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Study on the anti-interference
characteristics of neuronal
networks: a comparative study of
chemical synapses and electrical
synapse
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Key Laboratory of Opto-Electronic Technology and Intelligent Control, Ministry of Education, Lanzhou

Jiaotong University, Lanzhou, Gansu, China

The synapses and network topology enhance neural synchronization and anti-

interference, enabling the bio-inspired brain model to mimic biological noise

resilience e�ectively. This study numerically simulates the e�ects of synapses

and network topology on the synchronous discharge and anti-interference of

neuronal networks. The Hodgkin–Huxley neuron model, the electrical synapses

(ES), the Hansel chemical synapse (HS), and the Rabinovich chemical synapse

(RS) were used to construct the neural networks with the ring structure and

the Newman–Watts (NW) small-world topology. The sine wave and the sine

wave with superimposed Gaussian white noise interference were selected as

the stimulation signals. The MATLAB and Simulink platforms were employed to

implement the numerical simulation. For the ring network with the sine wave

stimulation, the correlation coe�cients of one set of neuron pairs (neuron

1 and neuron 25) were 0.292 (ES), 0.236 (HS), and 0.168 (RS), respectively.

However, after superimposed interference, the correlation coe�cients become

0.099, 0.086, and 0.379, respectively. For the NW small-world topology with

sinusoidal stimulation, the correlation coe�cients of the same neuron pair

were 0.569 (ES), 0.563 (HS), and 0.969 (RS), respectively. The correlation

coe�cients after superposition interference become 0.569, 0.163, and 0.88,

respectively. The HS-coupled network exhibits severe signal latency (Ring

network: Latency >200ms, NW small-world network: Latency >150ms). While

RS-coupled network demonstrates dramatically reduced delays (<50ms) across

both topologies. The results suggest that the synchronization of the RS coupling

network is much better than that of both ES and HS coupling networks. Ring

networks coupled via HS demonstrate performancemetrics comparable to those

of ES-coupled ring networks, albeit with significant action potential propagation

delays observed in both configurations. TheNW small-world network can reduce

the delay of signal transmission in the network by increasing the number

of pathways. As network topological complexity increases, distal neurons

demonstrate reduced spike timing variability and enhanced firing synchrony,

collectively improving interference suppression e�cacy.
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1 Introduction

As an extremely sophisticated and perfect information system,

the brain is the command center of human life activities.

Neurons are the most basic structural and functional units of

the nervous system, and synapses are the key structures that

support information transmission between neurons, playing a

major role in the realization of brain function (Pereda, 2014; Magee

and Grienberger, 2020). The nervous system needs to complete

the transmission, integration, and coordination of bioelectrical

signals and process a large amount of information. There is

noise interference in the process of processing information in

the nervous system. The known interference sources include

the internal environmental noise generated by the ion exchange

process and the external input noise. The interference will change

the neuron discharge (Stevens and Zador, 1998; Destexhe and

Rudolph-Lilith, 2012; Lindner, 2004; Faisal et al., 2008). However,

the nervous system can complete the information processing work

quite accurately in the presence of interference, which depends

on the anti-interference ability of the nervous system. Therefore,

the anti-interference mechanism and ability of the nervous system

are the basis for the normal operation of the nervous system.

A large number of studies have shown that some mechanisms

and characteristics of synapses and network topologies have the

ability to affect the synchronous discharge and anti-interference

of neuronal networks. Beggs and Plenz (2003) revealed that the

brain can dynamically balance information processing needs and

network stability through critical states. O’Byrne and Jerbi (2022)

studied the correlation between the critical state and the neural

model and found that the feedforward network model under the

critical state is superior to the traditional model in noise robustness

and task adaptability, especially in dealing with time-dependent

tasks. Das and Levina (2019) proposed that the neural network of

a healthy brain maintains a critical state through a self-organizing

mechanism. Studies in the field of neuroscience have shown that

the brain can achieve perfect synchronous discharge and anti-

interference functions by self-adjusting segments to reach a critical

state. Exploring the anti-interference characteristics of the nervous

system from the perspective its composition is a major direction in

the study of neural networks.

Wang et al. (2011) and Wang et al. (2012) studied how

the information transmission of the nervous system is affected

by the phase synchronization between neurons and the neural

coding in a variety of neural oscillator population networks. Wang

(2010) studied the effect of neuronal synchronization on neural

signal transmission. The results show that the higher the neuronal

synchronization, the stronger the consistency of the transmitted

signal. Liu et al. (2024) constructed a new memristive device,

and the synaptic plasticity mechanism was successfully realized.

The study found that the device applied to the neural network

can improve network performance. This study can confirm the

influence of the synaptic plasticity mechanism on the anti-

interference of neural networks from the side. Guo et al. (2017)

studied the significance of the biological mechanism of synaptic

plasticity (STDP) in small-world spiking neural networks. Studies

have found that STDP has a regulatory effect on the transmission

of neural information in biological neural networks. Kleberg

et al. (2014) found that the plasticity of excitatory synapses and

inhibitory synapses can work together. The two synaptic plasticity

regulate the path selection of signal transmission in the neural

network through synergy and regulate the synchronization effect of

the spiking neural network. Liu et al. (2020) constructed a scale-free

peak neural network (sfSNN) with small-world characteristics and

explored the robustness mechanism of the neural network. Studies

have found that the adaptive regulation of synaptic plasticity is

an internal factor for network robustness. The research of Guo

et al. (2024) aims to explore the anti-interference ability of brain-

like models with biological attributes. A spiking neural network

(SWSNN) simulating biological attributes was constructed using

the Izhikevich neuron model and the synaptic plasticity model with

time delay. The research results prove that the dynamic regulatory

effect of synaptic plasticity makes the anti-interference effect of

SWSNN superior to that of the general spiking neural network

(SNN). Liu et al. (2021) constructed two Hopfield (HNN) neural

networks and studied the synchronization of neural networks

by numerical simulation. The results show that the network

can produce different synchronizations according to the different

synaptic coupling strengths. Liu et al. (2021) constructed two

spiking neural networks with different clustering coefficients to

study the anti-interference ability of the network. The experimental

results show that the spiking neural network with a high clustering

coefficient has a better anti-interference effect. Abhirup (Abhirup

and Samarjit, 2018) explored the influence of networks with

different structures on phase synchronization. The synchrony of

Hindmarsh-Rose (HR) neurons under random, regular, small-

world, scale-free, and modular network topologies was analyzed.

