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Within thismanuscript a deep learning algorithmdesigned to achieve both spatial

and temporal source reconstruction based on signals captured by MEG devices

is introduced. Brain signal estimation at source level is a significant challenge

in magnetoencephalographic (MEG) data processing. Traditional algorithms

o�er excellent temporal resolution but are limited in spatial resolution due to

the inherent ill-posed nature of the problem. Nevertheless, many applications

require precise localization of pathological tissues to provide reliable information

for clinicians. In this context, deep learning solutions emerge as promising

candidates for high resolution signals estimations. The proposed approach,

termed “Deep-MEG,” employs a hybrid neural network architecture capable of

extracting both temporal and spatial information from signals captured by MEG

sensors. The algorithm is capable to handling the entire brain and, therefore,

is not limited to cortical sources imaging. To validate its e�cacy, the Authors

conducted simulations involving multiple active sources using a realistic forward

model, and subsequently compared the results with those obtained using various

state-of-the-art reconstruction algorithms. Finally Deep-MEG has been tested

also with real MEG data.

KEYWORDS

beamforming, brain signal estimation, brain source reconstruction, neural networks,

magnetoencephalography

1 Introduction

In the framework of brain functional analysis, Magnetoencephalography (MEG) stands

out as one of the main state-of-the-art non-invasive methods for gathering information

about brain processing. This acquisition system involves recording magnetic fields using

superconducting quantum interference device (SQUID) sensors positioned within a

helmet surrounding the patient’s head (Cohen, 1972; Kleiner et al., 2004). These magnetic

field variations are due to the electrical activity of groups of neurons (i.e., the brain areas),

which can be modeled as current dipoles (Mosher et al., 1992). Compared to functional

Magnetic Resonance Imaging (fMRI), the MEG system shows an excellent time resolution,

while with respect to Electroencephalography (EEG) it is characterized by better spatial

resolution given that the layers surrounding the brain do not significantly distort the

magnetic field induced by the neuronal activity (Rucco et al., 2020).
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After the acquisition, the MEG data is commonly said to

be in the signal space. On the opposite, the data in the source

space is defined as the signals produced by the brain regions, i.e.,

the neuronal activity that produced the recorded magnetic fields.

Generally, a linear relation is assumed to be between the signals

in the two spaces (sources and measurements), described by the

so-called leadfiled matrix, which depends on the configuration of

sensors as well as the geometric and electric attributes of individual

brain anatomy.

One of the first steps in the MEG processing chain, after the

denoising and artifact removing, is the solution of the inverse

problem, that means the estimation of the brain current sources

from the MEG recordings based on the known Leadfield matrix.

Unfortunately, this is not a trivial task due to the ill-posedness of the

mathematical problem which could lead to a completely erroneous

estimation. During the past decades, several strategies for the

source reconstruction problem have been proposed in literature.

One of them proposes to select the solution that minimizes the

L2-norm of sources, and called minimum norm estimation (MNE)

(Fuchs et al., 1999; Hincapié et al., 2016). Among its derivatives,

we cite the low-resolution brain electromagnetic tomography

(LORETA) (Pascual-Marqui, 2007; Jun et al., 2019), which adds an

a-priori information in order to regularize the solution.

Another family of source reconstruction algorithms are the so-

called beamformers. In brief, this methods scan a set of predefined

putative source locations by means of spatial filters to pass signals

selectively from desired locations while suppressing activity from

other brain regions (Westner et al., 2022). Among all, we recall the

synthetic aperture magnetometry (SAM) (Robinson, 1999) and the

linearly constrained minimum variance (LCMV) (Van Veen et al.,

1997). The main issue of both these approaches relies on the poor

spatial resolution. In order to mitigate such problem, algorithms

incorporating a variety of a-priori information and regularization

strategies have been proposed, leading to adaptive beamformers

approaches. Moreover, another limitation of LCMV beamformer

is its inability to accurately reconstruct correlated sources. Some

of these algorithms exploit noise covariance matrices to achieve

adaptation (Hossein et al., 2018; Nunes et al., 2020; Moiseev et al.,

2022).

Another family of source reconstruction algorithms is the

multiple signal classification (MUSIC), which replaces themultiple-

dipole directed search with a single-dipole scanning procedure

confined to a three-dimensional head or source volume (Mosher

and Leahy, 1998; Ermer et al., 2000).

