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Introduction: Dry electroencephalography (EEG) allows for recording cortical

activity in ecological scenarios with a high channel count, but it is often more

prone to artifacts as compared to gel-based EEG. Spatial harmonic analysis

(SPHARA) and ICA-based methods (Fingerprint and ARCI) have been separately

used in previous studies for dry EEG de-noising and physiological artifact

reduction. Here, we investigate if the combination of these techniques further

improves EEG signal quality. For this purpose, we also introduced an improved

version of SPHARA.

Methods: Dry 64-channel EEG was recorded from 11 healthy volunteers during a

motor performance paradigm (left and right hand, feet, and tongue movements).

EEG signals were denoised separately using Fingerprint + ARCI, SPHARA, a

combination of these two methods, and a combination of these two methods

including an improved SPHARA version. The improved version of SPHARA

includes an additional zeroing of artifactual jumps in single channels before

application of SPHARA. The EEG signal quality after application of each denoising

method was calculated by means of standard deviation (SD), signal to noise

ratio (SNR), and root mean square deviation (RMSD), and a generalized linear

mixed effects (GLME) model was used to identify significant changes of these

parameters and quantify the changes in the EEG signal quality.

Results: The grand average values of SD improved from 9.76 (reference

preprocessed EEG) to 8.28, 7.91, 6.72, and 6.15 µV for Fingerprint + ARCI,

SPHARA, Fingerprint + ARCI + SPHARA, and Fingerprint + ARCI + improved

SPHARA, respectively. Similarly, the RMSD values improved from 4.65 to 4.82,

6.32, and 6.90 µV, and the SNR values changed from 2.31 to 1.55, 4.08,

and 5.56 dB.

Discussion: Our results demonstrate the different performance aspects of

Fingerprint + ARCI and SPHARA, artifact reduction and de-noising techniques

that complement each other. We also demonstrated that a combination of these
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techniques yields superior performance in the reduction of artifacts and noise

in dry EEG recordings, which can be extended to infant EEG and adult MEG

applications.

KEYWORDS

electroencephalography, magnetoencephalography, spatial harmonic analysis,
independent component analysis, biopotential electrode, brain-computer interface

1 Introduction

Electroencephalography (EEG) is a method for monitoring the
electrical activity of the brain using electrodes placed on the scalp.
It is non-invasive, portable, has high temporal resolution, and has
lower costs than other brain imaging techniques (Mannan et al.,
2018; Knösche and Haueisen, 2022). EEG is widely used in clinical
settings to diagnose and monitor neurological and psychiatric
disorders (Livint Popa et al., 2020). Beyond clinical use, EEG is
widely applied in research and brain-computer interface (BCI)
development (Lee et al., 2019), enabling direct interaction between
the brain and external devices.

While EEG has numerous advantages, its effectiveness heavily
depends on the quality of the recorded signal, which is often
affected by artifacts. Artifacts are defined as events overlying the
measured brain activity. They can arise from a variety of sources,
including physiological sources such as eye movements, muscle
and cardiac activity, as well as non-physiological sources such as
environmental or instrumental interference and electrode or cable
movements (Jiang et al., 2019; Rashmi and Shantala, 2022; Roy,
2022). Consequently, artifact and noise reduction is an integral part
of EEG data analysis (Mannan et al., 2018; Seok et al., 2021).

A large variety of artifact and noise reduction methods and
pipelines have been proposed (Albera et al., 2012; Daly et al., 2015;
Desjardins et al., 2021; Mathe et al., 2021; Roy, 2022). Traditional
methods include temporal filtering, drift compensation, and
decomposition methods such as blind source separation (BSS)
(Hyvärinen and Oja, 2000; Urigüen and Garcia-Zapirain, 2015).
Independent component analysis (ICA) is a popular technique
that decomposes EEG signals into statistically independent
components, allowing isolation and removal of artifacts (Jung
et al., 2000; Delorme and Makeig, 2004). Wavelet Transform
is particularly effective in removing artifacts across frequency
bands (Krishnaveni et al., 2006; Turnip and Pardede, 2017), while
adaptive filtering can use reference signals like electrooculography
(EOG) for artifact removal (Sweeney et al., 2012; Hua, 2020–2020).
Convolutional neural networks (CNNs) have also been proposed
for artifact reduction (Nejedly et al., 2019; Bao et al., 2022).
Besides many efforts in developing EEG cleaning procedures, there
is no single specific solution for removing all types of artifacts
(Jiang et al., 2019; Rashmi and Shantala, 2022).

