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The human brain’s remarkable computational power enables parallel processing

of vast information, integrating sensory inputs, memories, and emotions for

rapid learning, adaptability, and creativity – far surpassing present-day artificial

systems. These capabilities likely arise, in part, from the distinct properties of

human neurons, which have only recently been elucidated through collaborative

efforts among neurosurgeons, experimental, and theoretical neuroscientists.

This effort has yielded unprecedented morphological and biophysical data

on human neurons obtained during epilepsy or tumor surgeries. To integrate

and interpret this diverse data, two complementary modeling approaches

have emerged: detailed biophysical models, unraveling how morpho-electrical

properties shape signal processing in human neurons, and machine learning

models, which leverage the biophysical models to uncover hidden structure–

function relationships. A major focus has been the disproportionately expanded

layers 2/3 of the human cortex, where the large L2/3 pyramidal neurons (HL2/3

PNs) can track high-frequency input modulations, exhibit enhanced dendritic

signaling, maintain numerous functional dendritic compartments, and display

unique dendritic excitability. More recent efforts extend to modeling human

hippocampal, cerebellar, and inhibitory cortical neurons. This review synthesizes

key theoretical insights from biophysical and machine-learning models of HL2/3

PNs, and explores their implications for understanding “what makes us human.”

KEYWORDS

human neurons, pyramidal neurons, dendritic computation, compartmental modeling,
biophysicalmodeling,machine learningmodels, single neuron computation, structure–
function relationship

1 Introduction

The remarkable cognitive abilities of humans are often attributed to the expansion and
specialization of the cerebral cortex, with its∼16 billion neurons (Herculano-Houzel, 2009)
and unique connectivity patterns (Seeman et al., 2018; Loomba et al., 2022; Campagnola
et al., 2022; Hunt et al., 2023; Kanari et al., 2024; Peng et al., 2024). Of particular interest is
whether, on top of this expansion, our remarkable cognitive abilities also rely on distinct
properties of the building block of the cortex – the cortical neuron. An answer to this
question requires appropriate tissue samples – a resource that has long been scarce. To
overcome this, in the past decade, research teams around the world have collaborated
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with neurosurgeons to obtain tissue from surgeries performed
to treat intractable epilepsy or tumors. As a result, direct
characterization of the morphological, electrophysiological,
synaptic, and genetic features of human neurons has become
feasible (Eyal et al., 2014; Szegedi et al., 2016; Deitcher et al., 2017;
Hodge et al., 2019; Berg et al., 2021; Hodge et al., 2020; Kalmbach
et al., 2021; Chameh et al., 2023; Lee et al., 2023; Chartrand et al.,
2023; Siletti et al., 2023).

These studies, together with recent electron-microscopic-based
(“connectomics”) investigations (Loomba et al., 2022, Shapson-
Coe et al., 2024) show that the disproportional expansion of the
human cerebral cortex, and in particular that of the supragranular
cortical layers 2 and 3 (DeFelipe, 2011; Galakhova et al., 2022),
is accompanied by unique subcellular, cellular and network
properties, including distinct transcriptomic profiles (Boldog et al.,
2018; Berg et al., 2021; Chartrand et al., 2023), novel cell types
(Deitcher et al., 2019; Berg et al., 2021; Mertens et al., 2024)
human-specific synaptic connection (Lourenço and Bacci, 2017;
Hunt et al., 2023; de Kock and Feldmeyer, 2023; Peng et al.,
2024), an increased percentage of interneurons (Loomba et al.,
2022), specialized dendritic morphology (Kalmbach et al., 2021;
Masoli et al., 2024), and axonal ion channels (Gooch et al., 2022;
Szegedi et al., 2023; Wilbers et al., 2023) and increases in dendritic
compartmentalization (Beaulieu-Laroche et al., 2018; Eyal et al.,
2018). Together, these distinctive features could potentially support
our capacity for language, foresight and creativity, enabling us to
create art, advance science, manipulate our own genes and brains,
and build machines that can rival (and sometimes surpass) our own
cognitive abilities (reviews in Galakhova et al., 2022).

What are the implications of these distinct features of human
neurons for their computational capabilities? To address this
question, we need neuron models that can systematically integrate
diverse experimental data; such models have been developed in the
last decade, yielding important biophysical computational insights
at the single cell as well as the network levels. In this work we
consolidate the insights at the neuron-level, in particular those
gained from the majority of models that focused on the large
and morphologically complex human L2/3 pyramidal neurons
(HL2/3 PNs), but also from recent models of other types of
human neurons. We then propose the next steps toward deepening
our understanding of the input–output (I/O) relationship and
computational capabilities of human (and other) neurons and how
these properties might scale up to shape the organization and
function of the networks they form.