In recent years, the scientific community has shown a

considerable interest into deep learning (DL), a family of

algorithms initially developed for computer vision tasks (LeCun

et al., 2015; Ferraioli et al., 2019). This approach has gained

traction in various clinical contexts (Litjens et al., 2017; Zemouri

et al., 2019). Among all, we cite the neural networks in MRI

signal analysis (Pereira et al., 2016; Autorino et al., 2024), in

PET-CT imaging (Teramoto et al., 2016) and in microwave

breast tomography (Franceschini et al., 2021; Ambrosanio et al.,

2022, 2020). The main advantage of adopting DL methods lies

in their ability to tackle problems where a complete model

describing the relationship between inputs and outputs is either

non-existent or not easily invertible. On the other hand, these

approaches rely on a data-driven paradigm, where predictions are

learned through a training process using a dataset of examples

(Goodfellow et al., 2016). However, achieving success with DL

requires striking a balance between generalization and specificity

in the training dataset to ensure that the model can accurately

estimate outputs across diverse scenarios. Given these advantages,

DL methods have been widely adopted in brain source localization

and reconstruction. For example, Hecker et al. (2021) proposed

a convolutional neural network for EEG source imaging, while

Pantazis and Adler (2021) investigated neural network-based

source reconstruction for both instantaneous and time series MEG

signals. An edge sparse basis network is employed for EEG source

localization and is presented in Wei et al. (1 01). Moreover, a DL

solution for localizing epileptogenic zones based on MEG interictal

spikes is introduced by Sun et al. (2023), and Liang et al. (2023)

focused on brain source imaging using sparse Bayesian learning

within a DL framework. Furthermore, DL has been applied for both

localization and reconstruction tasks, as demonstrated in Yu et al.

(2024), which presents a DL approach for reconstructing EEG data

in the context of epilepsy. Furthermore, for the best of Authors’

knowledge, Deep-MEG is the first deep-learning-based method

capable to deal with the whole parenchyma brain and, therefore,

with deep sources.

Within this manuscript, a novel DL framework for brain source

localization and reconstruction, termed “Deep-MEG”, is presented.

The proposed solution is a hybrid neural network consisting

of a cascade of convolutional layers followed by fully-connected

(FC) layers. This architecture allows the network to incorporate

both temporal and spatial information. Deep-MEG adopts an

end-to-end approach, directly reconstructing sources from signals

collected at MEG sensor locations. Unlike the method proposed

in Yu et al. (2024), which operates on EEG signals and is limited

to retrieving signals from cortical dipoles, our approach operates

on MEG signals and can estimate signals from dipoles located

throughout the entire brain volume. Furthermore, while Yu et al.

(2024) focuses on scenarios where an active dipole generates spike

signals indicative of epilepsy, our simulations encompass a broader

range of signals (further details are provided in Section 3).

It is noteworthy that the proposed solution operates with only

the Leadfield matrix and a short time window of MEG data,

eliminating the need for covariance or spectral density matrix

estimation. This design choice makes the approach robust against

potential estimation errors. Deep-MEG has undergone testing

across various simulated scenarios featuring multiple punctual and

extended sources. Comparative evaluations against several state-of-

the-art source reconstruction algorithms consistently demonstrate

its superiority in terms of both spatial and temporal resolution.

Furthermore, the proposed approach has been tested with real

MEG data from the open source database “OpenNEURO” (Henson

et al., 2011; Wakeman and Henson, 2015). More details on the

processing and adopted data are reported in Section 4.6.

The manuscript is organized as it follows: Section 2 provides

a mathematical description of the brain imaging problem, while

Section 3 delves into the proposed solution in greater detail. Section

4 presents and discusses the results derived from validation tests

in both numerical and real scenarios, considering single focal

sources and extended areas of the active brain. Within Section 5
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a discussion about the main advantages and main limitations of the

proposed solution. Finally, Section 6 concludes the paper with some

closing remarks.

2 Mathematical formulation and
problem statement

MEG is a non-invasive and safe technique used to measure the

magnetic fields generated by the brain, providing real-time insights

into neural activity. These electromagnetic signals originate from

the electrical currents flowing through the apical dendrites of

pyramidal neurons in the cerebral cortex. At a sufficient distance,

the simultaneous activation of thousands of cortical neurons can

be represented as an equivalent current dipole. This dipole serves

as the fundamental unit for modeling neural activation, with

the entire brain conceptualized as a collection of hundreds or

thousands of such dipoles, depending on spatial resolution. By

solvingMaxwell’s equations in a quasi-static regime (which involves

frequencies lower than 100 Hz), the quasi-static current density

J(r′) at position r′ can be related to the induced magnetic field B(r)

at position r through the Biot-Savart law (Baillet et al., 2001):

B(r) =
µ0

4π

∫

V

J(r′)×
r− r′

||r− r′||3
dr′ , (1)

where µ0 represents the free space magnetic permeability equal

to 4π · 10−7 H/m, the symbol × refers to the cross product

between vectors, ||(·)|| refers to the L2-norm, and the integral in

Equation 1 extends over the volume V encompassing the currents.

It is noteworthy to observe that bold quantities refer to vectors,

matrices and discretized quantities depending on the context.

Two distinct current contributions can be discerned: a primary

current density arising from neuronal activity and a volume one

associated with the effects of magnetic fields within the surrounding

tissue volume:

J(r) = JP(r)+ JV (r) = JP(r)+ σ (r)E(r)

= JP(r)− σ (r)∇V(r) ,
(2)

where σ (r) is the electrical conductivity profile of the head tissues

(assumed to be isotropic) and the electric field E(r) is the negative

gradient of the electric potential V(r).