Beyond the standard gel-based EEG systems, dry EEG
introduces advantages such as self-applicability and rapid setups,
which prospectively make them preferable for several experimental
and clinical applications (Fiedler et al., 2015). However, dry
EEG is more susceptible to artifacts, especially those caused
by movements (di Fronso et al., 2019; Komosar et al., 2022).
While many artifact reduction methods have been developed and

tested for conventional gel-based EEG, the different mechanical
properties of dry EEG electrodes introduce additional challenges.
In conventional systems, the gel reduces the electrode-skin
impedance and serves as a mechanical buffer, providing higher
mechanical stabilization during electrode movements. In contrast,
dry EEG lacks this gel-based stabilization. As a result, gel-based
EEG typically has less pronounced artifacts compared to dry
EEG (Knösche and Haueisen, 2022; Fiedler et al., 2023). The
reduction of movement artifacts in EEG is especially important
for naturalistic studies but still challenging. Due to the above-
mentioned mechanics of gel-based and dry EEG systems, these
artifacts pose even more challenges for their reduction in dry
EEG systems (Kilicarslan and Contreras Vidal, 2019). At the
same time, there is great potential for the use of dry EEG
in human movement science, particularly due to its simplified
applicability and shorter preparation time, which facilitate efficient
data collection in dynamic and real-world settings (Comani et al.,
2021). Despite the growing need for dry EEG systems, dedicated
artifact reduction pipelines are still scarce.

Here, we analyze dry EEG signals recorded during the
performance of specific body movements. For such data, no artifact
reduction pipelines have been explicitly proposed so far. In line
with the recent suggestion to use combinations of artifact reduction
methods (Gorjan et al., 2022), we propose a pipeline using a
combination of cleaning methods for dry EEG based on temporal,
spectral, statistical, and spatial properties. Specifically, we combine
the ICA-based methods Fingerprint and ARCI (Tamburro et al.,
2018; Tamburro et al., 2019) and the SPatial HARmonic Analysis
(SPHARA) (Graichen et al., 2015), both of which have been used
separately for dry EEG artifact reduction and de-noising. The
ICA-based methods have been specifically developed to remove
physiological artifacts (eye blinks, eye movements, muscle artifacts,
pulse and cardiac interferences), whereas spatial filtering has
been used for SNR improvement and dimensionality reduction
(Graichen et al., 2015; Das et al., 2019; Banville et al., 2021;
Cohen, 2021). Consequently, we aim to assess the artifact and noise
reduction performance of the combination of these methods (i.e.,
Fingerprint + ARCI and SPHARA) in dry EEG recordings. To this
end, we also introduce an improved version of SPHARA.

2 Materials

2.1 Study group

Eleven healthy volunteers with an average age of 25 years
participated in the study. All participants gave written informed
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consent before the experiment. None of them had any neurological
disorder, and none of them had prior experience with experiments
of this type (BCI-naïve volunteers). The study procedure is in line
with the Declaration of Helsinki and was approved by the ethics
committee of the Faculty of Medicine of the Friedrich-Schiller-
University Jena, Germany.

2.2 Equipment

The EEG was recorded using an eegoTM amplifier and
a 64-channel EEG cap with dry PU/Ag/AgCl electrodes
(waveguardTMtouch, emagine Medical Imaging Solutions GmbH,
Berlin, Germany). The channel layout is shown in Figure 1A.
Gel-based ground and reference electrodes were placed on the left
and right mastoids, and their impedances were kept below 50 k�.
All channels were sampled at a rate of 1,024 Hz.

2.3 Paradigm

A motor execution paradigm adopted from Pfurtscheller et al.
(2006) was implemented using the eevoke software (eemagine
Medical Imaging Solutions GmbH, Berlin, Germany), as shown in
Figure 1B. The volunteers were instructed to sit comfortably on a
chair in front of a screen. For the first 2 s, the screen was black.
After this, an acoustic signal (“beep”) appeared as well as a cross
in the middle of the screen, and the volunteers had to fixate the
cross for the next 5 s. After 1 s, an arrow appeared next to the
cross, pointing either left, right, up, or down indicating the left
hand (L), right hand (R), tongue (T), or both feet (F) movement
task. The arrow was presented on the screen for 1.25 s, after which
only the cross was presented. The volunteers were asked to start
executing the movement when they saw an arrow on the screen and
to continue performing the motor task until the cross disappeared.
The movements were explained to be performed in a calm manner.
For hand movements, the volunteers were instructed to touch each
finger of the respective hand with the thumb, repetitively as long
as the cross was presented. Tongue movements involved moving
the tongue up and down or in circular motions within the oral
cavity. Similarly, foot movements were performed by moving the
feet up and down. Each trial lasted 7 s, with an inter-trial interval
ranging from 0.5 to 2.5 s. The experiment consisted of six runs, with
short breaks in between to allow the volunteer to relax. Each run
contained 10 repetitions of each task. In total, 60 trials of each task
were recorded.