The first set of insights (Figure 1) provides model-based
biophysical explanations for four experimental observations in
human HL2/3 PNs: (i) the steep (“kinky”) somatic/axonal action
potentials (APs) in these cells; (ii) the accelerated propagation
speed of excitatory postsynaptic potentials (EPSPs) in dendrites of
HL2/3 PNs; (iii) the ability of these cells to reliably track fast input
modulations through axonal APs; and (iv) the effective transfer of
theta frequencies from dendrite-to-soma in these cells.

The second set of insights (Figure 2) highlights the enhanced
computational capabilities of HL2/3 PNs, showing that: (i)
these neurons are highly compartmentalized, endowing them
with large capacity for parallel processing and local nonlinear
transformations – alongside multi-site plastic processes – prior
to final integration in the axon; (ii) these cells can perform
sophisticated computations, including XOR operation, through
specialized nonlinear dendritic currents; and (iii) HL2/3 PNs

exhibit a greater “depth” of I/O operations, as demonstrated by
machine-learning approaches and analogs deep neural networks
(DNNs) derived from their detailed biophysical models.

2 Biophysical insights from
modeling HL2/3 PNs

2.1 Loaded with (human) potential: a
unifying theoretical explanation for the
enhanced signaling in HL2/3 PNs

A unifying theoretical explanation for the three experimental
results shown in Figures 1A–C relies on the notion of “dendritic
impedance load” (henceforth “dendritic load” or just “load”),
imposed by the cable properties of the neuron on any particular
dendritic/somatic/axonal site. This notion emerged from the
pioneering work of W. Rall, where he solved the cable equation
for dendritic neurons, showing that dendrites are electrically
distributed cables rather than isopotential elements and that
consequently, longitudinal (axial) current flows along the dendritic
tree in response to local voltage perturbation (Rall, 1959; Rall,
1967; Rall, 1969; Rall, 1977). This work showed that the extensive
membrane surface area of the dendrites “loads” the soma with
additional capacitance and conductance, and that this affects both
the magnitude and the temporal characteristics of the somatic
excitatory synaptic potentials (EPSPs) originated in the dendrites
(Rall, 1967; Rall, 1969; Rall and Rinzel, 1973; Rinzel and Rall, 1974).

Specifically, Rall (1959) solved the one-dimensional cable
equation for the case of a cylindrical cable of finite length coupled
to an isopotential soma (“ball and stick” model), showing that the
voltage response, V(t), at any dendritic location (including the
soma) to current injected at some location can be expressed as a
sum of infinitely many exponential decays,

V (t) = c0e
−

t
τ0 + c1e

−
t

τ1 + c2e
−

t
τ2 + . . . (1)

where τ0 = τm, is the membrane time constant and τ0 > τ1 > τ 2.
For a given dendritic tree, the coefficients c0, c1, c2, depend on

the dendritic location x and the initial conditions over the tree,
whereas the time constants, τ0, τ1, τ2,. . ., are independent of x. Rall
referred to, τ1, τ2,. . ., as “equalizing time constants,” because they
determine the rate at which voltage differences equilibrate between
the perturbed dendritic site(s) receiving synaptic inputs and other
dendritic regions (Equation 1). To assess the impact of the dendritic
load (the load imposed by the cylindrical cable on the soma) on
the equalizing time constant, Rall introduced the parameter ρ, the
“dendrite-to-soma conductance ratio,”

ρ = Gdendrite/Gsoma (2)

where Gdendrite is the input conductance of the cylindrical
(dendritic) cable and Gsoma is the input conductance of the soma
(when Isolated). We will use below the term “load” to quantify
the load imposed by the rest of the structure at the recorded
compartment (i.e., the dendrites imposing their load on the soma
or on the dendrites + soma imposing their load on the axon
initial segment, etc.).

Rall demonstrated that the larger the dendritic load (the larger
ρ is) the faster the voltage develops/decays at the soma in response
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FIGURE 1