Assuming that the head can be modeled as a collection of

contiguous regions with isotropic conductivity σi, where i =

{1, 2, 3}, representing different tissues such as brain, skull, and scalp,

the Biot-Savart equation can be reformulated as follows:

B(r) = B0(r)+
µ0

4π

∑

ij

(σi − σj)

∫

Sij

V(r′)
r− r′

||r− r′||3
× dr′ , (3)

where B0(r) represents the induced magnetic field due to the

primary current and Sij represent the boundary surface between

two isotropic region. The second contribution, related to the

volume current, is the sum of the surface integrals over every

isotropic head region (brain, skull and scalp). By following a similar

procedure, it is possible to derive a corresponding equation for the

potential V(r):

(σi + σj)V(r) = 2σ0V0(r)

−
1

2π

∑

ij

(σi − σj)

∫

Sij

V(r′)
r− r′

||r− r′||3
· dr′ ,

(4)

where · refers to the dot product, V0(r) is the potential related to

the primary current and σ0 is the unitary conductivity needed for

coherent dimensional analysis. Equations 3, 4 can be utilized to

address the forward problem. By specifying the value of the primary

current JP(r), it is possible to calculate the primary potential and

magnetic field:

V0(r) =
1

4πσ0

∫

JP(r′) ·
r− r′

||r− r′||3
dr′ , (5)

B0(r) =
µ0

4π

∫

JP(r′)×
r− r′

||r− r′||3
dr′ . (6)

The primary potential V0(r) evaluated in Equation 5 is

subsequently employed to address Equation 4 for determining

the potentials across all surfaces, thereby resolving the forward

problem. These surface potentials V(r) and the primary magnetic

field B0(r) of Equation 6 are then utilized to tackle Equation 3 for

the external induced magnetic field. However, it is important to

note that the solution of Equation 4 possesses analytical solutions

only for specific shapes and must otherwise be solved numerically.

A common approximation involves modeling the head shape

as a multi-shell spherical structure. Under this assumption, if a

dipole with moment q is positioned at rq, and the MEG system

measures only the radial component of the magnetic field Br(r) at

a certain point r, the volumetric component of the field becomes

negligible, resulting in only the primary term B0(r). Taking the

radial component of this field for the current dipole simplifies to

the remarkably straightforward expression:

Br(r) =
r

r
· B(r) =

r

r
· B0(r) =

µ0

4π

r× rq

r||r− rq||3
· q , (7)

in which r is the magnitude of the vector r, and rq identifies the

dipole position. Equation 7 is linear with respect to q and highly

non-linear with respect to its location rq. Considering separately

the magnitude of a dipole Q = ||q|| from its orientation 2 =

q/||q||, the magnetic field generated by the dipole can be written

as:

M(r) = L(r, rq,2)Q , (8)

and in case of multiple dipoles:

M(r) =
∑

i

L(r, rqi,2i)Qi . (9)

In the case of a complete MEG system equipped with numerous

sensors, Equation 9 becomes Malmivuo and Plonsey (1995):









M(r1)
...

M(rS)









=









L(r1, rq1,21) · · · L(r1, rqD,2D)
...

. . .
...

L(rS, rq1,21) · · · L(rS, rqD,2D)

















Q1

...

QD









. (10)
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Equation 10 can be written in its compact (matrix) form as:

M = LQ+ N , (11)

in which N represents some additive noise. In Equation 11,

the brain volume is discretized into D regions, with a MEG

helmet comprising S magnetometers, and each acquisition is

assumed to be composed of T time samples. The matrix M ∈

R
S×T represents the acquisition matrix containing all the signals

recorded by the sensors. Q ∈ R
D×T denotes the matrix of all

the current dipoles generated in the brain, while L ∈ R
S×D

serves as the forward matrix linking brain and sensor signals,

commonly referred to as the Leadfield matrix. Additionally,

N ∈ R
S×T represents the measurement noise, often modeled

as white Gaussian noise. Notably, the Leadfield matrix inherently

incorporates information about the acquisition system, such as the

head geometry, orientation of dipoles, distance between sources

and sensors, and the presence of skull and skin.

In the context of the model described by Equation 11, the

brain source reconstruction problem entails deriving an estimate

of the matrix Q based on the acquired data M. Figure 1

provides a schematic representation of the forward and inverse

MEG problems. In practical scenarios, the number of dipoles

D significantly exceeds the number of sensors S, rendering the

problem ill-posed and lacking a unique solution. Consequently, it

is paramount to adopt approximations and a-priori information

to perform the inversion properly. In this framework, various

techniques have been adopted in the scientific literature, including

singular value decomposition (SVD),Markov and Bayesianmodels,

and adaptive beamformers (Jonmohamadi et al., 2014; Senaratne

and Tellambura, 2010; Woolrich et al., 2011; Cai et al., 2023).

In the proposed work, a solution to the aforementioned

problem is achieved by means of a deep learning hybrid model,

comprising a first block of convolutional layers for the extraction

of temporal information, and a second block made of FC layers

for the spatial information retrieval. Further details regarding the

proposed Deep-MEG architecture are presented in the following

Section.

3 Deep-MEG

3.1 Architecture details

Deep-MEG is an end-to-end artificial neural network designed

for brain source localization and brain signal reconstruction

exploitingMEG data. A block diagram of the proposed architecture

is shown in Figure 2.