The research finds that the network with a mixed pattern

of high clustering coefficient and neutrality degree promotes

better synchronization.

Most of the above-mentioned related studies use simplified

neuron models such as Integrate-and-Fire (IF) and Hindmarsh-

Rose (HR). The disadvantage of these simplified models is that

they cannot well reflect the biological properties of neurons.

For example, the IF neuron model mimics the threshold

behavior of membrane potential but neglects subcellular-level ionic

interactions, which fails to capture the impact of ion channel

stochasticity on action potential waveforms. At the same time,

there are few neurons used in the construction of the network (for

example, the network composed of 51 neurons was constructed in

Reference 15, while only several neurons were studied in Reference

12), which cannot reflect the complexity of the network. The HH

model, on the contrary, by explicitly modeling voltage-gated ion

channel dynamics, enables the direct investigation of interactions

between internal neuronal states and external perturbations.

This study integrates biological Hodgkin–Huxley (HH)

neuronal dynamics and chemical synaptic mechanisms to

construct a Newman–Watts (NW) small-world network by

scaling the system to 100 HH-model neurons, a relatively larger

network compared to the typical prior simulations. The framework

preserves biophysical fidelity while capturing network-level

complexity. This combination of molecular-level ion channel

dynamics, synaptic interactions, and structured connectivity

bridges a critical gap in modeling neural robustness, which

enables the reveal of how synaptic plasticity and network
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structure synergistically enhance anti-interference capabilities,

demonstrating superior noise resilience compared to conventional

spiking neural networks. This framework bridges molecular-level

dynamics with macroscale network behavior, offering novel

insights into how biological neural systems maintain functional

accuracy under environmental and intrinsic noise.

2 Method

2.1 HH neuron model

In the 1950s, the HHmodel was proposed by AlanHodgkin and

Andrew Huxley (Hodgkin, 1952; Hodgkin and Huxley, 1952a,b,c).

The original HH model was based on the data of the nerve

stimulation potential in squid and then became a model prototype

of nerve cells in many different physiological structures. The HH

model proposed the concept of ’ion channel’ for the first time. The

’ion channel’ is used to explain the membrane potential change and

the unidirectional conduction process of the neuron cells, which

makes the HH model simulate the real characteristics of biological

neurons to a certain extent. The HH model is a mathematical

model. The model describes the membrane potential activity of

neuronal cells through four first-order differential equations:



























dm
dt

= am(1−m)− bmm
dh
dt

= ah(1− h)− bhh
dn
dt

= an(1− n)− bnn

C dV
dt

= GNam
3h(ENa − V)

+GKn
4(EK − V)+ GL(EL − V)+ I

(1)

In the above formula, V is the membrane potential of neuronal

cells, and the initial value is the resting potential, that is, −65mV.

GNa is the maximum conductance of the sodium ion channel,

with a value of 120 mS/cm2; GK is the maximum conductance

of the potassium ion channel, with a value of 360mS /cm2; GL

is the leakage conductance, with a value of 0.3 mS/cm2. ENa, EK,

and EL are the reversal electromotive forces of the sodium ion

channel, potassium ion channel, and leakage current, and their

values are 50mV, −77mV, and −54.5mV, respectively. I is the

external stimulation current. C is the membrane capacitance of

neurons, and its value is 1 mS/cm2. m is the parameter of the

activation process of the sodium channel, h is the parameter of the

inactivation process of the sodium channel, and n is the parameter

of the activation process of the potassium channel. α and β are

rate constants, and their changes are only related to the change

of membrane potential and have nothing to do with time. The

formulas of αm, βm, αh, βh, αn, and βn are as follows (Bazsó et al.,

2003):







αm =
0.1 (V+ 40)

1− exp
(

−
(V+40)
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) βm = 4 exp

(

−
(V+ 65)
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)

(2)







αh = 0.07 exp

(

−
(V+ 65)

20

)

βh =
1

1− exp
(

−
(V+35)

10

)

+ 1
(3)







αn =
0.01 (V+ 55)

1− exp
(

−
(V+55)

10

) βh = 0.125 exp

(

−
(V+ 65)

80

)

(4)

2.2 Neurosynaptic model

A single neuron cannot complete the complex functions of

the nervous system of humans or other vertebrates. To realize the

complex functions of the biological nervous system, neurons need

to form a neural network. The key to connecting neurons into a

network is synapses. Synapses are the basis of complex functions,

including learning, movement, and memory in the biological

nervous system. It can be said that synapses play an important

role in the realization of brain function (Bacci and Huguenard,

2006). For example, Rossoni et al. (2005) used the effect of time

delay on the coupling of HH neurons. Experiments show that

time delay can cause synchronous oscillation of neurons under

certain conditions. In Yilmaz et al. (2013), the phenomenon of

stochastic resonance in neural networks was studied. The results

show that the network structure and synaptic connection act

together on the occurrence of resonance. Reference Yu et al.

(2017) studied the effect of adding mixed synapses and time

delays on network stochastic resonance in small-world networks.

The results show that the use of mixed synapses and time-lag

small-world network stochastic resonance has been significantly

enhanced. A considerable number of studies have shown that

synapses play an important role in the transmission and processing

of information in neural networks. The understanding of synaptic

mechanisms helps us to understand the mechanism of the nervous

system in depth (Kuramoto and Battogtokh, 2002; Xia and Qi-

Shao, 2005; Wang and Shi, 2010; Li and Cao, 2011; Ma et al.,

2017). Neurosynapses are divided into electrical synapses and

chemical synapses. Chemical synapses and electrical synapses

exist in the human nervous system. However, compared with

electrical synapses, chemical synapses are more complex in

structure, more powerful in performance, and ubiquitous in the

human nervous system. Reference L’Espérance and Labib (2013)

proposed and described a stochastic process synaptic model.