Biophysical insights gained from modeling human cortical pyramidal neurons. (A) Top: representative examples of mouse (orange) and human
(green) L2/3 cortical pyramidal neurons. Bottom: equivalent cables as seen from the soma (black circle) for the cells shown on top, with basal/apical
cables extending downward/upward, respectively. Due to the large surface area of the basal and oblique dendrites in humans, a large load is
imposed on their soma and axon initial segment. (B) Human neurons display steep (“kinky”) axonal APs. Neuron models are composed of an infinite
cylindrical axon with “hot” initial segment and passive cylindrical dendritic cables of variable length (variable load) coupled to the soma (two
examples shown in top inset). The phase slope (steepness) of the axonal AP in these neuron models, recorded at the start of the modeled axon, is
shown as a function of the load imposed on the axon initial segment (ρaxon) (gray circles). Orange (human) and green (mouse) circles correspond to
ρaxon values computed from the detailed neuron models shown in panel (A). Bottom inset depicts the axonal APs in the respective models. The
zoom-in highlights the steeper AP “foot” in human (Adapted with permission from “Dendritic load, AP onset rapidness, and the tracking of
high-frequency modulation by axonal spikes” by Guy Eyal, Huibert D. Mansvelder, Christiaan P. J. de Kock and Idan Segev, licensed under CC
BY-NC-SA 3.0). (C) EPSP velocity is faster in human dendrites. Top inset shows the reduced models used, consisting of soma coupled to two passive
cylinders: an apical cylinder receiving an excitatory synapse (red) and a basal cylinder of variable length (imposing variable load). Inset below shows
EPSP velocity as a function of the distance of the synapses from the soma. For this case, ρ = 20 for the mouse and ρ = 40 for the human models;
these values were computed from the detailed neuron models shown in panel (A). Main curve shows EPSP velocity as a function of the load
(ρsynapse) as for an exemplar synapse, located at xsyn = 50 µm from the soma. Orange and green circles correspond to the mouse and human
neuron models, respectively. Right inset shows the soma EPSP in the human (green) and mouse (orange) models (Adapted with permission from
“Impact of conductance load of the basal tree on excitatory postsynaptic potentials (EPSPs) velocity and latency” by Gáspár Oláh, Rajmund Lákovics,
Sapir Shapira, Yoni Leibner, Attila Szücs, Éva Adrienn Csajbók, Pál Barzó, Gábor MolnárIdan Segev and Gábor Tamás licensed under CC BY 4.0).
(D) Models of human neurons (green) effectively track high-frequency input modulations through their axonal spikes, as demonstrated by the
respective shift-to-the-right of the vector strength as a function of input’s frequency modulations (Adapted with permission from “Dendritic load, AP
onset rapidness, and the tracking of high-frequency modulation by axonal spikes” by Guy Eyal, Huibert D. Mansvelder, Christiaan P. J. de Kock and
Idan Segev, licensed under CC BY-NC-SA 3.0). (E) h-Channels, which are prominent in human (but not in mouse) dendrites, facilitate the transfer of
theta-frequency inputs from dendrites to the soma in human L3 pyramidal neurons. The power spectrum of the somatic membrane potential is
shown for a modeled human pyramidal neuron (inset) stimulated by 1,000 synapses distributed along the apical dendrite. Green and blue traces
indicate conditions with and without Ih channels, respectively. Black bars denote statistically significant differences in the power spectrum
(Kolmogorov–Smirnov test; p < 0.01). Data is presented as mean ± SD (Adapted with permission from “Ih Affects the Subthreshold Integrative
Properties of a Morphologically Precise Human L3 Pyramidal Neuron Model” by Kalmbach et al., licensed under CC-BY 4.0).

to (synaptic or injected) current (Rall, 1969). It is worth noting
that Gdendrite increases with increase in dendritic surface area and,
therefore, ρ increases in neurons with large dendritic trees.

The load, ρ, in Equation 2 can be computed not only for
a cylindrical dendrite but also for the general case, where the
dendritic tree, as seen from the soma, is mathematically equivalent
to a cable (or several cable emerging from the soma) with variable
diameter, deq(X),

deq (X) = (
∑
j

(dj (X))3/2)2/3 (3)

where X is the cable (electrotonic) distance from the soma (in units
of the electrotonic length, λ) and dj is the diameter of the j-th
dendrite at the distance X from the soma.

Typical equivalent cables, as seen from the soma, are shown
in Figure 1A, bottom, for human (green) and mouse (orange)

L2/3 PNs shown at Figure 1A, top. These cables start with a
small diameter near the soma, which then increases with X as
more dendritic branches emerge and then decreases with X as the
number/area of distal dendrites decreases. In the cable shown in
Figure 1A, bottom, Equation 3 was used to compute the equivalent
cable separately for the apical and basal trees. As can be seen, the
membrane surface area near the soma is much larger in human
versus mouse L2/3 PNs, implying that ρ is larger in humans (see
below).

We used Equation 2 to compute ρ for the two neurons
shown in Figure 1A, assuming specific membrane resistance,
Rm = 15,000 �cm2 and axial resistance, Ra = 150 �cm, ρ = 19.6 for
the mouse neuron and 40.2 for the human neuron. Consequently,
the equalizing time constants are smaller in human L2/3 PNs and,
in turn, the kinetics of voltage in the soma are expected to be faster
(Eyal et al., 2014; Oláh et al., 2025).
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FIGURE 2