3 Methods

3.1 EEG data analysis

The signal analysis was divided into four phases, as shown
in Figure 2. In the first phase (A), EEG data were preprocessed
to provide a base for further analysis. In the second phase (B),
four EEG cleaning methods were applied to the preprocessed
dry EEG signals: (1) Fingerprint + ARCI; (2) SPHARA; (3) a
combination of Fingerprint + ARCI + SPHARA; (4) Fingerprint

+ ARCI + improved SPHARA. The last two methods were tested
for the first time. Improved SPHARA includes an additional step,
which is called AP0. In AP0, artifactual periods, i.e., periods of
high amplitude signal jumps—which occur occasionally in the
signal, were set to 0 V. AP0 allowed an improved performance of
SPHARA, as explained below. In the third phase (C), the clean EEG
data were prepared for the next phase of evaluating the effectiveness
of the methods in artifact and noise reduction. In the fourth phase
(D), three evaluation parameters were calculated for all methods
and their differences were statistically tested: standard deviation
(SD), root mean square deviation (RMSD), and signal to noise
ratio (SNR). The analysis was performed in MATLAB (release
MATLAB R2021a; MathWorks, Natick, MA, USA) and Python
3.9. The description of the signal preprocessing, the individual
and combined methods, and the signal quality evaluation is given
below.

3.1.1 Phase A: preprocessing
During phase A the EEG data were preprocessed using a finite

impulse response (FIR) bandpass filter between 0.5 Hz and 70 Hz
implemented in EEGLAB (release v2021.1) (Delorme and Makeig,
2004). A notch filter at 50 Hz was applied to reduce power line
noise. Then, the filtered EEG data were visually inspected, and
signals recorded from non-operating EEG electrodes, as well as
trials with disturbances in more than 40% of the channels, were
excluded from further analysis. Channels with isoelectric lines or
high amplitudes for more than 70% of the time were considered as
bad channels and removed from further analysis.

The preprocessed signal provided the basis for the application
of the other methods and served as a reference signal (Reference;
Ref) for evaluating their performance.

3.1.2 Phase B: cleaning methods
3.1.2.1 FPA: Fingerprint + Automatic Removal of Cardiac
Interference (ARCI)

These two methods were designed to automatically remove
physiological artifacts (eye blink, eye movement, cardiac and pulse
interference, myogenic activity) based on the evaluation of features
of the independent components (ICs) into which the EEG signals
are decomposed. The EEG datasets were pre-whitened by principal
components analysis (PCA; Delorme et al., 2007) and decomposed
into 50 ICs using the extended Infomax algorithm, which has been
proven to better separate signal sources that may exhibit super-
Gaussian and sub-Gaussian distributions (Bell and Sejnowski, 1995;
Lee et al., 1999). All datasets were decomposed into 50 ICs to
ensure comparability across the preprocessed EEG recordings,
as the number of retained channels varied after preprocessing
due to the removal of bad channels. Given that the number of
retained EEG channels was always higher than 50, and based on
prior evidence that artifactual ICs can be successfully identified
with the Fingerprint method regardless of the decomposition level
(Tamburro et al., 2018), we decided to decompose each EEG dataset
in 50 ICs.

The automated classification of artifactual ICs was performed
by applying the Fingerprint method to detect and remove ICs
containing eye blinks, eye movements, and myogenic artifacts
(Stone et al., 2018), whereas the ARCI approach (Tamburro
et al., 2019) was used to classify the ICs containing cardiac-
related artifacts, including pulse interference. The Fingerprint
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FIGURE 1

(A) The topographical representation of the 64-channels layout of the dry EEG cap and (B) the experimental paradigm.

FIGURE 2

Flowchart of the data processing pipeline for EEG data cleaning, including phases A—preprocessing, B—application of different methods, C—data
re-referencing, interpolation, and segmentation according to the movement tasks, and D—statistical analysis. The standard deviation (SD) is
calculated for preprocessed signal, (1) FPA, (2) SPHARA, (3) FPA + SPHARA, and (4) FPA + AP0 + SPHARA. The signal to noise ratio (SNR) and root
mean square deviation (RMSD) are calculated by comparing each of the four methods (1, 2, 3, and 4) with the preprocessed signal (Ref).

method employs a genetic algorithm to identify, for each
physiological artifact (i.e., eye blinks, eye movements, myogenic
artifacts), the optimal feature set for an automated support vector
machine (SVM) classifier (Stone et al., 2018). Three classifiers are
sequentially applied to the ICs, automatically classifying the ICs
containing eye blinks, eye movements, and muscle interference.
The ARCI approach evaluates time and frequency features of the
separated ICs to automatically identify the ICs containing cardiac
and pulse interference (Tamburro et al., 2019).

For each EEG dataset: (1) the ICs classified as artifactual by
the Fingerprint method and the ARCI approach, hence those

related to the five physiological artifacts (eye blinks, eye movement,
myogenic activity, electrical and pulsatile activity of the heart)
were disregarded and (2) the retained ICs were reprojected onto
the sensor space to reconstruct artifact-reduced EEG signals.
Fingerprint and ARCI EEG data processing and decomposition
were performed using the EEGLAB toolbox (v. 13.6.5b; Delorme
and Makeig, 2004).

3.1.2.2 SPHARA

SPHARA, short for SPherical HARmonic Analysis, is a method
that extends classical spatial Fourier analysis to EEG sensors that
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are non-uniformly positioned over the surface of the head. It offers
a tool for spatial filtering while preserving the phase properties of
EEG time series. A detailed description of the method is available
in Graichen et al. (2015, 2019). Here, we provide a brief overview of
its principles and application.