Experiments show that the model can complete the synaptic

transmission process. Reference Veletic et al. (2015) discussed

the possibility of applying communication theory to synaptic

research and designing synaptic models using communication

theory. In Alam and Hasan (2016), VLSI circuits were used

to simulate the effect of chemical synaptic transmission. It was

found that synaptic transmission is a key step in neural signal

processing. Reference Wang et al. (2016) used ML neurons to

study the synchronization conditions of neurons under chemical

synaptic conditions. Reference Yaghini Bonabi et al. (2014)

proposed a method for efficient implementation of biological

neural networks based on the HH model on field programmable

gate array (FPGA). In this study, we will use electrical synapses

and two chemical synapse models to study the anti-interference

characteristics of neural networks, and compare and analyze

the differences in anti-interference ability of different synaptic

coupling networks.
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FIGURE 1

The process by which chemical synapses couple two neurons.

2.2.1 Chemical synapse model
In 1992, Hansel and Sompolinsky (1992) proposed a simple

model to describe chemical synapses. Its expression is:

Isyn = GsynH(Vpre(t− τ )− Vthresh) (5)

Among them, Isyn is the postsynaptic current, and the unit

is µA/cm2. Gsyn is the synaptic coupling strength, and the unit

is mS/cm2. H is the Heaviside function. Vpre is the membrane

potential of presynaptic neurons in mV. Vthresh is the synaptic

threshold in mV. τ is the time delay of the signal between neurons,

and the unit is mS.

In 1997, Rabinovich et al. studied the problem of neurons

connecting through inhibitory synapses in the central nervous

system of animals and proposed a chemical synaptic model with

time-lag based on the mechanism of synaptic delay and neuronal

excitation and inhibition (Rabinovich et al., 1997). Its mathematical

expression is:

Isyn = Gsyn

(

V− Vsyn

)

H
(

Vpre (t− τ) − Vthresh

)

(6)

In the formula, Isyn is the postsynaptic current, and the unit

is µA/cm2. Gsyn is the synaptic coupling strength, and the unit

is mS/cm2. Esyn is a synaptic reversible potential in mV. H is

a Heaviside function, which represents the instantaneous change

of current or voltage in the circuit. The Vthresh is the synaptic

threshold associated with the Heaviside function. τ is the time

delay of synaptic transmission signal. From the perspective of

the formula, the Rabinovich chemical synaptic model has more

biological properties based on the synaptic delay and the excitatory

inhibition mechanism of neurons. Compared with the Hansel

chemical synapse model, the Rabinovich chemical synapse model

provides a postsynaptic neuron feedback mechanism. That is,

the real synaptic current intensity is not only determined by

the presynaptic current
(

Vpre (t − τ) − Vthresh

)

but also by the

difference between the postsynaptic membrane potential and the

synaptic reversible potential
(

V − Esyn
)

. Adding this difference

to the synaptic equation can suppress the abnormal fluctuation

of postsynaptic potential caused by noise and can enhance the

weak signal while suppressing the strong noise. Therefore, the

anti-interference effect of the more complex Rabinovich chemical

synaptic model should be better.

Synaptic coupling connects two or more neurons together

to complete the conduction of action, resting potential, and

stimulation between neurons. The input of chemical synaptic

coupling is the state of a presynaptic neuron, and the output is the

stimulation signal to a postsynaptic neuron, that is synaptic current.

The process by which the chemical synapses couple two neurons is

shown in Figure 1.

Neuron 1 is a presynaptic neuron. After external stimulation,

the potential inside and outside the membrane changes to produce

a membrane potential V1, which is the input of the synapse,

that is, the state of the presynaptic neuron. After the conduction

of the membrane potential V1 through chemical synapses,

synapses produce synaptic current (Isyn), which is transmitted to

postsynaptic neurons as the input to neuron 2. The postsynaptic

neuron-neuron 2 will feed back to the synapse after the membrane

potential (V2) is generated and the transmission of the stimulation

signal between the neurons is completed. Studies have shown that

chemical synaptic coupling is unidirectional coupling, that is, its

conduction is asymmetric, and the structure is also asymmetric.

Therefore, two neurons coupled by a chemical synapse can only

transmit stimulus signals in the direction of postsynaptic neurons.

2.2.2 Electrical synapse model
Compared with chemical synapses, the electrical synapse model

is simpler, and the mathematical description of the model is as

follows (Wang et al., 2007):

Iele = gele
(

Vpre − Vpost

)

(7)

The gele is the coupling strength in mS/cm2. Vpre and

Vpost represent presynaptic and postsynaptic neuronal membrane

potentials, respectively, i mS/cm2. The electrical contact is

bidirectional coupling, and the signal can be transmitted in both

directions. The model of coupling two neurons is shown in

Figure 2.

2.3 Neural network model

Because of the asymmetric structure and conduction of

chemical synapses, the neural network model can be decomposed

into a simple model of one-way transmission of stimulus signals

by multiple double neurons. The mathematical expression of the

coupling of two HH neurons through the chemical synapse model

with time delay is as follows:

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1581347
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li and Lu 10.3389/fnins.2025.1581347

FIGURE 2

The process by which electrical synapses couple two neurons.

C(dV1)/dt = GNam
3
1h1(ENa − V1)+ GKn

4
1(EK − V1)+ (8)

GL(EL − V1)+ Iext

C(dV2)/dt = GNam
3
2h2(ENa − V2)+ GKn

4
2(EK − V2)+ (9)

GL(EL − V2)+ Isyn

Isyn = Gsyn

(

V− Vsyn

)

H
(

Vpre (t− τ) − Vthresh

)

(10)

The main difference between this group of formulas and

the membrane potential formula of the HH neuron model

formula above is that the stimulation current is applied to the

presynaptic neuron, and the postsynaptic current is increased to the

postsynaptic neuron—Formula (10).

The Iext in (8) is the stimulation current applied to the

presynaptic neuron. In the neuronal network, only the first

neuron is externally stimulated, and the remaining neurons are

stimulated by the stimulation signal generated by the first neuron.

