environment for a fair comparison. On

the left side of Table 2, we list the results of the aforementioned

experiments. Experimental results show that the MRI-based uni-

modality model performs the worst, the PET variant performs

slightly better, and the proposed FF-LSSM has the best classification

performance, achieving 93.59% in ACC. Credit to better abilities of

modeling high-dimension medical images and feature integration,

the propsed FF-LSSM also outperforms the previous PT-DCN that

based on traditional CNN.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2025.1576931
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ren et al. 10.3389/fnins.2025.1576931

FIGURE 5

Grad-CAM heat maps obtained by (A) averaging over all subjects in CN vs. AD classification and (B) averaging over all subjects in sMCI vs. pMCI task.

A brighter color represents larger gradients at the location.

Subsequently, we conducted the same experiment on the sMCI

vs. pMCI task to evaluate the effectiveness of models in MCI

prognosis, and the corresponding results are enumerated on the

right side of Table 2. In addition to the PET-based variant showing

better SPE, the experimental results on the sMCI vs. pMCI task

are consistent with the previous CN vs. AD one: FF-LSSM shows

the highest 79.31% ACC, followed by the PET-based model and

PT-DCN, and then the MRI-based model. This demonstrates the

effectiveness of FF-LSSM in the prognosis of MCI and further

proves the significance of themulti-modality integration technique.

4.3 Ablation study

After verifying the efficacy of the suggested model, to validate

the efficacy of the elements introduced in our model, we conducted

ablation experiments. First, the effectiveness of ToM modules is

tested by removing the ToM and only retaining GSC modules,

resulting in the variant model GSC+DFF. Subsequently, the efficacy

of the GSC module is tested by removing GSC modules and

only retaining the down-sampling convolution layers, resulting

in the variant model CNN+DFF. Furthermore, the efficacy of

the DFF module is tested by replacing all DFF modules with

concatenation operation in all models, which results in three more

variants: TSMamba+Concat, GSC+Concat, and CNN+Concat.

The experimental outcomes are demonstrated in Table 3, and

corresponding ROC curves are illustrated in Figure 4. It is evident

that the ToM module makes a substantial contribution to the

model’s overall efficiency when the DFF module is kept untouched.

Since the ToM is the main feature extractor in the FF-LSSM and is

responsible for extracting features at each level and modeling long-

range dependencies, removing the ToM module leads to drastic

decreases in all measures. Unsurprisingly, removing the GSC

module further deteriorates the model performance since the GSC

module also contributes to the feature extraction. While keeping

the number of channels unchanged, the model with only down-

sampling convolution layers performs the worst in both CN vs. AD

and sMCI vs. pMCI tasks. This is because it is challenging to model

relationships between multi-level features for a plain convolution

layer. Furthermore, variant models with the simple concatenation

operation always perform worse than models containing the DFF

module. It can be observed that introducing the feature fusion

mechanism can enhance the capability of all variant models on both

classification tasks.

4.4 Feature visualization

Furthermore, for model explainability, the Grad-CAM

technique is applied to figure brain areas that are most significant
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FIGURE 6

Origin MRI images and corresponding Grad-CAM heat maps of four subjects from the CN vs. AD classification.

to the disease classifications (Selvaraju et al., 2020). Grad-CAM

uses gradients of the last convolution layer and the predicted

results to give a heat map visualization of why a model made

its decision. It is a valuable tool for model interpretation. The

Grad-CAM heat map averaged on all subjects for CN vs. AD

classification is displayed in Figure 5A. It can be noticed that the

implied FF-LSSM highlights many regions closely related to AD,

such as the Precuneus (Karas et al., 2007), Cuneus (Zheng et al.,

2025), Hippocampus (Rao et al., 2022), Caudate (Persson et al.,

2018), and Lingual cortex (Liu et al., 2017). Figure 5B shows the

averaged Grad-CAM for the sMCI vs. pMCI task. It comes out that

the middle Cingulate, Cuneus, Precuneus, and Occipital cortex

show the most significant gradients in sMCI and pMCI subjects

classification, consistent with previous studies that these regions

show significant volume decrease and functional abnormality in

MCI progressing (Choo et al., 2010; Pagani et al., 2017; Risacher

et al., 2009). In Figures 6, 7, as a reference, we also provide several

individuals’ MRI images and Grad-CAM heat maps from the

CN vs. AD and sMCI vs. pMCI classification, respectively. This

result shows that in addition to classifying dementia stages, the

proposed FF-LSSM also has great potential in detecting abnormal

brain regions associated with AD and MCI. This has positive

significance for its future practical applications because it can

provide explainable auxiliary information for diagnoses.

5 Discussion

With MRI and PET brain images, we build an FF-LSSM

framework to extract and fuse multi-modal features for disease

classifications. In Table 4, we compare our results with those

reported in previous literature that also applied multi-modal

methods based on MRI and PET volumes from the ADNI.

The compared methods include the hierarchical feature fusion

classification algorithm (Liu et al., 2014), the multiple instance-

graph method (Tong et al., 2014), the multi-scale DNN (Lu

et al., 2018), the multi-modal DNN with random drop-out

(Forouzannezhad et al., 2018), the latent feature representation

learning method (Zhou et al., 2019), the dual-modality CNN

(Huang et al., 2019; Lin et al., 2021), the PT-DCN (Gao
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FIGURE 7

Origin MRI images and corresponding Grad-CAM heat maps of four subjects from the sMCI vs. pMCI classification.