Computational insights from modeling human cortical pyramidal neurons. (A) Enhanced storage capacity of human L2/3 pyramidal neurons. Inset
shows human (top) and mouse (bottom) modeled neurons in which the entire dendritic tree was activated with clusters of excitatory synaptic inputs.
In HL2/3 PNs about 25 NMDA-spikes could be generated independently and simultaneously as compared to only 14 in rat L2/3 PNs. Graphs show
the storage capacity as a function of the number of non-linear dendritic subunits per neuron, computed when the neurons were considered as a
two-layer model as in Poirazi and Mel (2001) top and bottom curves are for 30,000 and 10,000 synaptic inputs, respectively (Adapted with
permission from “Human L2/L3 pyramidal neurons have larger storage capacity compared to rat” by Guy Eyal, Matthijs B. Verhoog, Guilherme
Testa-Silva, Yair Deitcher, Ruth Benavides-Piccione, Javier DeFelipe, Christiaan P. J. de Kock, Huibert D. Mansvelder and Idan Segev, licensed under
CC BY 4.0). (B) HL2/3 PNs can implement distinct logical operations through its subcellular nonlinear compartments. The apical dendrite (top right,
blue) produces dendritic calcium action potentials (dCaAPs) in response to either input pathway X or input pathway Y, but not when both pathways
were active together, thus implementing a XOR-like operation (top left). In contrast, the somatic compartment (bottom right, green) implements
OR-like computation, producing an action potential whenever one or more dendritic inputs reach threshold (bottom left). The basal and tuft
dendrites (gray) function as AND gates via NMDA receptor-dependent spikes (Adapted with permission from “Anti-coincidence in L2/3 of the human
cortex” by Albert Gidon, Timothy Adam Zolnik, Pawel Fidzinski, Felix Bolduan, Athanasia Papoutsi, Panayiota Poirazi, Martin Holtkamp, Imre Vida and
Matthew Evan Larkum, licensed under CC BY 4.0). (C) Greater computational complexity of HL2/3 PNs using machine-learning (DNN) approach.
Performance of Deep Neural Networks (DNNs) of various depths in replicating the input–output (I/O) function of detailed biophysical models of
L2/3 PNs of human (green) and rat (orange) shown at right. As the depth of the DNN increases, the model’s performance (assessed by the AUC,
Beniaguev et al., 2021) improves for both species. However, the AUC in human remains below that of rat, implying that the I/O function of the
human model is more complex, consistently requiring deeper networks to approximate the respective I/O function (Adapted with permission from
“Human cortical pyramidal neurons are more functionally complex compared to rat cortical pyramidal neurons” by Ido Aizenbud, Daniela Yoeli,
David Beniaguev, Christiaan PJ de Kock, Michael London and Idan Segev licensed under CC BY-NC-ND 4.0).

The “somato-centric” load computed above can be extended
for any dendritic (“dendro-centric”) or “axo-centric” viewpoints.
The respective “equivalent cables” offer a graphical/analytical
appreciation of the degree of load as “seen” from the viewpoint of
any dendritic spine/synapse or axonal location. As shown below,
these cables and their respective equalizing time constants, explain
both the enhanced upstroke (or “foot”) of the AP in the axon’s
initial segment as well as the increase of propagation speed of
the EPSPs in human versus rodent’s dendrites. It also provides
an analytical understanding of the dynamic of local dendritic
voltage (e.g., in dendritic spines) in response to local synaptic
inputs (Mertens et al., 2024; Sapir et al., unpublished data). These
equivalent cables also provide useful insights into the degree of
electrotonic decoupling between specific dendritic regions. Indeed,

if the equivalent cable as seen from dendritic location #1, shows a
large diameter change on the path to dendritic location #2, then
these two dendritic locations are electrically decoupled (Leibner
et al., unpublished data).

2.2 The “kinky” action potential enables
HL2/3 PNs to track fast input
modulations

In a series of innovative theoretical and experimental studies it
was demonstrated that the encoding capability of the axonal APs to
track fast-modulated synaptic input is primarily determined by the
steepness (or “kinkiness”) of the AP upstroke (Naundorf et al., 2006;
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Baranauskas et al., 2010; Linaro et al., 2018; Ilin et al., 2013). The
steeper the AP, the better the encoding. It was further found that
HL2/3 PNs can reliably encode modulated inputs at frequencies of
up to around 400–600 Hz, compared to only 100–200 Hz in rat L2/3
PNs (Testa-Silva et al., 2014) and that APs in HL2/3 PNs are indeed
steeper than those in rats (Goriounova et al., 2018). These results
raised two key questions: what causes the increased steepness of
the APs in HL2/3 PNs and whether this on its own is sufficient to
explain their superior ability to track rapid input modulations?

The dependency of the AP kinkiness on the neuron’s cable
properties is best explained through Rall (1957) early theoretical
work where he showed that, in an infinite passive cable, the voltage
response, V(t), to a step current pulse reaches about 84% of
its maximum after one membrane time constant, τm. This is in
contrast to an isopotential (spherical, R-C) neuron, where V(t)
reaches only 63% of its maximum at t = tm. This is because, in an
isopotential case, V(t) is governed solely by the (slow) membrane
time constant, τm, whereas in the infinite cable, the faster equalizing
time constants discussed above enhance V(t) kinetics.

Because the upstroke (or “foot”) of the AP is primarily passive
(Jack et al., 1975), it is strongly affected by the passive properties
of the axonal cable. The AP is therefore expected to be steeper in
the electrically distributed axon as compared to a “space clamped”
(isopotential) axon, as indeed was demonstrated by Hodgkin and
Huxley (1952). Importantly, this fundamental insight implies that
there is a strong interaction between membrane excitability and
neuron morphology in shaping the regenerative/spiking response
of neurons (see also Mainen and Sejnowski, 1996).