In Equation 9, Isyn is added after the basic equation of the

membrane potential of HH neurons. Isyn is the postsynaptic

current. According to the previous value of Isyn, it will be affected by

the membrane potential of postsynaptic neurons, and the direction

of the current is the direction of the next neuron.

The above formulas (8), (9), and (10) are the mathematical

models of two HH neurons before and after chemical synaptic

coupling, and the ion channel parameters such as m, h, and n in

the formula are consistent with the previous description of a single

HH neuron model. In this study, the initial value of V is−65mV,

and the initial values of m, h, and n are 0.05293, 0.5961, and 0.3177,

respectively. These three initial values can be calculated by the rate

function of m, h, and n. The specific values of other parameters in

the model are shown in Table 1.

The initial conditions of the model simulation are shown in

Table 2.

When the electrical synapse is coupled to the neuron, the

stimulation signal can be transmitted in two directions, as reflected

TABLE 1 Numerical simulation model parameters of the neural network.

Variable name Symbol Value unit

Membrane capacitance C/Cm2 1 µF/cm2

The maximum conductance of

sodium ion channel

GNa 120 mS/cm2

The maximum conductance of

potassium ion channel

GK 360 mS/cm2

leakage conductance GL 0.3 mS/cm2

Sodium ion channel reversal

electromotive force

ENa 50 mV

Potassium ion channel reversal

electromotive force

EK −77 mV

Leakage current reversal

electromotive force

EL −54.5 mV

Reversible synaptic potential Esyn −70 mV–−52 mV

Postsynaptic membrane

potential

Vsyn 0 mV

synaptic threshold −52 mV

in the formulas for coupling two HH models, similar to Formulas

(8), (9), and (10): the current after the electrical synapse is added

after Formula (8).

A single neuron cannot complete the complex functions of the

nervous system. To achieve complex functions, it must rely on a

neural network. The last neuron is connected to the first neuron

through synapses, and other neurons are connected in turn through

synapses. Each neuron only receives the stimulation of the previous

neuron, which constitutes a ring network. The synaptic coupled

ring network model is shown in Figure 3. It consists of three parts:

the HH neuron module, the Chemical Synapse Model module, and

the TS module (encapsulating neurons and synapses).

The brain is a complex system composed of multiple functional

regions, and it features a large number of complex network

topologies in this complex system. The ring network topology is not

enough to describe the complexity of the neural system structure, so

this study continues to study the effects of synapses and structures
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TABLE 2 The initial conditions of model simulation.

Condition Values and units

Simulation time of two synaptic coupled neurons 100 mS

Square wave amplitude 10 µA/cm2

Square wave frequency 0.05 Hz

100 neural network simulation time 300 mS

Sine wave amplitude 60 µA/cm2

sinusoidal undulation frequency 50 Hz

Sine wave offset 30 mS

Gaussian white noise mean 0

Gaussian white noise standard deviation 20

on the discharge of complex topological networks on the basis of

the ring network.

The small-world network has a shorter average path length

and a higher clustering coefficient network. The NW small-world

network increases the link between any two nodes of the ring

network with the probability of p. When P=0, it is a ring network,

and when p=1, it is a global coupling network. The first neuron

receiving external stimulation is used as the central node, and it is

connected with 24 other neurons that are not directly connected

by synapses to form a complex network topology. The NW small-

world network is constructed, and its topology is shown in Figure 4.

In Simulink modeling, the same specific encapsulation module

as the ring network topology is used to build the topology.

The difference is that more synaptic modules are used to build

the topology.

This study employs Simulink, the block diagram environment

within MATLAB mathematical software, for modeling and

simulation. Simulink is a visual numerical simulation calculation

tool of MATLAB. The MATLAB code and the model can be

combined to realize the numerical simulation of the dynamic

system. The model library is divided into a standard library and

a professional library. The standard library is the necessary model

library in modeling and simulation, and the professional library

is developed on the standard model library to meet the needs

of a certain field. This study uses a standard model library to

build models.

The HH neuron model and synaptic model were built and

packaged. The neuron model and synaptic model are encapsulated

into a modular single system, which is not only convenient for the

construction of neural networks and the replacement and change of

different synaptic structures and parameters but also convenient for

intuitive response to the relationship between neurons, synapses,

and other unit modules in the model.

In Figures 1, 2, the process of chemical and electrical synapses

coupling two neurons is constructed to verify whether the action

and resting potential of the model are consistent with the potential

conduction process of real neurons. The Simulink modeling of

synaptic coupling of two neurons in Figures 1, 2 is shown in

Figures 5, 6. The ’stimulation’ is the external current signal, and

neuron 1 is the neuron that receives the external stimulation

and transmits the stimulation signal through the synapse. Neuron

2 only received synaptic transmission of stimulus information

without additional stimulation.

3 Simulation results

3.1 Action potential simulation in networks
using synaptic connection between two
neurons

HH neurons show a variety of characteristics when receiving

external stimulation signals, and the most prominent feature is

the characteristics of neuronal action potential firing. The action

potential is the electrical activity generated by neurons when

they are stimulated and transmit signals. It is an instantaneous

change in the internal and external potentials of neurons, usually

manifested as rapid voltage changes. Action potential has three

most important characteristics: ’all or none’, non-superposition,

and non-attenuation conductivity.

A square wave with an amplitude of 10µA/cm2 and a frequency

of 0.05Hz is used as the input signal, and the formula is Iext(t) =
{

10
(

20k < t < 20k+ 10
)

0
(

20k+ 10 < t < 20(k+ 1)
) , the simulation time is 100mS.

The oscilloscope module is added to the model in Simulink to

display the simulation results of the two neurons. The numerical

simulation results of the action potential of two neurons connected

by a chemical synapse are shown in Figure 7.

Under the same stimulation signal, the numerical simulation

results of the action potential of two neurons connected by two

electrical synapses are shown in Figure 8.

The top waveform in Figures 7, 8 is the waveform of square

wave stimulation information, the middle waveform is the action

potential waveform generated by the neurons directly receiving the

stimulation information, and the bottomwaveform is the waveform

generated by the postsynaptic neurons. It can be seen that the

two neurons connected by the two synapses produced complete

action potentials.