At the core of SPHARA are basis functions (BFs), which
are mathematical representations used to describe the spatial
properties of EEG signals. The BFs are determined by the
eigenanalysis of the discrete Laplace-Beltrami operator, which is
defined on a triangular mesh specified by the spatial sampling
points (the positions of the sensors on the head surface). A key
advantage of SPHARA is that BFs can be computed prior to
EEG data acquisition, which distinguishes it from other linear
decomposition methods, such as PCA or ICA. It was demonstrated
that SPHARA-based spatial filtering does not affect the phase
properties of the EEG time series (Graichen et al., 2019).

In this paper, we used SPHARA with a finite element method
(FEM) discretization (Graichen et al., 2015). For the reconstruction
of the EEG data, a subset of BFs was selected to retain 95% of
the total signal power. The spatial filtering was performed using
a Butterworth low-pass filter of order 2. EEG data processing was
performed using SpharaPy, a Python implementation of SPHARA
(Graichen et al., 2019).

3.1.2.3 FPA + SPHARA: Fingerprint + ARCI and SPHARA

As a third cleaning method, we used a sequential combination
of Fingerprint + ARCI and SPHARA to clean the EEG signals.
The parameters used in this method were identical to those
described above for methods (1) and (2) to ensure consistency
when comparing cleaning performance between methods. The
primary objective of this approach was to evaluate how the
integration of cleaning techniques could improve EEG signal
quality. By combining these methods, we aimed to access their
joint impact on artifact and noise reduction, while preserving the
EEG signal, thereby offering a more comprehensive approach to
EEG data cleaning.

3.1.2.4 FPA + AP0 + SPHARA: Fingerprint + ARCI and
improved SPHARA

In this method, we successively applied Fingerprint + ARCI and
an improved version of SPHARA to clean the EEG signals. The
improved version of SPHARA involved an additional process called
artifactual period zeroing (AP0), in which high amplitude signal
jumps were set to 0 V before applying SPHARA. This approach was
necessary because, during the EEG review, we observed transient,
high amplitude jumps in the time series data affecting single
channels or groups of a few nearby channels. These jumps could
easily exceed hundreds of µV and might be related to movement
artifacts (Shahbakhti et al., 2021). Such high amplitude jumps can
negatively affect any spatial filter, including SPHARA, as they cause
the artifact to spread spatially, but with reduced amplitude. To
prevent such spreading, AP0 was introduced. The AP0 introduces
the zeroing of such high amplitude jumps. This was done based
on visual inspection and manual labeling. The AP0 periods are
those which largely exceeded the normal range of EEG (transient
high amplitude signal deflections, typically exceeding 150 µV). The
AP0 period was labeled when the EEG signal started to deviate
from the normal amplitude range with the onset marked at least
200 ms before the occurrence of the high amplitude jump. The

labeled AP0 period ended after the EEG signal stabilized within
the range of ± 80 µV for at least 200 ms. These identified AP0
periods were set to 0 V. A 0.5 s Hann window was used to ensure
smooth transitions between regular EEG signal and the zeroed
period. Following the AP0 processing step, SPHARA was applied
and the EEG signal in the affected channel was interpolated from
the surrounding channels during these AP0 periods.

The performance of the Fingerprint and ARCI methods was
not affected by these high amplitude jumps in the EEG signal.
Therefore, the AP0 + SPHARA procedure was performed after
having applied the Fingerprint + ARCI methods.

3.1.3 Phase C: clean EEG data preparation
In this phase, the clean EEG data were re-referenced

to common average, and the EEG channels removed during
preprocessing were interpolated using spline interpolation. Within
this phase, the EEG data were also segmented into four data groups
according to the tasks performed: L, R, T and F, corresponding to
left hand, right hand, tongue and foot movements, respectively.

3.1.4 Phase D: methods’ performance evaluation
3.1.4.1 Evaluation metrics

Besides visual inspection of the data (Mannan et al., 2018),
we used standard deviation (SD) (Dovedi et al., 2022), signal
to noise ratio (SNR) (Väisänen and Malmivuo, 2009; Urigüen
and Garcia-Zapirain, 2015; Bao et al., 2022), and root mean
square deviation (RMSD) (Arpaia et al., 2022) as quantitative
metrics to assess differences in EEG signals before and after the
application of the cleaning methods. To evaluate the quality of
the EEG signals reconstructed after the cleaning methods, the
level of contamination in the signal before and after the cleaning
was compared by calculating the SNR across the entire length of
the recorded signal (M samples). For this analysis, we adopted
a definition of SNR similar to that used by Tamburro et al.
(2018), where the signal was the specific physiological artifact to
be removed (typically with a larger amplitude than clean EEG
signals) and the noise was the clean EEG signal after artifact
removal. With this approach, a reduction in SNR in the noisy
EEG segment indicated a good suppression of the artifact. In our
case, the preprocessed signal prior to artifact reduction (EEGRef)
served as the reference, while the noise is defined as the signal after
applying one of the specific cleaning method (EEGmx). Under this
formulation, an increase in SNR is an indicator of effective artifact
and noise reduction.