A time window extracts W samples from each of the S MEG

acquired signals. This results in an S × W matrix, which serves

as the input for the first block of the network. This section of

the algorithm consists of 4 convolutional layers responsible for

extracting time features. At each layer, the temporal dimension

of the data is reduced while the number of features progressively

increases. A batch normalization layer is present between each

convolutional layer and the following one. The final convolutional

layer produces a matrix composed of S vectors and 128 features.

This matrix is then flattened and fed into a sequence of 6 FC

FIGURE 1

Sketch of MEG signal acquisition and reconstruction. The brain

electrical activity [Q1,Q2, ...,QD] is measured by the magnetometers

located around the scalp and producing the magnetic signals

[M1,M2, ...,MS]. Such signals are the input of the proposed

Deep-MEG approach which provides as output an estimation of the

brain electrical activity [Q̂1, Q̂2, ..., Q̂D].

layers, each consisting of 500 nodes. Each FC layer is followed by

a Rectified Linear Unit (ReLU) activation function. The last layer

is a FC layer composed of D nodes. The output of the proposed

architecture is a vector of D samples representing the amplitude

of the brain signals at the temporal sample w0 (the center of the

time window of lengthW samples) for each dipole. By shifting the

window W through the entire length of the MEG signal T, it is

possible to retrieve the complete source signals.

It is worth noting that the choice of the value of W is crucial,

as a larger window helps the algorithm, while a reduced length

decreases both computational time and burden. In this paper, a

good compromise has been found with 21 time samples; therefore,

for all subsequent tests,W has been fixed at 21.

The training of a neural network involves the setting of

parameters that affect the performance of the algorithm. More

specifically, the training set, composed of 2 × 105 input-output

pairs, has been divided into mini-batches with 64 samples per

batch (more details about the trainset composition are provided in

the following sections). The adopted optimization strategy is the

Adaptive Moment Estimation (Adam) with an initial learning rate

of 10−4. Every iteration of the training process updates the weights

of the network based on the values of the loss function, that in this

case is the mean square error. Although the proposed architecture

could be applied also to the EEG case, within this manuscript we

focused only on MEG.
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FIGURE 2

Sketch of the proposed Deep-MEG brain source localization and signal reconstruction approach. The model takes as input a window of W samples

(centered in the sample w0) of the S MEG signals. It is composed of a cascade of CNN layers which extract temporal features, followed by some

fully-connected layers extracting spatial information. The output of the approach are the retrieved brain signals for all the D brain areas at the

window center.

3.2 Dataset description

When adopting a learning-by-example approach, it is essential

to consider an appropriate training dataset. Specifically, the dataset

must strike a balance between generalization and accuracy.

In the context of training Deep-MEG, designing the

dataset involves considering the forward problem described in

Equation 10, which is closely related to the design of the matrices

Q, L, and M from both geometric and electrical perspectives. For

the MEG helmet, all simulations used to validate the proposed

approach are conducted using an apparatus inspired by Rombetto

et al. (2014), featuring S = 127 SQUID sensors. On the other

hand, the number of dipoles D and their respective positions

depend on the head model and the considered brain sources. To

achieve this, the structural geometry of the head was derived from

a real magnetic resonance image. MRI segmentation and brain

extraction processes have been performed via the Matlab Toolbox

Fieldtrip. By adopting a discretization step of 5 mm, the brain was

parceled into 1,3467 sources. The Leadfield matrix L was computed

assuming a single-shell head model (Cuffin and Cohen, 1977).

Regarding the brain signals, in all simulations we assumed that

each active source produces a Gaussian-damped sine wave. This

choice is common to other works in literature (Hossein et al., 2018;

Liang et al., 2023). Specifically, each source signal g(t) is generated

according to the following model:

g(t) = sin(2π f0t + φ) · exp

[

−
(t − t0)

2

ω2

]

. (12)

where the parameters t0, ω, f0, and φ, which respectively denote

the center and standard deviation of the Gaussian-damped wave,

as well as the frequency and initial phase of the sine wave, vary

across sources. We generated these parameters assuming a uniform

random distribution, with ranges reported in Table 1. In particular,

TABLE 1 Range of the values of the signal parameters exploited for the

dataset generation (uniformly distributed).

Minimum
value

Maximum
value

Gaussian center t0 [s] 0.05 0.3

Gaussian damping rate ω [s] 0.04 0.12

Sine wave frequency f0 [Hz] 8 14

Sine wave initial phase φ [rad] 0 2π

we choose to consider the so-called alpha band, nevertheless the

extension of the approach to other frequency bands is trivial.

Each matrix Q (i.e. the dipole signals), and consequently each

matrix M (i.e., the acquisition), spans a duration of 0.4 s, with a

sampling frequency of 1 kHz, resulting in 400 samples for each

example. Instead of the matrix M, the input of the network is a

W samples window for each channel. We chose W = 21 as it

corresponds to one period of a 50Hzwave (20ms at 1 kHz sampling

frequency).