3.2 Stimulation signal and interference
signal

The simulation results of the synaptic connection of two

neurons show that the method is feasible and can be used for

subsequent research. The sine wave Iext =60 sin(0.1πt)+30 with

amplitude of 60µA/cm2, frequency of 50Hz, and offset of 30mS

was selected as the stimulus signal input. A Gaussian white noise

with a mean value of 0 and a standard deviation of 25 is selected as

the interference signal. Superimpose the input with the stimulation

signal to explore the anti-interference ability of the network. The

stimulation signal, the interference signal, and the stimulation

signal after the superposition of the interference are shown in

Figure 9.

The top of Figure 9 is the waveform of sine wave stimulation

signal Iext =60sin(0.1πt)+30; the waveform of Gaussian white

noise interference signal with an intermediate mean of 0 and a
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FIGURE 3

A simple ring network structure composed of 100 neurons.

standard deviation of 20; the bottom is the stimulation signal

superimposed with the interference signal.

3.3 Firing patterns in networks using
hansel’s chemically synaptic coupling
model

Studies have shown that neurons are not fighting alone but

rather through the synchronous discharge of neuronal clusters, that

is, neural oscillations to achieve specific functions. Synchronized

firing of neurons is an important feature of real biological neuronal

networks, which is closely related to the functional realization of

the nervous system. In the nervous system of vertebrates, especially

humans, synchronous discharge is an important factor in the

function of advanced functions such as memory and emotion. At

the same time, the synchronous discharge of the neuronal network

is also the key to the operation of anti-interference function of the

biological nervous system.

Using Hansel chemical synapses and 100 neurons, a network of

100 neurons is constructed in Simulink according to the topology

of Figures 3, 4. The input stimulus signal is selected as the sine

wave in Figure 9 and the sine wave superimposed with Gaussian

white noise interference. The simulation time is set to 300mS, the

synaptic coupling strength is set to 0.1 mS/cm2, and the synaptic

threshold is set to−52mV. The first neuron in the network is set to

receive the stimulation signal applied by the outside world or the

stimulation signal after superimposed interference. Figures 10a–f is

the discharge waveform of neurons 1, 2, 4, 5, 25, and 100 in the ring

network after the input of the sine wave stimulation signal. It can

be seen that the neurons in the ring network generate stable action

potentials. It shows the action potential firing process and ’all or no’

characteristics of depolarization, antipolarization, repolarization,

and hyperpolarization. Figures 10g–l is the discharge waveform of

neurons 1, 2, 4, 5, 25, and 100 after the sinusoidal input signal

superimposed with Gaussian white noise interference input ring

network. It can be seen that the firing of the first neuron action

potential in the ring network after the sinusoidal input signal

superimposed with interference reflects obvious interference. The

specific performance is that an obvious subthreshold reaction is

produced, and the hyperpolarization process is strengthened. The

delay of subsequent neuron potential release in the network is lower

than that of synchronous discharge, but the anti-interference effect

is more obvious. It can be seen from Figures 10h, i that the second

neuron is only slightly disturbed after synaptic transmission, and

the fourth neuron is completely undisturbed. This result shows

that the interference signal can be effectively reduced after synaptic

transmission through the Hansel synaptic coupling network.

Figure 11 shows the action potential waveforms of neurons 1,

2, 4, 5, 25, and 100 in the network after the network topology

becomes a more complex NW small-world network. Figures 11a–f

is the input of the sine wave stimulation signal. Comparing the

waveforms of Figures 10a–f, 11a–f, it can be seen that when the
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FIGURE 4

Topology of the 100 neurons network.

FIGURE 5

Simulink Modeling of Chemical Synapses Coupling Two Neurons. (next: Neuronal signal output; In1: Front-end signal receiving signal port; In2:

Feedback signal receiving signal port; Out1: Postsynaptic current output port; scope: Display neuron action potential waveform).

network topology becomes an NW small-world, the delay of

subsequent neuron potential firing in the network is significantly

reduced, and the degree of synchronous discharge of the network

is significantly increased. Figures 11g–l, is the stimulus signal input

of sine wave superimposed with Gaussian white noise interference.

Comparing the waveforms of Figures 10g–l, 11g–l, it can be seen

that the interference degree of the first neuron action potential in

the network under the same external interference is almost the

same, but the waveforms of the subsequent neurons are slightly

different. First, the delay of subsequent neuron potential release

is reduced, and second, the synchronization degree of potential

release is improved. From Figures 11h–k, it can be seen that the

second neuron in the network has a slight subthreshold response,

and the fourth, fifth, and 25th neurons all produce the same

subthreshold response synchronously. This phenomenon does not

appear in the waveform of Figures 10h–k. This result shows that

using complex topology to increase the links between neurons

that are not directly connected in the network can improve the

synchronization degree of the neural network.

Under the condition that the above conditions remain

unchanged, to further quantify the experimental results, the effects

of different topologies and synapses on the synchronization and
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FIGURE 6

Simulink modeling of electrical synapse coupling two neurons. (Neuron-In1: Neuron receiving signal port; In1: Electrosynaptic receiving neuron1

signal port; In2: Electrosynaptic receiving neuron2 signal port; Neuron-V1,V2: Neuron output signal port; Out1: Electrical contact output signal port;

scope: Display neuron action potential waveform).

FIGURE 7

Action potentials of two neurons coupled by chemical synapses stimulated by a square wave signal. [(a) Square wave stimulation signal; (b) neuron 1

action potential waveform; c: Neuron 2 action potential waveform].

anti-interference effects of neuronal networks are compared. The

Pearson correlation coefficient method was used to calculate the

correlation between Neurons 1 and 25, neurons 5 and 45, neurons

15 and 30, and neurons 20 and 35 in ring network and NW

small-world network, and the degree of network synchronization

was quantitatively analyzed. The correlation coefficient is an index
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FIGURE 8

Action potentials of two neurons coupled to electrical synapses stimulated by a square wave signal. [(a) Square wave stimulation signal; (b) neuron 1

action potential waveform; (c) Neuron 2 action potential waveform].

to measure the linear correlation between two random variables,

which can make the data intuitive and easy to understand. Its

mathematical formula is as follows (Liu et al., 2021; Maulana et al.,

2023; Xu and Deng, 2018):

r =

n
∑

i=1
(xi − x̄)

(

yi − ȳ
)

√

n
∑

i=1
(xi − x̄)2•

n
∑

i=1

(

yi − ȳ
)2

(11)

In the formula, r is the degree of correlation between the firing

of two neuron action potentials. The closer the absolute value of r

is to 1, the greater the correlation is. On the contrary, the closer

to 0, the smaller the correlation is. xi and yi represent the ith

data corresponding to the two groups of samples that calculate the

correlation coefficient, and represent the mean value of each group

of samples, and n is the amount of data of the sample.

