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Introduction

Brain-computer interface (BCI) systems have garnered significant attention in clinical

and research settings since the late 20th century. Using brain signals, BCI systems allow

users to interact with machines without the need to move their limbs, making them

particularly suitable for rehabilitating patients with severe neuromuscular impairments

(Daly and Wolpaw, 2008; Triponyuwasin and Wongsawat, 2014; Muñoz et al., 2014). In

particular, BCI systems based on electroencephalogram (EEG) signals are the most widely

used, due to their low cost, noninvasive nature, and readily available hardware for both

commercial and medical applications (Han-Jeong Hwang and Im, 2013). In the realm of

post-stroke rehabilitation, Motor Imagery (MI)-based BCI systems have been a primary

focus for over a decade (Cervera et al., 2017). These systems decode and classify neuronal

signals associated with the process of imagining a movement, without any actual physical

execution, to operate output devices or generate feedback in various forms, such as visual

and auditory cues. Through training and neural plasticity, patients can link feedback to

specific movements, thereby reinforcing their neuromuscular connections and gradually

regaining control over their partially paralyzed limbs.

Rapid advances in neuroscience and computer science have significantly improved

methodologies and environments forMI-BCI experimentation and clinical trials. Feedback

mechanisms have progressed from merely displaying visual prompts (Triponyuwasin and

Wongsawat, 2014) on computer screens to creating immersive virtual environments that

can be experienced through virtual reality (VR) headsets (Vourvopoulos et al., 2016; Lupu

et al., 2018). Additionally, other forms of feedback, such as electrical stimulation (Lupu

et al., 2018) and vibrotactile feedback (Vourvopoulos et al., 2016), have been explored,

producing meaningful results. In terms of MI task classification, the primary approach has

involved using spatial filters such as Common Spatial Pattern (CSP) for feature extraction,

combined with effectivemachine learning algorithms such as Linear Discriminant Analysis

(LDA) or Support Vector Classifier (SVC) to identify the correct MI class for the current

session (Ortner et al., 2012; Muñoz et al., 2014). Recently, researchers have turned to deep

learning to address classification challenges in EEG data (Hossain et al., 2023), with notable
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state-of-the-art models including EEGNet (Lawhern et al., 2018),

EEGTCNet (Ingolfsson et al., 2020), ATCNet (Li et al., 2024), and

EEG-DBNet (Lou et al., 2024). Additionally, transformer-based

architectures, such as SMT (Luo et al., 2023) and ITNet (Niu et al.,

2024), have demonstrated promising capabilities in EEG analysis.

The models mentioned above have achieved commendable

offline testing results on publicly available standardized datasets

used for BCI competitions. The data sets used most extensively in

this category include the BCI Competition IV-2a dataset (Brunner

et al., 2024a), the BCI Competition IV-2b dataset (Brunner et al.,

2024b), and BCI Competition III (Blankertz et al., 2006). However,

these datasets, along with most other published ones, such as

Kaya et al. (2018), the PhysioNet dataset (Schalk et al., 2004) and

the High-Gamma Dataset (Schirrmeister and Ball, 2017) focused

on MI-EEG, consist solely of recordings from healthy volunteer

subjects, rather than actual patients suffering from post-stroke

motor complications. Furthermore, these existing databases have

limitations, such as short recording durations and low sample

sizes. Recently, in 2024, a new dataset featuring 50 stroke patients

was released by Liu and Han (2024). However, all of these

examples were recorded using generally accepted medical-grade

equipment, characterized by high sampling frequency, improved

resolution, and signal stability. To create more accessible systems

on a commercial scale, it is essential to use data recorded with

commercially available devices to train machine learning models,

thereby improving performance in clinical trials.

In this study, we introduce the UET175 database, which

features a comprehensive collection of electroencephalogram

(EEG) signals collected from 30 post-stroke patients at Hospital

175 in Ho Chi Minh City, Vietnam (Hospital 175), during the

time-frame from October 2024 to January 2025. Our primary goal

is to develop a standardized protocol for EEG data acquisition

that guarantees both consistency and reliability in various

research applications.

This database specifically emphasizes brain signal data related

to motor imagery tasks, which are essential for advancing the

development of a VR-BCI system designed to improve stroke

rehabilitation outcomes. Furthermore, the data will contribute to

the progress of other BCI systems based on motor imagery.