Figure 1B (adapted from Eyal et al., 2014) shows the
dependence of the steepness of the AP (its phase slope, see
definition in Eyal et al., 2014) on the load imposed on the axon
initial segment by the dendrites/soma. This load is termed here
as ρaxon (Hay et al., 2013). Neuron models are composed of an
isopotential soma coupled to an infinite cylindrical axon with
“hot” initial segment (containing high-density voltage-gated Na+

ion channels) and passive cylindrical dendritic cables of variable
length (imposing variable load, ρaxon, on the axon initial segment).
Examples for two such models are shown in Figure 1B, top
inset. Orange (human) and green (mouse) circles correspond to
ρaxon values computed for the detailed neuron models shown in
Figure 1A. Gray circles denotes different ρaxon, bottom inset in
Figure 1B depicts the APs at the start of the axon’s initial segment
in the respective human (green) and mouse (orange) models. The
zoom-in highlights the steeper “foot” (or increased “kinkiness”) of
the AP in human.

Because of the particularly large/extensive basal and oblique
trees in HL2/3 PNs, ρaxon is large in these cells and, consequently,
the equalizing time constants are small in their soma/axon initial
segment (Hay et al., 2013; and see mathematical explanations in
Eyal et al., 2014). In turn, the AP is kinkier in these cells and,
as Eyal et al. (2014) have showed, this, in itself, explains the
more reliable tracking of high-frequency input modulations by
axonal spikes (thus, the enhanced encoding capabilities in HL2/3
PNs; Figure 1D). It is interesting to note that this increase in AP
steepness is expected to improve network synchrony in human
cortical circuits (Ilin et al., 2013). Human ion channel properties
and Na+ channel availability was shown to serve as an additional
mechanism that supports fast AP signaling in HL2/3 PNs (Wilbers
et al., 2023).

2.3 EPSPs propagation speed is
accelerated in dendrites of HL2/3 PNs

It was recently found that EPSPs travel approximately 30%
faster in the apical dendritic tree of HL2/3 PNs compared to rats’
L2/3 PNs (0.9 m/s versus 0.7 m/s, on average, respectively; Oláh
et al., 2025). This acceleration helps to compensate for the larger
signal delay expected due to the greater soma-to-soma path-length
in human cortex (axon + dendrite path length is 385 ± 74 µm
in human and 262 ± 53 µm in rat). Whereas part of this EPSPs
acceleration is attributed to the larger diameter of the apical
dendrites in human neurons, detailed compartmental models show
that diameter differences alone account for only a small fraction
of the increase in EPSP speed (Oláh et al., 2025). Instead, these
models show that the primary mechanism behind the faster EPSP
propagation is the shorter equalizing time constants in HL2/3 PNs,
resulting from the large load imposed by the basal dendritic tree
on the apical dendrite in these cells (Figure 1C, adapted from Oláh
et al., 2025).

The top inset in Figure 1C shows the simplified models used to
explore the enhanced EPSP velocity in HL2/3 PNs. These models
consist of soma coupled to a passive apical cylinder, receiving an
excitatory synapse (red), and a passive basal cylinder of variable
length (imposing variable load, ρ, on the apical tree). Inset below
shows EPSP velocity as a function of the distance of the synapses
from the soma for the case where ρ = 20 (mouse model, orange)
and ρ = 40 (human model, green). These values were computed
from the detailed neuron models shown in Figure 1A. The main
curve shows EPSP velocity as a function of the load as “seen” from
the synapse (ρsynapse) that is located at xsyn = 50 µm from the soma.
Orange and green circles correspond to the mouse and human
neuron models, respectively. Right inset depicts the zoom-in EPSP
at the soma, showing that it reaches the soma earlier in human
versus mouse models.

To confirm that EPSP acceleration in the human apical tree
is indeed a consequence of the large load imposed by the basal
tree, we constructed “hybrid neuron models” in which the basal
tree of human HL2/3 PNs was replaced with that of a rat. In these
hybrid models, the enhanced EPSP speed in human apical dendrites
diminished. Conversely, when the rat’s basal tree was replaced with
that of a human, EPSP propagation speed increased in the apical
tree of the rat’s L2/3 PNs. Notably, the faster EPSP propagation
in HL2/3 PNs is expected to occur not only in the apical tree but
also in the basal dendrites. This is because, in humans, each basal
branch experiences a large load imposed by all other basal branches
combined, as well as by the apical tree (Oláh et al., 2025). Note
that the same principles apply equally to rat neurons, only there,
the load imposed by all other basal branches on a particular basal
dendrite is smaller compared to that of human.