The simulation time is set to 300mS, and the correlation

coefficient of action potential numerical calculation is collected.

The calculation results are shown in Table 3.

The calculation results show that the synchronization of

neuron action potential in the network is greatly reduced after

the sinusoidal stimulation signal is superimposed with Gaussian

white noise interference, which indicates that the anti-interference

effect of Hansel chemical synaptic coupling network with a simple

mathematical formula is not good.

3.4 Firing patterns in networks using
rabinovich’s chemically synaptic coupling
model

The synapses of the coupled neuronal network were changed

from Hansel chemical synapses to Rabinovich chemical synapses.

According to the topological structure of Figures 3, 4, a network

of 100 neurons was constructed in Simulink. The input stimulus

signal is selected as the sine wave in Figure 9, and the sine

wave is superimposed with Gaussian white noise interference. The

simulation time is set to 300mS, the synaptic coupling strength

is set to 0.1 mS/cm2, and the synaptic threshold is set to−52mV.

The first neuron in the network is set to receive the stimulation

signal applied by the outside world or the stimulation signal after

superimposed interference. The effects of Rabinovich chemical

synapses on network synchronous discharge and anti-interference

ability were studied.

Figures 12a–f is the firing waveforms of neurons 1, 2, 4, 5, 25,

and 100 in the Rabinovich synaptic coupling ring network after

the input of the sinusoidal stimulation signal and the neurons

in the network generate stable action potentials. The action

potential firing process of depolarization, reverse polarization,

repolarization, and hyperpolarization is complete, reflecting the ’all

or no’ characteristics. Figures 12g–l is the discharge waveforms of

neurons 1, 2, 4, 5, 25, and 100 after the input of the Rabinovich

synaptic coupling ring network by the sine wave superposition of
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FIGURE 9

Input signal waveform. [(a) Sine wave stimulation signal; (b) Gaussian white noise interference signal; (c) Stimulus signal after superimposed

interference].

Gaussian white noise interference. The firing of the first neuron

potential in the network after the stimulation signal superposition

interference reflects obvious interference and produces an obvious

subthreshold response. There is a delay in the subsequent neuronal

potential firing in the network, and the degree of synchronous

discharge is low. However, the anti-interference effect is obvious.

From Figures 12b, c, it can be seen that after synaptic conduction,

two neurons are greatly reduced by interference, and only a

small amount of subthreshold reaction is produced, while the

fourth neuron is completely unaffected. This result shows that

the interference signal can be effectively reduced after synaptic

transmission through the Rabinovich synaptic coupling network.

By comparing Figures 10, 12, it can be found that the Rabinovich

synaptic coupling network has a lower potential firing delay than

the Hansel synaptic coupling network except for the first neuron.

Figure 13 shows the action potential waveforms of neurons

1, 2, 4, 5, 25, and 100 in the network after the network

topology becomes a more complex NW small-world network.

Figures 13a–f is the input of the sine wave stimulation signal.

Comparing the waveforms of Figures 12a–f, 13a–f, it is found

that when the network topology becomes an NW small-world, in

addition to the decrease of the delay of the subsequent neuron

potential release and the increase of the degree of synchronous

discharge, the neuron action potential in the network is more

regular. Figures 13g–l is the stimulation signal input of sine wave

superimposed with Gaussian white noise interference. Compared

with Figures 12g–l, 13g–l, the degree of interference to the action

potential of the first neuron in the network under the superimposed

interference is almost the same, but the waveforms of subsequent

neurons are different. First, the delay of subsequent neuron

potential release is reduced, and second, the synchronization

degree of action potential release is improved. It can be seen

from Figures 13h–k that there is a subliminal response in neuron

2 in the small-world network. Similar to the Hansel synaptic

coupled small-world network in Section 2.3, the 4th, 5th, and 25th

neurons all produce the same subliminal response as neuron 2.

This phenomenon does not appear in Figures 12h–k waveform.

This result corroborates the experimental results of the small-

world network in Section 2.3. Using complex topologies to

increase the links between non-directly connected neurons in

the network can improve the synchronization of the neural

network.

The simulation time is set to 300mS, and the correlation

coefficient of action potential numerical calculation is collected.

The calculation results are shown in Table 4.

The calculation results show that the NW small-world network

has a better effect on the synchronization degree of neurons

in the network, whether it is a sine wave stimulation signal or

a stimulation signal after the sine wave is superimposed with

Gaussian white noise interference. The calculation results of the

correlation coefficient and the potential release waveform are

mutually corroborated, which can well verify this conclusion.
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FIGURE 10 (Continued)

By comparing the correlation coefficient calculation results of

the two chemical synaptic coupled NW small-world networks,

it can be concluded that the synchronous discharge ability of

the Rabinovich synaptic model coupled small-world network is

stronger than that of the Hansel chemical synaptic coupled small-

world network.
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FIGURE 10 (Continued)

Waveforms of neuronal potentials in a ring network coupled by the Hansel synaptic model.[(a–f) Action potential waveforms of 1, 2, 4, 5, 25, and 100

neurons without interference were recorded; (g–l) The action potential waveforms of neurons 1, 2, 4, 5, 25, and 100 were interfered].

TABLE 3 Correlation coe�cient of Hansel’s chemical synaptic coupling network.