By making this database publicly accessible, we aim to foster

research collaboration and provide invaluable resources for the

scientific community interested in investigating brain signal data

for both clinical and technological applications. The database

can be accessed via the following https://github.com/nmk-k66-uet/

UET175.git.

Method

The data acquisition experiment described in this study was

approved by the Institutional Review Board for Human Research

at the Dinh Tien Hoang Institute of Medicine, operating under

the codes IRB-VN02010 from the Vietnam Ministry of Health,

and IRB00010830 and IORG0009080 from the U.S. Department

of Health and Human Services. This study received the operating

code IRB-2206 and was conducted according to the guidelines

established by the Dinh Tien Hoang Institute of Medicine. Written

informed consent was obtained from all participants, including

stroke patients or their legal representatives, to allow experiments

and the publication of their data. The methods outlined here

complement a detailed description of the results derived from

this dataset.

To recruit participants for the study, a notice inviting

voluntary participation was widely disseminated. After clearly

explaining the purpose of data acquisition and obtaining informed

consent, the research participants (referred to as subjects) signed

a commitment to participate with the principal investigator.

For post-stroke patients who volunteered, neurologists from

the Clinical Neurophysiology Unit of Hospital 175 conducted

assessments to select individuals for data acquisition using NIHSS

scale. Participants were then chosen based on specific inclusion

and exclusion criteria. The inclusion criteria required patients with

mild to moderate stroke (either ischemic or hemorrhagic) and an

NIHSS score of 15 or less, who could participate after the acute

phase. To ensure a smooth recording session, patients needed

to retain the ability to comprehend spoken, written, or visual

instructions and have a stable neurological condition. Conversely,

the exclusion criteria eliminated individuals with motor function

impairments not related to stroke, as well as those with severe visual

or hearing deficits. Patients with hemispatial neglect, a history

of epilepsy or uncontrolled seizures, severe conditions affecting

the lungs, kidneys, liver, or heart, significant circulatory disorders

in the limbs, an inability to sit independently for 60 min, or

cognitive impairments that limited their ability to understand and

follow medical instructions were also excluded. To further assist

in analyzing the patients’ conditions, prior to starting the trial,

the patients will be additionally evaluated for motor function and

their ability to perform daily activities based on the Oxford (in this

case, the doctors performed an evaluation of muscle strength in the

hand) and Modified Rankin (mRS) Scale.

In this study, the data recording process involved 30

volunteered post-stroke patients. Participants were identified solely

by their aliases, starting from “ID01” to “ID30.” The data was

recorded in a specialized medical environment designed for EEG

signal recording at Hospital 175. Technicians met with each patient

every 3–7 days to conduct recordings based on their health status

and convenience, with each session lasting ∼14–18 min, excluding

the setup time for the EEG recording device.

We recorded EEG data using an Emotiv EPOC Flex device,

which utilizes EPOC+ technology. This system features a controller

with a 128 Hz sampling rate and connects to a computer via

Bluetooth or wireless USB. To enhance participant comfort,

we employed a saline sensor version with 34 wired sensors,

adhering to the international 10–20 standard for flexible sensor

placement. Certain electrode positions, particularly those near

the motor cortex, demonstrated clearer MI features. A research

by Altaheri et al. (2023) indicates that reducing the number of

EEG channels can maintain prediction accuracy while simplifying

setup, expediting data processing, and conserving memory. We

selected 22 channels near the motor cortex from the available

32, along with two reference electrodes. This configuration

resembles the electrode montage used in the BCI Competition

IV-2a dataset (Brunner et al., 2024a) (Figure 1A). The EEG data

is transmitted using the Lab Streaming Layer (LSL) protocol,

allowing for synchronized data acquisition. Key configuration

settings include: Data stream—EEG, Sampling frequency—128 Hz,
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FIGURE 1

Overview of data acquiring process. (A) The process of recording EEG signals using the desktop application; (B) the recording scenario; (C) the

dataset structure, data is organized by patient (blue) and then by session (orange), each session contains multiple runs (purple).

Data format—Double, and Transmit type—Sample. Before data

transmission, the Emotiv device incorporates a 5th-order Sinc filter

along with a bandpass filter ranging from 0.2 to 45Hz to effectively

minimize noise and artifacts while preserving the integrity of

brainwave signals.