SNR = 10log10

(∑M
i = 1 EEGRef (i)2∑M
i = 1 EEGmx (i)2

)
(1)

Please note that our definition of SNR in Equation (1) differs
from the conventional definition of the signal to noise ratio (SNR),
which typically requires a clear separation between signal and noise
components. In our case, as the ground truth “clean” signal is not
available, we instead use the power ratio between the reference EEG
(prior to cleaning) and the processed EEG as a relative measure,
with the intent to quantify the attenuation introduced by the artifact
and noise reduction methods.

The metric in Equation (1) can be interpreted as the logarithmic
ratio of total power (in the RMS sense) before and after processing.
This represents the overall change in signal magnitude. Instead of
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using this metric as a stand-alone indicator of cleaning quality,
we present it alongside SD and RMSD to better contextualize the
degree of signal change across different methods. The SNR metric
is intended more for relative comparison than for providing an
absolute measure of signal preservation.

We used RMSD as a measure of the difference between the
reference signal (EEGRef ) and the signal cleaned by each of the
methods presented here (EEGmx). It was calculated over the entire
length of the recorded signal (M samples). An increase in RMSD
indicates larger differences between two compared signals, which,
in our case, suggests that artifacts and noise have been effectively
removed from the EEG signal.

RMSD =

√√√√ 1
M

M∑
i = 1

(EEGmx (i)−EEGRef (i) )2 (2)

3.1.4.2 Statistical analysis

A generalized linear mixed effects (GLME) model (Koerner
and Zhang, 2017; Frömer et al., 2018) was used to test for
statistical differences in the effects of different cleaning methods
and different motor execution tasks on the standard deviation
(SD), signal to noise ratio (SNR), and root mean square deviation
(RMSD) of the EEG signals. The model consisted of fixed effects:
Ref, FPA, SPHARA, FPA + SPHARA, FPA + AP0 + SPHARA
and four tasks (L, R, T, F), while random effects accounted for
individual channels and volunteers. This approach accounts for
dependencies in the data. The model, using a log-link function
and appropriate distributions, adjusts for non-normally distributed
EEG parameters, enabling quantification of method and task effects
on signal quality. The results of the GLME test give the estimated
values of the observed parameters for the methods and tasks
compared to the reference method (preprocessed signal = Ref) and
the left hand (L) movement task. For the direct comparison of
the effects of channels and volunteers and model error, the results
were back-transformed. A post hoc F-test, adjusted by Bonferroni
correction, explored remaining differences between all methods
and tasks that were not explicitly covered in the initial GLME
analysis, with corrected p-values of 0.0056 for SD, and 0.0083 for
SNR and RMSD. All statistical tests were performed in MATLAB
(release MATLAB R2024a; MathWorks, Natick, MA, USA).

4 Results

4.1 Total duration of labeled AP0s across
datasets

The average total analyzed EEG duration for each volunteer
was 30 h, calculated as the sum across all channels. On average,
each volunteer dataset contained approximately 24 min of EEG
data labeled as artifactual jump periods. This corresponds to 0.4 h
of data labeled as high amplitude jump periods. Therefore, the
relative duration of artifactual high amplitude jump periods was
1.3± 0.9% of the total EEG signal duration. Supplementary Table 1
summarizes the total duration of all analyzed EEG data and the total
duration of all artifactual jump periods set to zero Volts for each
volunteer, aggregated across all channels and experimental tasks.

4.2 Qualitative method comparisons

Figure 3 shows an example of a 7-s EEG epoch preprocessed
within the frequency range of 0.5–70 Hz, followed by artifact
reduction and de-noising using the different cleaning methods.
Each column represents the signals of the 64 dry EEG channels
after applying one of methods: from left to right, the columns
show the preprocessed signal (Ref, which serves as the reference)
and the signal cleaned by FPA, by SPHARA, by FPA + SPHARA,
and by FPA + AP0 + SPHARA. This figure allows for a direct
visual comparison of the effects of each method on the same EEG
signal segment, highlighting their relative performance in artifact
and noise reduction. Eye movement artifacts are marked in red
boxes in Figure 3 and are prominent in channels 0Z–2RC in the
preprocessed signal (Ref) and after the application of SPHARA.
In all other cases, when the Fingerprint + ARCI (FPA) method
was applied, these artifacts were effectively reduced. Pulse artifacts
are observed in channel 1LA and marked in red. These artifacts
were efficiently removed by the FPA method, which successfully
targets and removes physiological signals like cardiac interference.
SPHARA, on the other hand, excels at removing uncorrelated
noise present in channels such as 4Z, 1L, 2LD, and 2RD, which
are marked in blue, significantly improving signal clarity in these
regions. Jump artifacts, which are high amplitude transients caused,
for example, by electrode movements, are identified in channels
10L, 4LD, and 5LC (included in green boxes in the Figure 3).
SPHARA attenuates these artifacts by reducing their amplitude,
but the residual energy of the artifacts causes them to smear
into adjacent channels, as seen in channel 9L. By introducing the
AP0 procedure, where such high amplitude artifacts are set to
zero Volts before SPHARA is applied, these artifacts are not only
attenuated but completely removed, as shown in the FPA + AP0 +
SPHARA column. This detailed example illustrates the incremental
improvements achieved by combining Fingerprint + ARCI and
SPHARA artifact and noise reduction methods. The progressive
removal of artifacts and noise, culminating in the cleanest signal
with FPA + AP0 + SPHARA, highlights the importance of
integrating Fingerprint + ARCI and SPHARA cleaning techniques
for optimal EEG data quality.