2.4 Prominent h-channels in HL2/3 PNs
promote the transfer of theta
frequencies from dendrite-to-soma

Using combined experimental and detailed compartmental
modeling, Kalmbach et al. (2018) investigated how the stronger
h-channel-related membrane properties in HL2/3 PNs compared to
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mouse contribute to differences in rodent versus human neuronal
physiology. They applied synaptic inputs, distributed along the
apical dendrite, in a modeled HL2/3 PNs, both with and without
h-channels (Figure 1E). They showed that h-channels modulate
subthreshold membrane potential dynamics and firing patterns,
and pinpointed the role of these channels in promoting the transfer
of theta frequencies from dendrite-to-soma in these neurons. They
suggest that this might contribute to the dominant delta/theta band
oscillations apparent in the human supragranular cortex (Halgren
et al., 2018) and to memory-related theta-frequency phase-locking
of single human neurons observed in vivo (Jacobs et al., 2007;
Rutishauser et al., 2010). Kalmbach et al. (2018) showed that Ih
produced EPSPs at the soma of the model L3 human PN with
a significantly faster time course, thus reducing the temporal
summation of synaptic inputs at the soma. By opposing changes
to membrane potential, Ih induces phenomenological inductance
to the neuron’s membrane. This counteracts signal delay imposed
by membrane capacitance, promoting the transfer to the soma of
synaptic input containing theta frequencies.

Kalmbach et al. (2018) study also suggests that the prominent
h-channels in HL2/3 PNs may significantly affect the spike
initiation dynamics in these cells and can switch the firing mode
of a neuron from temporal integrator to coincidence detector,
whereby spiking is sensitive to correlated synaptic input rather
than changes in mean presynaptic firing rate. Additional work
supporting the distinct role of h-channels (“sag voltage”) in human
cortical neurons can be found in Chameh et al. (2021), Berg et al.
(2021), and Guet-McCreight et al. (2023).

3 Computational insights from
modeling HL2/3 PNs

3.1 HL2/3 PNs have increased number of
functional dendritic compartments

Rall’s cable theory for dendritic trees has demonstrated that,
because of cable filtering, different parts of the dendritic tree are
electrically decoupled from each other and, consequently, they
could act as semi-independent compartments (Rall, 1959, Rall
and Rinzel, 1973; Rinzel and Rall, 1974). In each compartment,
local synaptic inputs may be integrated nonlinearly and undergo
synaptic plasticity before they impact the neuron’s overall output
(Segev and Rall, 1998; Koch and Segev, 2000; London and Häusser,
2005; Losonczy et al., 2008; Makara et al., 2009; Cichon and Gan,
2015; Otor et al., 2022).

Modeling studies have shown that dendritic
compartmentalization combined with non-linear properties
(e.g., of the synaptic input itself or the dendritic membrane, or
both) endows the neuron with the capability to perform multi-site
(AND-NOT type and XOR) logical operations (Koch et al.,
1982; Shepherd and Brayton, 1987; Gidon et al., 2020), improved
temporal coincidence detection (Agmon-Snir et al., 1998), perform
nonlinear pattern discrimination (Mel, 1992, Moldwin et al., 2021;
Beniaguev et al., 2024), enabling neurons to self-organize to solve a
binding problem (Legenstein and Maass, 2011) and providing, via
“dendritic gating,” flexible routing of information flow in a complex
brain network (Yang et al., 2016). Indeed, dendritic mechanisms

have inspired innovative solutions for significant AI-related
problems, including credit assignment in multi-layer networks,
catastrophic forgetting, and very high-power consumption of
present-day AI learning algorithms (Pagkalos et al., 2024).

“Dendritic compartments” can be defined in multiple ways.
One approach is based on calculating the transfer resistance
(Ri,j) between dendritic locations; if Ri,j is low, the locations are
electrically decoupled and belong to separate compartments (Koch
et al., 1982; Eyal et al., 2018; Dan et al., 2018). Another method,
proposed by Rabinowitch and Segev (2006), defines compartments
as sub-regions where background synaptic activity is similar but
distinct from other areas. They identified compartments using
cross-correlations between membrane potential traces at different
dendritic sites.

A more direct measure of the number of “functional
compartments” in a dendritic tree was proposed by Eyal et al.
(2018). They calculated how many independent (electrically
isolated) NMDA spikes could be generated simultaneously in a
modeled neuron without triggering an axonal spike. Their findings
showed that, due to the greater number of dendritic branches,
extended cable length, and especially the abundance of oblique
dendrites in HL2/3 PNs, these neurons could generate about 25
independent NMDA spikes simultaneously, compared to only 14
in rat L2/3 PNs (Figure 2A). Notably, the number and size of these
dendritic compartments are dynamic and can be modulated by
factors such as synaptic inhibition and branch excitability (Gidon
and Segev, 2012; Wybo et al., 2019).