To enhance the generalization properties of Deep-MEG,

the training set has been evenly split into examples of focal

source activation and examples of extended source activation.

Additionally, in order to increase the robustness of the approach,

during the training phase additive white gaussian noise has added

to MEG data in the sensor’s space (SNR in the range [0–30]db).

Further details about these scenarios are provided in the following

section.

Throughout its entire training process, Deep-MEG required

∼ 30h. The training environment utilized the Python library

PyTorch (version 2.7.9 installed on Python 3.10.16) on a 24

GB NVIDIA Quadro RTX 6000 GPU. It is worth to note that

a single training process has been carried out that includes all
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the considered simulated test cases. More precisely, an overall

of 200,000 sensors/sources MEG data (inputs/outputs) pairs have

been considered. The trainset has been divided into 5 sets, evenly

split, including all the considered test cases (more details about

the considered scenarios are provided in the following section).

Regarding the test with real data, Deep-MEG has been re-trained

considering the anatomy of the subjects while, the signals remain

the same of the simulated case.

4 Results

This section presents the Deep-MEG performance evaluation.

The proposed method has undergone testing in both simulated and

real data, and the results have been compared to those obtained

using conventional MEG source reconstruction approaches. More

in detail, we analyzed the results in four different scenarios: single

active dipole, multiple dipoles, extended sources, and real data.

4.1 Considered approaches

The current state-of-the-art in brain source reconstruction

encompasses several algorithms. In this paper, we focused on

four time-domain methods that, differently from the proposed

algorithm, require the knowledge (or the estimation) of the

covariance matrix.

• Linearly Constrained Minimum Variance (LCMV): a

beamformer that scans predefined dipole locations, with

a single dipole providing the spatial filter output for each

location (Van Veen et al., 1997).

• Residual Variance (RV): this beamformer scans with a single

dipole and computes the residual variance at each grid location

(Scherg, 1990).

• MinimumNormEstimation (MNE): it reconstructs all sources

within the source space simultaneously by minimizing the

difference between the real and predicted data subject to

regularization (Fuchs et al., 1999).

• Exact Low-Resolution Electromagnetic Tomography

(eLORETA): this method extends the assumption of MNE,

using an iterative algorithm to account for depth bias in the

sources. The solution achieves theoretically exact localization

(Pascual-Marqui, 2007).

Within this manuscript, we exploited the Fieldtrip toolbox

implementations of the cited approaches, working in Matlab

environment (Oostenveld et al., 2010) in their standard

configuration. It is worth to mention that the noise covariance

matrix has been estimated via a Fieldtrip routine. For the

reconstruction step, the Deep-MEG approaches assumed a 15

mm grid (which corresponds to D = 494 sources reconstructed),

while all other approaches assumed a 5 mm discretization step.

This choice was made to limit the computational burden of the

DeepMEG algorithm.

The reconstruction grid of the state-of-the-art approach adopt

a discretisation step of 5 mm.

4.2 Single focal source

To evaluate the performance of the proposed method, we

initially assessed its capabilities in the scenario of a single dipole

excitation. Here, the ground truth is represented by a single

active dipole producing a signal g(t) (see Equation 12). Various

metrics were employed to evaluate both localization and signal

reconstruction performances:

• Distance of Localization Error (LDE) [mm]: this metric

represents the average of the minumum euclidean distances

between the true and the estimated sources.

Let {Qk}
K
k=1

be the set of reference active sources and

{Q̂h}
H
h=1

be the set of estimated active sources (where a source

is considered “active” if its energy is higher than 50% of the

maximum energy). The DLE is the mean value among d1,

d2, ..., dK , where the generic dk represents the minimum

Euclidean distance between the position of reference active

FIGURE 3

Signal reconstructions for a single focal case; SNR equal to (a) 30 dB

and (b) 10 dB.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2025.1578473
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Franceschini et al. 10.3389/fnins.2025.1578473

source Qk and the set of position of the estimated active

sources Q̂1, Q̂2, ..., Q̂H , i.e.:

DLE =
1

K

K
∑

k=1

dk =
1

K

K
∑

k=1

min
h

[

||Qk − Q̂h||
]

(13)

where h = 1, 2, ...,H.

• Active Volume (AV) [cm3]: AV measure the active volume of

the brain. This value is a measure of localization spreading.

For focal sources, the lower in the AV the more precise is the

localization.

• Normalized Root Mean-Square Error (NRMSE): the NRMSE

represents the average of the square-root mean-square

error between the actual signal and the reconstructed

one in the test set. Both signals have been normalized

by the square root of their energy, and the quadratic

difference has been computed between the envelopes of these

normalized signals.

FIGURE 4

Source localization for the single focal case. Normalized power of the active regions for SNR equal to (a) 30 dB and (b) 10 dB are reported (only

active regions are reported).
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For both DLE andAV computation a dipole is considered active

if its energy exceeds 50% of the maximum energy. The test set

comprises 100 examples with random active dipole position and

signal. To assess the algorithm’s robustness, the data were corrupted

by additive white gaussian noise (added to the sensor’s space after

the forward problem computation), reaching different SNR values

(30, 20, 10 and 0 dB). In the following results for 30 and 10 dB

cases are reported, for the complete analyses refer to the Appendix

(Tables A1–A6). In Figure 3, an example of time reconstructions in

case of high (Figure 3a) and low (Figure 3b) SNR in the single focal

test is shown. In the high SNR case, all the approaches provides

good estimation, with the MNE being the lower quality method.