Condition r(1–25) r(15–30) r(20–35) r(5–45)

Ring network topology, sine wave stimulation 0.236 0.471 0.191 0.168

Ring network topology, sine wave superposition

interference

0.086 0.067 0.086 0.01

NW small-world network topology, sine wave 0.563 0.539 0.248 0.243

NW small-world network topology, sine wave

Superimposed interference

0.163 0.096 0.090 0.086

3.5 Firing patterns in networks using
electrical synaptic coupling model

In addition to a large number of chemical synapses, there are

also a certain number of electrical synapses in the human nervous

system. Studies have shown that electrical synaptic coupling also

plays a non-negligible regulatory role in the nervous system.

Therefore, the study of electrical contact is also very important.

The synapses of the coupled neural network are changed from

chemical synapses to electrical synapses. According to the topology

of Figures 3, 4, a network of 100 neurons is constructed in Simulink.

The input stimulus signal is selected as the sine wave in Figure 9

and the sine wave is superimposed with Gaussian white noise

interference. The simulation time is set to 300mS, and the synaptic

coupling strength is set to 0.1mS/cm2. The first neuron in the

network is set to receive the stimulation signal applied by the

outside world or the stimulation signal after the superposition

of interference, and the influence of electrical contact on the
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FIGURE 11 (Continued)

synchronous discharge and anti-interference ability of the network

is studied. Because the electrical synapse is two-way conduction

information, the discharge waveforms of neurons 1, 2, 4, 5, 25, and

50 in the network are selected for comparison.

Figures 14a–f shows the discharge waveforms of neurons 1,

2, 4, 5, 25, and 50 in the electrosynaptic coupling loop network

after the input of the sine wave stimulation signal. The neurons

in the network produce stable action potentials. The action
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FIGURE 11 (Continued)

The waveform of neuronal potential in NW small-world network coupled by the Hansel synaptic model. [(a–f) Action potential waveforms of 1, 2, 4,

5, 25, and 100 neurons without interference were recorded; (g–l) The action potential waveforms of neurons 1, 2, 4, 5, 25, and 100 were interfered]..

potential firing process of depolarization, reverse polarization,

repolarization, and hyperpolarization is complete, reflecting the

’all or none’ characteristics. However, except for the first neuron,

there is a delay in the firing of other neurons. Figures 14g–l

is the discharge waveforms of neurons 1, 2, 4, 5, 25, and 50

after the sinusoidal wave superimposed with Gaussian white

noise interference input into the electrical synaptic coupling ring

network. After the stimulation signal superimposed interference,

the firing of neuron 1 potential in the network produced an

obvious subthreshold response and interference. It can be seen

from Figures 14b, c that after synaptic transmission, two neurons

were greatly reduced by interference, and only a small amount

of subthreshold response was produced, while neuron 4 was

completely unaffected, and the anti-interference effect was obvious.

This result shows that the interference signal can be effectively

reduced after synaptic transmission in the electrical synaptic

coupling network.

Figure 15 shows the action potential waveforms of neurons

1, 2, 4, 5, 25, and 50 in the network after the network topology

becomes a more complex NW small-world network. Figures 15a–f

is the input of the sine wave stimulation signal. Comparing

the waveforms of Figure 14a–f, 15a–f, it is found that when the

network topology becomes an NW small-world, in addition to

the decrease of the delay of the subsequent neuron potential
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FIGURE 12 (Continued)

release and the increase of the degree of synchronous discharge,

the neuron action potential release in the network is also

more regular and the hyperpolarization process of neuron 1 is

weakened. Figures 15g–l is the stimulation signal input of sine

wave superimposed with Gaussian white noise interference.

Compared with Figures 14g,k, 15g,k waveforms, the first neuron
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FIGURE 12 (Continued)

Waveforms of neuronal potentials in a ring network coupled by the Rabinovich synaptic model. [(a–f) Action potential waveforms of 1, 2, 4, 5, 25, and

100 neurons without interference were recorded; (g–l) The action potential waveforms of neurons 1, 2, 4, 5, 25, and 100 were interfered].

action potential in Fig.15(g) network is relatively less disturbed

under the superimposed interference, but the interference of

neuron 25 is more serious than that in Figure 14k. When the

stimulus information with superimposed interference is input

into the ring network, the number of subsequent neuron action

potentials decreases, which is improved in the NW small-world

network. The overall comparison can be concluded that the delay

of subsequent neuron potential release in the small-world network

is reduced, and the synchronization degree of action potential

release is improved.

The simulation time is set to 300 mS, and the correlation

coefficient of action potential numerical calculation is collected.

The calculation results are shown in Table 5.

The results of the correlation coefficient calculation show

that the NW small-world network is better in the degree of

synchronization of neurons in the network, whether it is the sine

wave stimulation signal or the stimulation signal after the sine wave

superposition Gaussian white noise interference. The calculation

results of the correlation coefficient and the potential waveform

are mutually corroborated, which can well verify this conclusion.

By comparing the correlation coefficient calculation results under

the chemical synaptic coupling NW small-world network, it can

be concluded that the synchronous discharge ability of the small-

world network coupled by the electrical synaptic model is weaker

than that of the chemical synaptic coupling small-world network.

By comparing the calculation results of Figures 10, 11, 14,

15, and Formulas (5) and (7) and related parameters, it can be

found that the performance of the electrical synaptic coupling

network is close to that of the Hansel chemical synaptic coupling

network. Hansel chemical synapse is the simplest chemical synaptic

model, which is also proved by the experimental results in

this section.

4 Discussions

The nervous system is a complex information processing

system. From mammals to the simplest single-cell organisms,

the behavior of organisms depends on the control of the

nervous system, and the activities of the nervous system are
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FIGURE 13 (Continued)

closely related to bioelectrical signals. There is more or less

electromagnetic interference in the environment where organisms

live, but organisms can resist interference, which depends on

the strong anti-interference ability of neural networks. This anti-

interference ability can resist the interference of noise to make

the neural network achieve synchronous discharge and improve
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FIGURE 13 (Continued)

The waveform of neuronal potential in NW small-world network coupled by Rabinovichl synaptic model. [(a–f) Action potential waveforms of 1, 2, 4,

5, 25, and 100 neurons without interference were recorded; (g–l) The action potential waveforms of neurons 1, 2, 4, 5, 25 and 100 were interfered].

the accuracy of information processing. In Reference Zhang et al.