Recording application

EEG data were acquired using a BCI desktop application

(Figure 1A) running on an Acer Aspire A315-57G laptop.

Developed by our research group, this software enables automatic

recording and synchronization between the recording scenarios

and EEG signals. Users can connect to the EEG device and input

information about the volunteer subject and session, which is then

stored in our database. The recording function allows users to set

up scenarios by selecting predefined options or creating custom

actions with specified durations. Additionally, the module can

automatically generate a video with visual and auditory cues for

the subject, which can be played independently as a preview or

simultaneously with the EEG recording.

Moreover, the application includes a visualization tool designed

for analyzing EEG signals recorded during sessions, particularly

in the time domain. Developed in collaboration with the

aforementioned neurologists, it offers features such as adding time

markers, adjusting signal speed, and selecting frequency bands

for detailed analysis. Users can access data files from previous

sessions and display EEG data within the app, allowing for real-

time adjustments of display parameters, including window size,

signal spacing, frequency bands, channels, and filtering options

(Wavelet denoising or Bandpass filter). Users can also manually

label channels based on timestamps of interest and save these

annotations to the database. Considering that response times vary

from one subject to another and from one instance to another, we

assess whether a trial qualifies as a MI task based on the Event-

Related Desynchronization percentage (ERD%—The proportion of

power reduction in the EEG signal when compared to a baseline

period) (Pfurtscheller and Lopes da Silva, 1999). For each trials,

we identify a 1-second signal segment where the ERD% reaches at

least a threshold of T% compared to the resting phase and store this

information in a timestamp file. This segment is extracted from the

final 0.5 s of each cue until the end of the MI task. Trials without

at least one suitable signal segment are considered too noisy and

will be rejected. From our experiment on data gathered at Hospital

175 and in our laboratory, setting the threshold T to 30% filters out

most of the data collected outside the hospital environment, which

is considered significantly noisier, while allowing themajority of the

remaining dataset to be retained.
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After each recording session, four files are generated: Raw

Signals File, Session Setup File, Action Label File, and Event

Timestamp File.

Recording scenario

Figure 1B illustrates the scenario used for data acquisition. In

step 1, at the start of an action, the recording app plays a notification

sound, prompting the patient to relax and loosen their body for

2 s. In step 2, the system displays a prompt image along with a

notification sound corresponding to one of four MI tasks: lifting

the right arm, lifting the left arm, lifting the right leg, or lifting

the left leg, which lasts for 2 s. In step 3, the patient imagines the

corresponding movement suggested by the prompt for 4 s. This

process repeats 12 times (three times for each task mentioned in

step 2) in each run, followed by a 20-s resting period between runs.

Data directory structure

The dataset was organized using a hierarchical Unix-style

filetree structure (Figure 1C). The main directory, labeled “Data”,

contains 30 subdirectories, each of which named with a patient’s ID.

Within each patient directory, there is an Patient’s info (.json) file

as well as one or more subdirectories named based on the session

number and date of the individual recording sessions. The patient’s

info file contains some detailed information about an individual

patient, including a unique ID assigned to the patient; the patient’s

year of birth and gender; a list of medical conditions, diagnoses

from the Hospital 175 database; various medical assessments, such

as NIHSS, Muscle Strength measured in hand, mRS score; and the

number of EEG recording sessions. Finally, each session directory

includes one or more runs, each of which consists of a Raw signal

(.csv) file, a Session setup (.json) file, an Action label (.txt) file, and

an Event timestamp (.txt) file. All four files are named based on the

run number to identify each run.

Raw signal file
- Format: CSV

- File name: run number_Raw Signals

- Content: contains signals from electrodes, with each column

representing one electrode’s data throughout the recording.

Electrode order matches the EmotivPro app settings.

Session setup file
- Format: JSON

FIGURE 2

Metrics describing the UET175 dataset. (A) histogram showing distribution of patient age; (B) pie chart showing percentage of each genders; (C) pie

chart showing distribution of infarct occurrence by hemisphere; (D) histogram showing distribution of NIHSS score; (E) histogram showing

distribution of muscle strength measured in hand; (F) showing distribution of mRS score; (G) pie chart showing percentage of accepted trials after

preprocesing; (H) bar chart showing classes distribution in the dataset; (I) histogram showing distribution of patient’s response time measured from

final 0.5 s of cue.
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- File name: run number_Session setup

- Content: duration of each neurological task, the session includes

a calibration block and repetition count of the scenario.