Using Poirazi and Mel (2001) formulation for computing the
memory capacity of a neuron taking into account both the number
of independent compartments and the number of synapses, HL2/3
PNs show 10-folds increase in memory compared to rodents L2/3
PNs (Figure 2A). A similar result for human versus rat CA1
PNs was recently obtained by Mertens et al. (2024). Furthermore,
by combining modeling and direct electrical recordings from
dendrites, Beaulieu-Laroche et al. (2018) found enhanced electrical
compartmentalization also in human L5 PNs.

3.2 Unique nonlinear dendritic current
enables XOR operation in HL2/3

In a recent study, Gidon et al. (2020) used dual recordings from
the soma and apical dendrite of HL2/3 PNs. They discovered a new
class of calcium-mediated dendritic action potentials (dCaAPs)
whose waveform and effects on neuronal output have not been
previously described. These dendritic action potentials were found
to be graded – their amplitudes were maximal for threshold-
level stimuli but dampened for stronger stimuli. They then used a
detailed compartmental model of a HL2/3 PN and simulated the
behavior of dCaAP including its threshold, width, and amplitude
as a function of the input strength to investigate the functional
outcome of the dCaAP activation function.

Using their model, Gidon et al. (2020) showed that the apical
dendrites of HL2/3 PNs, through localized dCaAPs, can implement
an XOR operation – responding to either of two excitatory inputs
but not both simultaneously (Figure 2B, blue). In contrast, the soma
performs an OR-like operation, firing an AP when one or more
inputs are present (Figure 2B, green), whereas the basal and tuft
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dendrites act as AND gates via NMDA receptor-dependent spikes
(Figure 2B, gray). The presence of dCaAPs in HL2/3 PNs, enabling
natural XOR computations, gives human L2/3 neurons multi-layer-
like network capabilities – surpassing rat L2/3 PNs, which lack this
unique nonlinear membrane current.

3.3 HL2/3 PNs are computationally
complex as assessed by their analogous
DNNs

In a recent study, Aizenbud et al. (2024) proposed a novel
method to gauge the functional complexity of single neurons by
measuring how difficult it is for a DNN to replicate the neuron’s I/O
dynamics. By training a temporal convolutional network of fixed
width and depth to approximate both the subthreshold somatic
voltage and spike outputs of the respective biophysically detailed
models, they quantify the functional complexity arising from the
neuron’s morphology and nonlinear synaptic properties.

A key observation is that human cortical PNs, particularly
HL2/3 PNs, consistently present a greater challenge for the DNN
to replicate the respective I/O function compared to the respective
rat PNs. Aizenbud et al. (2024) show that because of the larger
dendritic surface area and more complex dendritic tree, and
because of the steeper NMDA-dependent nonlinearities (Eyal et al.,
2018) the I/O response pattern is more complex in human PNs,
requiring a deeper or more sophisticated DNN to replicate their
I/O relationship.

Figure 2C compares the DNN performance, as measured by the
area under the curve (AUC, Beniaguev et al., 2021), as a function
of network depths for two representative neuron models L2/3 PNs
from human and rat. For a fixed width of 128 nodes per layer and
for every architecture configuration, the DNN models of human
neurons yield lower AUC, indicating lower predictive accuracy
and underscoring their elevated complexity relative to their rat
counterparts. As discussed by Beniaguev et al. (2021), the depth
of the DNN required for the modeling of a given neuron can be
used (under certain assumptions) as an index for its computational
power; the deeper it is, the more sophisticated computations this
neuron could perform.

4 Discussion

In recent years there is accumulating evidence that numerous
cellular and network features of the human cortex contribute
to our advanced cognitive capabilities. But how could these
diverse features be combined and linked together to explain
our sophisticated cognitive capabilities? One approach is to use
computational models that enable to progressively integrate these
features and then use the model to explore how each additional
feature incrementally enhances the model’s ability to replicate
human-like cognitive functions.

Under this conceptual framework, this review synthesizes the
key computational properties of human cortical neurons, derived
from detailed experimentally grounded compartmental models
and complementary machine-learning approaches. Focusing on
the large and elaborated L2/3 pyramidal neurons (HL2/3 PNs)
in the significantly expanded human cortical layer, this review

summarizes the key insights gained from fine-scale models of
these cells. It offers rigorous mathematical explanations for several
experimental observations unique to these cells. It demonstrates
how the morpho-electrical complexity of HL2/3 PNs boosts
both their computational and memory capacity, thereby likely
contributing to the enhanced cognitive capabilities of the human
cortex as a whole.

Specifically, we provide a unified mechanism for explaining
several key phenomena in human HL2/3 PNs, based on the notion
of “impedance load.” We show that the large load imposed on the
axon’s initial segment by the large dendritic tree makes the somatic
APs “kinky” in these cells, and this underlies their capability to
reliably track rapid input modulations. The load imposed on the
stem dendrites emerging from the soma explains the enhanced
speed of EPSP propagation in human dendrites; it also partially
explains the extensive dendritic compartmentalization found in
HL23 PNs, supporting enhanced, multi-site nonlinear parallel
information processing within a single human neuron. Large
dendritic trees are found in cortical neurons of other mammalian
species as well. However, in human L2/3 PNs this extensive
morphology operates in conjunction with distinctive ion channel
properties and synaptic connectivity that, together, may uniquely
enhance the computational repertoire of human cortical neurons,
beyond what size alone accounts for.