As expected, except for Deep-MEG, in the case of lower SNR, the

performance of all the algorithms drop dramatically.

In Figure 4, the source localization results are reported. In the

30 dB case (Figure 4a), both Deep-MEG, LCMV and eLORETA

correctly identify the active region, although eLORETA and LCMV

reach a less sharp solution. As the SNR decreases (Figure 4b), the

localization error of eLORETA and LCMV increases considerably,

while the performance of the proposed method remains stable.

Values reported in Table 2, that are related to the entire dataset,

confirm such findings. These results demonstrate Deep-MEG

robustness to noise in both localization and reconstruction tasks.

Conversely, eLORETA exhibits good performance when the SNR is

high, but its noise rejection appears to be ineffective. Furthermore,

based on the AV values in the table, it is evident that the proposed

method exhibits high accuracy.

Regarding computational time, at execution time Deep-MEG

processing typically takes a few hundred milliseconds for each test

sample. In contrast, other approaches, which additionally involve

covariance matrix estimations, require around 25 s for each test

sample. All tests were conducted on a workstation equipped with

an AMD Ryzen 9 3950X 16-Core CPU.

4.3 Multiple focal sources

To assess the spatial resolution of Deep-MEG, tests with

different simultaneous active sources were conducted. We assumed

two or three active focal sources, each producing a different signal

g(t). For this analysis, we only focused on the source localization

performances, as depicted in Figure 5. As in the previous case,

Deep-MEG correctly identifies all active sources in both 30 dB and

10 dB cases. In the high SNR case, eLORETA exhibits a blurring

effect, while in the 10 dB case, it fails to correctly locate the three

active sources. MNE, in the 30 dB case presents a unique activation

region, in the 30 dB case it fails to locate all the three regions. It can

be noted that the other methods fail in localizing the active sources.

For a comprehensive analysis, all algorithms were tested

using a test set of 100 cases per each of the two and three

active source scenarios. Results of DLE and AV for the scenarios

with multiple active sources are presented in Table 3. Deep-MEG

demonstrates robustness to noise. Similarly to the single focal case,

eLORETA performs well when the SNR is high, but its performance

significantly deteriorates in the 10 dB SNR case. Although the DLE

values for MNE are satisfactory, the AV values are substantially

higher compared to Deep-MEG indicating a greater spreading of

the active regions.

4.4 Extended sources

The final simulated scenario involves extended active sources,

where an entire sub-volume of the brain generates a unique

realization of g(t). Specifically, the cases of one and of two extended

active sources were considered.

In Figure 6 an example of source localization in the scenario

with two extended sources is reported. In the high SNR case,

eLoreta correctly identify one of the two active regions with a

slightly spreading. The proposed Deep-MEG correctly identifies

both regions as distinct zones presenting two additional active

regions, the other approches fail to locate both regions. In the 10 dB

SNR case, Deep-MEG maintain its performance, whereas eLoreta

exhibits a deterioration.

The localization performances were measured in terms of

Intersection over Union (IoU) andDLE. The IoU indicates the ratio

between the intersection of active volumes of the ground truth and

reconstructions, and the union of such volumes.

Table 4 reports the DLE and the IoUmetrics for a test set of 100

cases with single active extended region and 100 with two active

extended areas. The volume of an active region has been set between

of 14 and 44 cm3.

In these scenarios, eLORETA performs better than the other

methods for an SNR equal to 30 dB. However, when the SNR

decreases, while Deep-MEG maintains its performance, eLORETA

experiences a significant decline in both DLE and IoU.

TABLE 2 Single focal source case–Mean and standard deviation of Distance of Localization Error (DLE), Active Volume (AV) and Normalized Root Mean

Square Error (NRMSE).

DLE [mm] AV [cm3] RMSE

30 dB 10 dB 30 dB 10 dB 30 dB 10 dB

Deep-MEG (proposed) 8.96± 11.8 9.18± 11.7 7.48± 5.48 7.34± 5.14 0.45± 0.20 0.45± 0.21

LCMV 33.9± 24.4 46.2± 16.7 1.19± 0.67 1.12± 0.48 0.87± 0.09 0.87± 0.09

eLORETA 4.70± 14.7 54.2± 32.1 47.6± 27.5 15.6± 4.50 0.21± 0.25 0.85± 0.19

MNE 42.7± 21.2 48.4± 23.3 11.6± 2.50 5.96± 0.41 0.83± 0.10 0.85± 0.07

RV 46.9± 21.2 45.9± 16.1 1.03± 0.58 2.17± 0.19 0.26± 0.18 0.85± 0.10

Note that, for the single focal case, the real active area was about 0.13 cm3 .
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FIGURE 5

Source localization for the multiple focal case. Three simultaneous active sources have been considered. Normalized power of the active regions for

SNR equal to (a) 30 dB and (b) 10 dB are reported.