TABLE 4 Comparison with classification performance of previous multi-modal methods.

Method
Subjects CN vs. AD (%) sMCI vs. pMCI (%)

CN sMCI pMCI AD ACC SEN SPE AUC ACC SEN SPE AUC

Liu et al. (2014) 229 - - 198 82.2 77.4 86.1 88.1 - - - -

Tong et al. (2014) 231 238 167 198 90.0 84.9 92.6 - 70.4 67.0 73.0 -

Lu et al. (2018) 360 409 217 238 82.9 79.7 83.8 - - - - -

Forouzannezhad et al.
(2018)

248 296 193 159 89.1 87.4 92.1 - 68.2 78.1 57.5 -

Zhou et al. (2019) 204 205 157 171 - - - - 74.3 - - 75.5

Huang et al. (2019) 731 441 326 647 90.1 90.9 89.2 90.8 76.9 68.2 83.9 79.6

Lin et al. (2021) 308 233 183 362 92.3 90.4 94.4 92.8 74.1 75.0 73.1 76.6

Gao et al. (2021) 427 342 234 352 92.0 89.1 94.0 95.6 75.3 77.3 74.1 78.6

Zhang et al. (2023) 129 - - 110 91.1 91.0 91.1 94.1 - - - -

Ours 197 162 104 193 93.6 92.1 95.0 96.2 79.3 87.0 74.3 80.6

Bold values indicate the highest value of each metric.
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et al., 2021), and the multi-modal cross-attention AD diagnosis

framework (Zhang et al., 2023). Considering most of the

above studies do not provide pre-trained models or attach

source codes, for comparison, we straightly use their published

results in the literature. According to the results, the model

we suggested outperforms previous approaches in diagnosing

AD and predicting the prognosis of MCI. This is because

methods used in previous studies are primarily based on ML

or convolution-based layers, which cannot handle the long-range

dependencies between local features. The introduction of the

TSMamba module successfully solves this problem and boosts

classification accuracy.

However, the proposed model also has many limitations

and there is room for further improvement in many aspects.

First, only MP-RAGE MRI and 18F-FDG PET are applied

in the current study. While the amalgamation of these two

modalities can grant rich intelligence for dementia classification,

the incorporation of other modalities, such as DTI images and

genetic data, can enhance model performance to a greater degree.

In addition, all experiments are performed solely on the ADNI

dataset. Since different datasets usually have distinct imaging

devices and acquisition parameters, migrating between them

may encounter difficulties due to data diversities. Fortunately,

domain adaptation and transfer learning technologies have largely

solved the challenge of data heterogeneity (Zhou et al., 2023).

In future studies, using multiple datasets for model training

and evaluation can be more conducive to its clinical application

since this scenario simulates the data heterogeneity of different

medical centers. Third, due to the fine resolution of the MRI

and PET images, the whole-volume feature extraction is very

time-consuming. In the adopted ToM module, modeling a 64

× 64 × 64 input map can lead to a sequential length of about

260k, which is a large demand for both the time and GPU

memory. Due to the limitation of GPU capacity, we only introduce

two TSMamba layers in each Mamba encoder. Reducing the

input resolution can reduce time and computational requirements,

allowing us to stack more TSMamba layers in the encoder,

but the reduced image resolution may also destroy small-scale

features and worsen the model performance. Thus, the trade-

off between input resolution and model scale is a direction

that needs further experiments. Finally, acquiring PET modality

is often more difficult than MRI due to its higher cost and

potential radiation hazards. Even in large public datasets, such as

ADNI, only a small fraction of the subjects have recorded PET

scannings. Therefore, for multi-modality models, data sparsity is

also a problem that needs to be overcome in the future. We

exclusively study individuals who have both MRI and PET scans

in the current study; however, to make the model more widely

applicable, it is necessary to consider subjects with incomplete

images. Fortunately, with the recent remarkable development

of generative models (Wang S.-Q. et al., 2023; Wang et al.,

2025), it has become possible to produce reliable PET images

from other modalities using generative AIs. In future studies,

using generative models to produce data for subjects with

missing modalities will undoubtedly enhance the universality of

the model.

6 Conclusion

For effective AD recognition, we suggest an innovative

DL framework termed FF-LSSM in this study. The FF-LSSM

contains two 3D Mamba encoders, one feature fusion block,

and one classifier. The FF-LSSM uses MRI and PET volumes of

every individual as input to conduct dementia classification by

extracting and fusing multi-modal features at different scales. The

experimental results show that, compared to the uni-modality

model, FF-LSSM accomplishes higher classification accuracy in two

binary classification tasks, which is 93.59% for the AD detection

and 79.31% for the MCI prognosis, respectively. This result proves

the advantage of multi-modality feature fusion and the feasibility

of the suggested approach in AD detection and MCI prognosis.

When juxtaposed with methods proposed by previous literature,

the FF-LSSM suggested by us also achieves better classification

performance. Finally, the extracted features are visualized using

the Grad-CAM technique and show patterns consistent with

previous studies, demonstrating the model’s explainability in

dementia recognition.
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