Indeed, the review also highlights experimental findings and
insights obtained from models regarding the computational impact
of distinctive voltage-gated dendritic ion channels found in HL2/3
PNs: the high density of dendritic h-channels that shapes the
resonance properties and improve dendrite-to-soma signal transfer
(Kalmbach et al., 2018), the unique dendritic Ca2+ current that
enables XOR-like operations in these cells (Gidon et al., 2020),
and the steep voltage-dependence of NMDA-receptors, underlying
NMDA-driven nonlinear activity as well as NMDA spikes
[although, as noted by Testa-Silva et al. (2022), it remains uncertain
whether NMDA spikes occur in all human neurons]. Aizenbud
et al. (2024) showed using machine learning (DNN) approach that,
when combined with the large and complex dendritic tree of HL2/3
PNs, the distinct nonlinear membrane/synaptic characteristics in
human cells augment the computational capabilities of these
neurons.

Whereas this review focuses on biophysical and computational
insights specifically gained from models of human layer 2/3
pyramidal neurons (HL2/3 PNs), an important related question
is the extent to which these insights can be generalized to other
neuron types within the human cortex and subcortical regions. In
particular, it remains to be explored whether the morphological
complexity and specialized ion channel distributions observed
in HL2/3 PNs are also present – and if so, whether they serve
comparable roles – in other neuron subtypes, each of which
contributes to the rich computational diversity of the human
brain. Recent experimentally based models of other human neuron
types have begun to address this question, revealing distinct
morphological and electrical properties in hippocampal CA1 PNs
(Mertens et al., 2024), cerebellar Purkinje cells (Masoli et al.,
2024), and cortical inhibitory neurons (Boldog et al., 2018;
Chartrand et al., 2023). These findings add to the growing body of
evidence suggesting that human neurons – the brain’s fundamental
computational “microchips” – are indeed more complex than their
rodent counterparts.
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The next major advancement in single-neuron modeling will
come from integrating recent data obtained from dense, EM-
based reconstructions of entire human cortical neurons (Loomba
et al., 2022; Shapson-Coe et al., 2024). These high-resolution
reconstructions provide unprecedented insights into the location
and strength of excitatory and inhibitory dendritic synapses, as
inferred from their physical size (Holler et al., 2021). Additionally,
ex vivo measurements of individual synapses in human tissue –
leveraging, for example, next-generation genetically encoded
voltage indicators (GEVIs; Cornejo et al., 2022; Hao et al., 2024) –
will significantly enhance both biophysical models and AI-based
DNN models of single neurons. Consequently, these improvements
will extend to network-level models as well. These powerful
advances will refine our understanding of the parameters that shape
the I/O properties and computational functions of cortical (and
other) neurons in general, with a particular emphasis on human
cortical neurons.

Noteworthy is that improvements of our understanding of
the rich-set of computations performed at the single-neuron level
will eventually extend to network-level models. Incorporating
morphological and biophysical details into network simulations
(Hay and Segev, 2015; Reimann et al., 2013; Dura-Bernal et al.,
2024) as well as to DNN models (Egrioglu and Bas, 2024; Tang et al.,
2024; Chavlis and Poirazi, 2025), will advance our understanding
of the way local dendritic computations scale up to circuit-level
dynamics and improve network computations.

As present-day EM data typically consist of relatively small
volumes (and in many cases highly truncated morphologies)
future neuron models will benefit from new imaging techniques
capable of mapping larger volumes of human brain tissue than
is currently feasible with traditional EM (Loomba et al., 2022;
Shapson-Coe et al., 2024). For instance, expansion microscopy
enables visualization of sub-diffraction-limit structures on a larger
spatial scale (Balcioglu et al., 2023), while X-ray nano-tomography
offers complementary insights at high resolution (Rodrigues et al.,
2021; Bosch et al., 2024). When combined with whole-brain
morphometric approaches (Liu et al., 2024), these methods provide
a multi-scale perspective on neural architecture – from individual
synapses to macro-level connectivity – including not only cortical
areas but also hippocampal, cerebellar, and other subcortical
structures.

By generating increasingly detailed maps of synaptic
distribution and size, dendritic morphology, and circuit
organization, this next generation of imaging will supply
computational models with richer structural parameters. This,
in turn, will allow us to explore, for example, via the simulation
pipeline offered by the Open Brain Institute [OBI] (2025), how
variations in anatomy and physiology contribute to human-specific
information processing and the emergence of neurological and
neuropsychiatric diseases (Rich et al., 2022; Dura-Bernal et al.,
2024; Guet-McCreight et al., 2024), ultimately shedding light on
“what makes us human.”
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