4.5 Depth analysis

One of the novel aspects of the proposed approach is its ability

to locate and reconstruct deep sources. In this subsection, the

performance of Deep-MEG in the case of deep sources is evaluated.

Specifically, for the single focal case, the test set was subdivided

into two sets based on the distance between the active source of

each example and a reference point called the ’deep point.’ The

deep point is defined as the brain dipole with the greatest mean

distance from the MEG sensors. The 50 test examples presenting

an active source with the shortest distance from the deep point

constitute the deep sources subset, while the remaining 50 form

the cortical sources subset. Table 5 shows the performance of the

considered solutions in terms of DLE, AV, and NRMSE for both

deep and cortical sources in the single focal source scenario (note

that the SNR was fixed at 30dB for these analyses). From the table,
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TABLE 3 Multiple focal sources case—Mean and standard deviation of the Distance of Localization Error (DLE), Active Volume (AV). Note that, for the

double and triple focal case, the real active area was about, respectively, of 0.26 cm3 and 0.39 cm3.

2 active sources 3 active sources

DLE [mm] AV [cm3] DLE [mm] AV [cm3]

30 dB 10 dB 30 dB 10 dB 30 dB 10 dB 30 dB 10 dB

Deep-MEG 35.3± 18.1 35.2± 18.0 6.17± 3.91 6.33± 3.97 25.9± 14.1 26.0± 14.2 6.81± 3.55 7.03± 3.85

LCMV 57.9± 10.6 58.7± 8.66 1.05± 0.98 1.03± 0.38 58.3± 7.63 58.7± 6.83 0.94± 0.50 0.98± 0.37

eLORETA 25.2± 17.8 70.8± 19.6 24.2± 16.5 14.7± 2.32 21.0± 14.4 67.4± 13.1 34.1± 18.0 14.3± 0.71

MNE 32.5± 16.8 35.6± 12.1 12.8± 0.95 6.22± 0.31 22.0± 10.1 42.0± 9.34 12.8± 0.85 6.03± 0.34

RV 59.3± 8.00 57.3± 6.83 1.19± 0.50 2.22± 0.07 58.1± 6.66 58.7± 6.82 1.36± 0.46 2.15± 0.15

it is possible to note that the localization performance depends

on the depth of the source. In particular, Deep-MEG, eLoreta and

MNE exhibit a reduction of the precision (the decrease of Deep-

MEG is lower compared to eLoreta and MNE), while LCMV and

RV increase their precision in deep source cases. Regarding the AV

parameter, LCMV, MNE and RV remain quite stable while Deep-

MEG and eLoreta present a greater blurring effect in deep source

cases (also in this case Deep-MEG is more stable than eLoreta).

Finally, regarding RMSE, LCMV and MNE remains stable, Deep-

MEG and RV present a slightly decrease of performance while

eLoreta dramatically drop its reconstruction properties.

4.6 Real MEG data

In this final analysis, the algorithm was tested using real

data from the “OpenNEURO” database, under accession number

ds000117 (Henson et al., 2011; Wakeman and Henson, 2015). The

acquisition involved the simultaneous acquisition ofMEG and EEG

signals from subjects performing a visual recognition task involving

famous, unfamiliar, and scrambled faces. For our testing purposes,

the MEG data of a single subject were considered. The acquisition

system was an Elekta-Neuromag VectorView with 306 sensors, and

the sampling frequency was 1,100 Hz.

The OpenNEURO database also provided the magnetic

resonance images of the subjects, and we exploited them to produce

the digital brain volume. Regarding the forward problem, the brain

was discretized with a 5mm step, resulting in 12,211 dipoles and the

Leadfield matrix was estimated. Deep-MEG was trained with the

same simulated signals described in 3. As in the previous cases, for

the inverse problem, the brain was discretized with a 15 mm step,

resulting in 453 dipoles for Deep-MEG while the other approaches

adopted the discretisation step of 5 mm.

The raw MEG signals underwent preprocessing using the

Maxfilter Signal-Source Separation algorithm (SSS) (Taulu and

Kajola, 2005; Taulu and Simola, 2006). The SSS algorithm is

responsible for separating themagnetic signals originating from the

brain from those originating outside. It removes noise, detects bad

channels, and realigns data after movements.

Figure 7 illustrates source imaging of the MEG signals for the

face recognition task. The images depict the instantaneous power

of each dipole 100 ms and 170 ms after the presentation of a

famous face stimulus. In the 100 ms post stimulus case (first line

of Figure 7), activations in the right occipital area have been found

by Liang et al. (2023); Xu (2005). The same active area has been

reconstructed by Deep-MEG and all the considered approaches but

MNE, although each method with a different spread. Moving to the

170 ms post stimulus case (second line of Figure 7), an activation

of the right fusiform area is expected to emerge, according to

literature. Looking at the results, Deep-MEG clearly shows this

activation, as does eLORETA although much more widespread,

while the other methods show more occipital activations (LCMV

and MNE) or which insist on almost all the parenchyma (RV).