4.3 Parametric evaluation of signal
changes

4.3.1 Standard deviation (SD) of EEG signals
The grand average standard deviation values of the EEG data

are 9.76, 8.28, 7.91, 6.72, and 6.15 µV, for the preprocessed signal,
FPA, SPHARA, FPA + SPHARA, and FPA + AP0 + SPHARA
methods, respectively. The statistical analysis of the EEG signals’
standard deviation showed a trend of significant reduction in
SD with every more advanced cleaning method applied. Task
comparisons reveal distinct patterns in SD variability: right hand
movement (R) exhibits a significantly lower SD, while tongue
movement (T) shows a higher SD compared to left-hand movement
(L). Foot movement (F) does not show a significant difference
from L, with a p-value of 0.186. The results indicate that the
standard deviation of the SD across both random effects, volunteers
and channels, is 1.157 µV after back-transformation of the data.
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FIGURE 3

Example of 7-s EEG epoch processed with the cleaning methods. Columns from left to right represent the preprocessed signal (Ref), followed by
the signal after applying FPA, SPHARA, FPA + SPHARA, and FPA + AP0 + SPHARA methods. The red rectangle highlights eye movement artifacts
present in the preprocessed (Ref) and in the SPHARA cleaned signal, which were removed by the FPA method. A pulse artifact in channel 1LA, also
marked in red, was eliminated with FPA. Noise in channels 4Z, 1L, 2LD, and 2RD was reduced with SPHARA. Jump artifacts, marked by green
rectangles in channels 10L, 4LD, and 5LC, were attenuated by SPHARA but caused smearing into adjacent channels. These artifacts were removed
when AP0 was applied prior to SPHARA (FPA + AP0 + SPHARA column).

The residual error of the GLME model is 1.411 µV after back-
transformation of the data and shows the variability in the SD
that remains unexplained after considering both fixed and random

effects. Additionally, an F-test confirmed significant differences in
SD across the methods (FPA, SPHARA, FPA + SPHARA, FPA
+ AP0 + SPHARA) and tasks (R, T, F), with p-values below
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0.0056. Detailed results of the GLME analysis, including statistical
parameters, are included in Supplementary Table 2.

4.3.2 Signal to noise ratio (SNR)
The average SNR values (see Equation 1 and explanation

in section “3.1.4.1 Evaluation metrics”) calculated for the FPA,
SPHARA, FPA + SPHARA, and FPA + AP0 + SPHARA methods
are 2.31, 1.55, 4.08, and 5.56 dB, respectively. Figure 4 depicts the
topographic maps of the channel SNR for the four artifact and
noise reduction methods. The SNR was calculated by comparing
the signal obtained after each cleaning method (FPA, SPHARA,
FPA + SPHARA, FPA + AP0 + SPHARA) to the preprocessed
signal (Ref). Each map represents SNR values distributed over the
scalp surface and averaged across all volunteers. The high SNR
in the frontal regions for the FPA, FPA + SPHARA, and FPA +
AP0 + SPHARA methods indicates significant changes in the EEG
signal in these frontal electrodes. This result can be attributed
to the specific characteristics of the FPA method for artifact
reduction and the nature of the processed EEG data. Specifically,
the analyzed EEG recordings contain numerous eye movement and
eye blink artifacts. Given that the FPA method is specialized in
removing these interferences, its application leads to a remarkable
SNR increase. The SPHARA method performs a general de-
noising of the EEG and removes disturbances that may appear
across various electrodes. For our EEG data, where electrodes are
not systematically affected by high amplitude artifacts, and the
topography represents an average across all volunteers, the result is
a fairly uniform distribution of SNR values across the head surface.
In the SNR result for FPA + AP0 + SPHARA, a further increase
in SNR is observed in the temporal (area around the ears) and
occipital areas.

The statistical analysis shows that the average SNR for SPHARA
and the combination of methods (FPA + SPHARA and FPA
+ AP0 + SPHARA) is, respectively, lower and higher than for
FPA. This trend aligns with the SNR topographic maps shown in
Figure 4, where the largest SNR improvement is observed for the
combination of FPA + AP0 + SPHARA, particularly in the frontal
and prefrontal regions. These areas are primarily affected by eye
blink and eye movement artifacts, which are effectively reduced by
the FPA method. Task-wise, an increase in average SNR is noted
for R and F trials compared to L, while no significant difference
is observed between T and L trials (p = 0.865). The results also
show that the standard deviation of the SNR is 0.777 dB between
volunteers and 1.531 dB between channels. The residual error
of the GLME model is 2.954 dB and shows the SNR variability
that remains unexplained after considering both fixed and random
effects. The F-test showed significant differences in SNR between
all remaining methods (SPHARA, FPA + SPHARA, FPA + AP0 +
SPHARA) and experimental tasks (R, T, F), except when comparing
the SNR for the R and F tasks, where the p-value is 0.385. Detailed
results of the GLME analysis, including statistical parameters, are
available in Supplementary Table 3.