Action label file
- Format: TXT

- File name: run number_Action label

- Content: sequence of numbers representing actions in the

scenario, ordered based on the JSON setup file.

Event timestamp file
- Format: TXT

- File name: run number_Event timestamp

- Content: list of MI task timestamps, adjusted for patient

response time based on ERD and excluding any noisy trials that

were rejected.

Result

The completed dataset includes 220 sessions from 30 subjects.

Each of these sessions contains at least one recording run as

describe in the Data Directory Structure. Metrics describing

the dataset are summarized in Figure 2. The stroke patients

were between 43 to 78 years of age, with gender distribution

of 40% female and 60% male (average 63.85, SD 12.85;

Figures 2A, B). An initial analysis of the physician reports

reveals a wide range of medications and medical conditions.

All patients experienced an infarct, with the majority (62.1%)

affecting the right hemisphere. However, only one patient

exhibited an infarct that extended across both hemispheres

(Figure 2C). The most common listed medical condition is

damage to the corona radiata after stroke (26.7% of the

medical reports included the text string “corona radiata”).

Beside that, two of the most common underlying diseases

among 30 patients are hypertension (80%) and diabetes mellitus

type 2 (33.3%).

All patients had NIHSS scores ranging from 1 to 8, with

the highest count of seven patients at a score of 4 (Figure 2D).

Figure 2E reveals a strong skew toward a score of 4, suggesting

that the majority of patients exhibit relatively high muscle strength

in the Oxford scale, with very few having lower scores. However,

despite the high Oxford score, the mRS scale indicates that most

patients need assistance with daily tasks, with 11 patients at a

moderate disability level and 5 at amoderately severe disability level

(Figure 2F).

The average number of sessions per patient was 1.43, although

as many as three sessions were recorded for a single patient

over a 3-day period. Out of 220 sessions and 2,640 trials, only

97 trials (3.7%; Figure 2G) were rejected due to noisy signals

and the lack of a significant ERD. This suggests that, despite

using a commercial-grade EEG device, recording in a medical

environment significantly enhances the quality of the recorded EEG

signals. The accepted trials show similar distributions across all

four classes (average 635.75 trials per class, SD 6.39; Figure 2H).

Details analysis show that majority of the patient’s responses to a

MI task occurred within the last 0.5 s of cue, with a sharp decline

thereafter (Figure 2I).

The UET175 dataset has been released and is freely available

online at https://github.com/nmk-k66-uet/UET175.git. The

uncompressed dataset comprise 434 MB, with a median Raw signal

filesize of∼2 MB.

Discussion

The UET175 dataset is novel because it addresses a significant

gap in existing research: there has not been a dedicated database

that focuses on EEG signals related to MI tasks in Vietnamese

stroke patients and the use of more affordable, commercial-grade

EEG devices. This lack data has hindered efforts to research

and develop effective BCI systems tailored for this population.

UET175 not only offers a valuable resource of EEG data, but

also creates new avenues for interdisciplinary research. This

can improve our understanding of the brain’s mechanisms in

MI-related contexts among stroke patients, ultimately fostering

advances in rehabilitation and medical technology.

The data acquisition process for the UET175 dataset adheres

to stringent standards to uphold ethical principles and security

protocols. Before data collection begins, all patients are thoroughly

informed about the research objectives, the procedures involved,

and their rights, and they sign an informed consent agreement.

Data is collected in a secure environment and rigorously protected

to prevent any breaches of personal information. Additionally,

security measures such as encryption and restricted access are

implemented to ensure that all sensitive data is safeguarded

and used exclusively for legitimate research purposes. Thus,

UET175 not only serves as a valuable data source but also

demonstrates a commitment to protecting the rights and safety of

participating patients.

The UET175 dataset has been meticulously pre-processed to

support research in machine learning and deep learning. This

preprocessing involves noise removal, data normalization and

segmentation, all designed to enhance the quality and accuracy

of the information. The processed data can then be utilized to

develop BCI systems for medical applications, aiming to improve

rehabilitation outcomes for patients.
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