5 Discussion

In this paper, we address the problem of brain source

localization and reconstruction from MEG data using a novel deep

learning approach: Deep-MEG. This method introduces a hybrid

artificial neural network composed of two main components. The

first component is a cascade of convolutional layers that extracts

temporal information, while the second consists of fully connected

layers responsible for spatial information extraction. Deep-MEG

has been evaluated across various scenarios involving both single

and multiple focal and extended sources. Its performance has been

compared with existingmethods from the literature, demonstrating

its effectiveness—particularly under low signal-to-noise ratio

(SNR) conditions. Deep-MEG has been also tested exploiting real

MEG data obtained by a public dataset. The proposed solution

shows results comparable to literature. Although this study focuses

on MEG data, Deep-MEG essentially learns the mapping between

measurements on the scalp and neuronal activity in the brain.

Therefore, it can also be applied to EEG data without requiring

structural changes. However, there are some limitations worth

noting. The training phase of Deep-MEG takes approximately

30 h, and the computational demands are significant, especially

with higher resolution grids. Furthermore, the model is subject-

dependent; any change in the MEG device or the subject requires

retraining the network. In such cases, fine-tuning strategies can

help reduce retraining time. Given these considerations, Deep-

MEG is recommended for applications where accurate source

localization is critical. In situations where this level of precision
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FIGURE 6

Source localization for the extended source case. Normalized power of the active regions for SNR equal to (a) 30 dB and (b) 10 dB.

is not necessary, traditional methods such as eLoreta may suffice,

offering reduced computational time.

6 Conclusion

Within this manuscript the Deep-MEG methodology is

presented and tested. The algorithm is able to performMEG source

localization and reconstruction by means of neural networks and

deep learning. More in detail, the proposed method consists of an

hybrid neural network that jointly exploits convolutional layers for

the extraction of the temporal features and fully connected layers

for the spatial identification of the brain activations.

The algorithm has been tested in both simulated and real

scenarios, showing interesting performances both in localization

and signal estimation tasks, even with low values of SNR,

demonstrating good noise robustness and spatial discrimination

of the proposed approach. More in detail, the good performances
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TABLE 4 Extended sources case—Mean and standard deviation of Distance of Localization Error (DLE), Intersection over Union (IoU).

Single extended source Double extended source

DLE [mm] IoU [%] DLE [mm] IoU [%]

30 dB 10 dB 30 dB 10 dB 30 dB 10 dB 30 dB 10 dB

Deep-MEG 10.4± 12.5 10.8± 11.9 12.0± 13.3 10.8± 12.3 30.3± 16.3 30.9± 15.3 9.98± 10.1 9.82± 9.71

LCMV 40.8± 24.7 50.8± 16.7 1.99± 4.36 0.50± 2.75 44.1± 15.2 48.6± 10.5 1.13± 2.93 0.05± 0.54

eLORETA 5.49± 18.6 55.6± 34.9 11.8± 8.28 1.94± 5.13 20.8± 15.1 58.5± 20.7 14.5± 7.96 0.62± 2.76

MNE 57.6± 30.9 47.7± 28.8 0.06± 0.32 0.12± 0.47 61.3± 23.6 48.2± 10.1 0.12± 0.60 0.16± 0.59

RV 52.6± 14.9 51.5± 14.2 0.11± 0.70 0.13± 0.87 49.4± 10.6 48.2± 10.1 0.02± 0.23 0.07± 0.74

TABLE 5 Mean values and standard deviation of Distance of Localization Error (DLE), Active Volume (AV) and Normalized Root Mean Square Error

(NRMSE) for Deep-MEG reconstructions.

DLE [mm] AV [cm3] NRMSE

Cortical Deep Cortical Deep Cortical Deep

Deep-MEG 5.59± 6.10 12.3± 14.9 5.71± 3.70 9.24± 6.50 0.36± 0.18 0.53± 0.19

LCMV 48.8± 18.5 18.9± 20.2 1.18± 1.38 1.19± 1.38 0.87± 0.10 0.87± 0.09

eLORETA 0± 0 9.40± 19.8 33.4± 13.7 62.0± 30.5 0.07± 0.04 0.35± 0.29

MNE 35.5± 22.8 52.6± 20.4 12.7± 11.2 10.6± 12.6 0.83± 0.11 0.86± 0.06

RV 54.1± 11.1 39.7± 18.2 1.17± 1.25 0.90± 1.25 0.19± 0.12 0.33± 0.20

Single focal source case with examples divided in deep and cortical sources [SNR = 30 dB].

FIGURE 7

Results of the MEG source imaging for the real data related to the face recognition task. The instantaneous powers at 100 and 170 ms after the visual

stimulus are reported.

characterized all the considered test cases, with the proposed

methodology being able to correctly handle both the multiple focal

and the extended sources. In addition, the analysis on real data

yielded results consistent with the existing literature.

In the future, we will focus on generalizing the

method across different head models and evaluate the

impact of Deep-MEG reconstructions on brain functional

network analyses.
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