4.3.3 Root mean square deviation (RMSD)
The average RMSD values calculated for the FPA, SPHARA,

FPA + SPHARA, and FPA + AP0 + SPHARA methods are 4.65,
4.82, 6.32, and 6.90 µV, respectively. Therefore, the RMSD increases
progressively with every more advanced cleaning method applied,

with the highest average RMSD after application of the FPA + AP0 +
SPHARA method. These increases in average RMSD are statistically
significant for all methods compared to FPA, as indicated by
p-values below 0.05.

Figure 5 shows the topographic maps of the channel RMSD for
the four artifact and noise reduction methods (FPA, SPHARA, FPA
+ SPHARA, FPA + AP0 + SPHARA). Although the average RMSD
for SPHARA is higher than for FPA, the distribution of RMSD
values across channels confirms the higher effectiveness of FPA
in removing artifacts related to ocular movements and the higher
performance of SPHARA in the general reduction of noise in all
channels. Task-wise, higher average RMSD values are observed for
T and F tasks compared to L tasks, whereas the difference between R
and L tasks is not significant (p-value = 0.592). The results indicate
that the standard deviation of the RMSD across the random effects,
volunteers and channels, is 1.317 µV and 1.198 µV after back-
transformation of the data. The residual error of the GLME model
is 1.611 µV after back-transformation of the data and shows the
variability in the RMSD that remains unexplained after considering
both fixed and random effects. The F-test confirmed significant
differences in RMSD between all remaining methods (SPHARA,
FPA + SPHARA, FPA + AP0 + SPHARA) and experimental tasks
(R, T, F), with p-values below 0.0083. Detailed statistical results of
the GLME analysis can be found in Supplementary Table 4.

5 Discussion

We applied Fingerprint + ARCI and SPHARA artifact and noise
reduction methods as well as their combination to clean dry EEG
data acquired during the performance of four different motor tasks.
We added a new processing step to the SPHARA method, setting
the high amplitude artifacts in single channels to zero Volts. The
combination of methods yielded the best cleaning performance,
as indicated by the lower standard deviation, the higher SNR,
and the higher RMSD. Figure 6 illustrates the changes in the
average values of all metrics for the reference signal, the single and
the combined methods. The higher average SNR obtained when
applying FPA than when applying SPHARA can be explained by
the fact that the recorded EEG data had a considerable number of
physiological artifacts, and that FPA was developed to specifically
detect and remove this type of artifacts, therefore making a higher
contribution in cleaning the EEG signals and increasing the SNR,
i.e., reducing signal amplitude. Although the SD and SNR values
for FPA + SPHARA and FPA + AP0 + SPHARA appear visually
similar in Figure 6, post hoc F-tests showed statistically significant
differences for both metrics: SD [F(1, 14,072) = 83.96, p = 5.75 ∗

1020] and SNR [F(1, 11,257) = 51.98, p = 5.98 ∗ 1013]. These findings
indicate that the inclusion of the AP0 step before SPHARA resulted
in a measurable improvement in signal quality compared to the
FPA + SPHARA combination alone.

Task-wise, the largest differences observed across all parameters
regarded tongue movements (T). EEG is particularly susceptible
to tongue movement artifacts because they can lead to incidental
contractions of the facial muscles, causing movements of the
EEG cap and/or electrodes. In fact, these trials were more
affected by artifacts than the trials involving left hand (L), right
hand (R), and feet (F) movements. The visual representations
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FIGURE 4

Grand average topographic maps of the channel SNR for the four cleaning methods (FPA, SPHARA, FPA + SPHARA, FPA + AP0 + SPHARA).

FIGURE 5

Grand average topographic maps of channel RMSD for the four cleaning methods (FPA, SPHARA, FPA + SPHARA, FPA + AP0 + SPHARA).

FIGURE 6

Comparative analysis of EEG signals’ standard deviation (SD), signal to noise ratio (SNR), and root mean square deviation (RMSD) across all tested
methods: preprocessed signal (Ref), Fingerprint + ARCI (FPA), SPHARA, FPA + SPHARA, FPA + AP0 + SPHARA. The scatter points represent the
average values, while the error bars indicate the standard deviation across the datasets.

in Supplementary Figure 1 align with these observations, further
highlighting the high standard deviation in tongue movement
(T) trials. The statistical analysis confirmed significantly higher
standard deviations in the data related to tongue movements
(Supplementary Table 2). Consequently, the tongue movement data
also had the highest RMSD values (Supplementary Table 4). These
findings suggest that cleaning had the most pronounced impact on
tongue movement (T) trials.

The GLME models for RMSD reveal that the random effect
of the channel has a higher standard deviation when compared
to the random effect of the volunteer. This suggests that the
effectiveness of the methods used for removing artifacts can vary
across channels because it is influenced by the nature of the artifacts

affecting specific channels. For instance, frontal channels are more
susceptible to physiological artifacts such as eye blinks and eye
movements and in this case FPA resulted to be more effective
than SPHARA in reducing artifacts in those channels, whereas
other channels are more prone to be randomly affected by large
amplitude artifacts and in this case SPHARA outperformed FPA.

To reflect established conventions in EEG preprocessing
research, we report SD, SNR, and RMSD as general descriptors of
signal quality after de-noising. These values provide a contextual
reference that is commonly used in the field, though we
acknowledge that the other metrics can be used as well. To evaluate
the reliability of these descriptors within our statistical framework,
Supplementary Table 5 presents model fit metrics (R2, ICC, and
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VIF) for SD, SNR, and RMSD, supporting the robustness and
validity of the reported results.

We apply our methods to 64-channel dry EEG data. Although
we do not expect changes in our main conclusions for other channel
counts, further research is required to test this assumption. To
the best of our knowledge, there are no barriers in applying the
Fingerprint + ARCI and SPHARA methods to EEG data recorded
with higher numbers of EEG channels (Fiedler et al., 2022; Ramon
et al., 2023). It has already been demonstrated that the Fingerprint
method does not depend on the number of electrodes used, their
specific layout, or their type (Tamburro et al., 2018). Therefore, we
expect direct applicability of our proposed combination of methods
in high-density EEG. The application of our proposed combination
of methods to very low numbers of channels such as 19 channels
in a 10–20 layout would be particularly relevant for an effective de-
noising and artifact reduction of infant EEG recordings, which are
typically affected by large amplitude fluctuations. However, for a
low number of channels, Fingerprint and ARCI may not be fully
suitable, and alternatives such as FORCe (Daly et al., 2015) could
be explored.

Our methodology is mostly automated and EEG signal
preservation oriented. In contrast to other multivariate data
decomposition methods, where the underlying datasets are used to
generate the components for the data decomposition, in SPHARA
the BFs are determined only by the topological information on
the EEG sensor setup. Using the SPHARA BFs, spatial filters can
be implemented and applied very quickly, allowing for online
applications where the temporal phase properties of the data are
not affected by this type of filter, which is particularly suitable
for filtering spatially uncorrelated sensor noise. A limitation of
using the improved SPHARA (AP0 + SPHARA) method for
spatially filtering EEG signals relates to the current need for manual
labeling of the artifactual high amplitude jumps in the signal.
Although the AP0 step successfully reduces spatial smearing of high
amplitude jumps, its reliance on manual labeling limits scalability.
Future work should focus on automating AP0 detection using
amplitude heuristics, statistical models, or supervised learning
based on annotated data. The SWT-kurtosis-based algorithm
(Shahbakhti et al., 2021) or similar could be adapted and employed
for correcting the high amplitude jumps. Alternatively, other spatial
cleaning techniques might be used, such as the common spatial
pattern (CSP) approach (Wang et al., 2012; Dong et al., 2023),
sensor noise suppression SNS (de Cheveigné and Simon, 2008),
local spatial analysis (LSA) (Bufacchi et al., 2021), or oversampled
temporal projection (OTP) (Larson and Taulu, 2018).

Given that the EEG signal quality and reliability for dry EEG
recordings have been demonstrated to be comparable to that
of conventional gel-based recordings (di Fronso et al., 2019),
we expect that our combination of Fingerprint + ARCI and
SPHARA artifact and noise reduction methods would have a
good performance also with traditional gel-based EEG recordings,
although this should be addressed in future work. Given the
similarities in physiological origins and signal characteristics
between EEG and modalities such as magnetoencephalography
(MEG) and infant EEG, the proposed Fingerprint + ARCI + AP0
+ SPHARA pipeline may hold potential for broader applicability,
though this remains to be systematically assessed in future work.

While the sample size is limited, this proof-of-concept study
aimed to demonstrate the feasibility of the proposed de-noising

pipeline under controlled conditions, laying the groundwork for
future validation on larger and diverse datasets.

It is finally worth noting that our proposed combination
of methods requires only the EEG signals as input, with no
need for additional physiological or technical channels. Additional
information, such as from accelerometers, might eventually
support the automated labeling of the EEG signal jumps for a more
rapid application of the AP0 + SPHARA method.

6 Conclusion

We introduced an approach for the removal of physiological
and non-physiological artifacts and noise from EEG recordings.
Our approach is based on a combination of the Fingerprint +
ARCI and improved SPHARA methods and was tested on real EEG
signals for the first time. The combination of Fingerprint + ARCI
and improved SPHARA methods yielded the best performance
when compared to the application of these methods individually.
We expect that our proposed approach can be successfully applied
for the removal of physiological and non-physiological artifacts and
noise not only from multichannel adult EEG but also from infant
EEG recordings and multichannel MEG data, resulting in signal
quality improvements.
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