(2023), the method of constructing spiking neural network to

simulate the behavior of the network by IF neuron model was

proposed. In Reference Lin et al. (2021), the influence of synaptic

coupling strength on the synchronization behavior of neural

networks was studied. Reference Ma et al. (2021) studied the

robustness mechanism of neuronal information coding of Maeda-

Makino hardware neurons and the effects of electromagnetic

interference on neuronal cell membrane permeability, sodium

channel, potassium channel, and action potential. Reference

Zhang et al. (2020) studied the initial value problem of HH

model parameters, analyzed its stability, and evaluated the

dynamic stability of neurons. Reference Man et al. (2016) studied

the degradation phenomenon in the neural network model

and proved that with the increase of coupling strength and

complexity, the network redundancy decreases. Compared with

the current popular synchronization phenomenon and application

research of neurons, synapses, and neural networks, this study

focuses on revealing the biological source of the anti-interference

characteristics of neural networks. The neuronal network is a

complex structure coupled by multiple neurons and synapses. The

structure that realizes the interconnection and interaction between

neurons is synapses. The integration of synapses, neurons, and

neural networks can better reveal the source of anti-interference
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TABLE 4 Correlation coe�cient of Rabinovich’s chemical synaptic coupling network.

Condition r(1–25) r(15–30) r(20–35) r(5–45)

Ring network topology, sine wave stimulation 0.168 0.192 0.167 0.137

Ring network topology, sine wave superposition interference 0.379 0.32 0.218 0.204

NW small-world network topology, sine wave 0.969 0.94 0.922 0.879

NW small-world network topology, sine wave

Superimposed interference

0.88 0.856 0.816 0.745

FIGURE 14 (Continued)

characteristics of neural networks. According to the experimental

results of the second part, it can be inferred that the action potential

transmission delay has a great influence on the network to achieve

anti-interference and synchronous discharge mode. By studying

the source of anti-interference mechanism, we can have a deeper

understanding of the biological nervous system, reveal the laws

of some life phenomena, and promote the development of anti-

interference hardware.

In this study, a neural network based on the HH model

and chemical synapses was constructed by using the MATLAB

platform and numerical simulation method. Through graphical

and modular modeling, the topology of the neural network in

the biological system is constructed, and the synchronization

characteristics and anti-interference ability of the coupled neural

network of different synapses are studied. By changing the type

of synapses and the topology of neuronal networks, the neuronal

networks with different topologies achieve synchronous discharge.

The Scope module in Simulink shows the firing of action potentials

of different neurons in the network and calculates the correlation

coefficient between neurons 1 and 25, neurons 5 and 45, neurons

15 and 30, and neurons 20 and 35 in the neural network.

The synchronization and anti-interference effects of different

synaptic coupling networks are compared, as well as their effects

on the anti-interference effect and synchronization ability of

neuronal networks. Comparative simulation found that neurons

in the network produced a complete action potential process

under external signal stimulation. Different synaptic models

coupled networks have different ability to regulate synchronous

discharge, and the synchronous discharge state of neurons in

the network will change with the change of the topology of the

neuron network.

For the neuronal network coupled by the electrical synapse

model, the action potential excited by the subsequent neurons

transmitted by the same stimulation signal is equal to less than

that of the chemical synapse-coupled neuronal network. After

the stimulation signal is superimposed with Gaussian white noise
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FIGURE 14 (Continued)

interference, the subsequent neurons are conducted multiple times

through an electrical synapse to suppress the interference. Under

the ring network topology, the electrical contact data generated by

sine wave stimulation is relatively stable within four conditions,

and the fluctuation range is between 0.134 and 0.292. After

superimposing interference signal onto sinusoidal inputs, the

correlation coefficient between neurons decreases. Under the NW

small-world network topology, the correlation coefficient of action

potential increased, and the correlation coefficient of neurons 1 and

25 increased to 0.569. By calculating the correlation coefficient, it

can be found that the synchronization degree of neuron discharge

in the network after the complex NW small-world topology will

also be improved.

As a simple chemical synaptic model, the performance of the

Hansel chemical synapse is close to that of electrical synaptic

coupling, and the correlation coefficient fluctuates below 0.3. In the

case of the NW small-world network, the correlation coefficient

increases, which is consistent with the comparison results of

electrical contact. However, the anti-interference characteristics are

weaker than the NW small-world network coupled by electrical

contact, but the anti-interference effect can be achieved. By

comparing the correlation coefficient of action potential of four
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FIGURE 14 (Continued)

Waveforms of neuronal potentials in a ring network coupled by the electrical synaptic model. [(a–f) Action potential waveforms of 1, 2, 4, 5, 25, and

100 neurons without interference were recorded; (g–l) The action potential waveforms of neurons 1, 2, 4, 5, 25, and 100 were interfered].

pairs of neurons, it was found that the correlation coefficient

between neurons with long distances in the NW small-world

network was small. Before and after superposition interference,

the correlation coefficients of r(1∼25), r(15∼30), r(20∼35),

and r(5∼45) were 0.563, 0.539, 0.248, 0.243, and 0.163, 0.096,

0.090, 0.086, respectively. The correlation coefficient decreased

significantly after superposition interference.

Rabinovich chemical synaptic model is a complex synaptic

model with time delay and considering feedback current. Its

comprehensive effect of synchronous discharge ability and anti-

interference is the best among the three synaptic models in this

study: whether in a ring network or NW small-world network,

its subsequent neuron action potential firing delay is the smallest.

In the synapse-coupled NW small-world network, the action

potential correlation is high. In the case of no superimposed

interference: r(5∼45) was the lowest, but the correlation coefficient

was still 0.879, and the correlation coefficient between neuron 1

and neuron 25 reached 0.969. After superimposed interference,

the correlation coefficient range is still between 0.88 and 0.745.

The maximum correlation coefficients in the coupling network of

electrical synapses and Hansel’s chemical synapses were only 0.569

and 0.163. By calculating the correlation coefficient results, the

excellent performance of Rabinovich chemical synapses and NW

small-world networks can be proved.

The correlation coefficient analysis results are basically the

same as the action potential pulse waveform in Figures 10–15.

Electrical synapses can achieve two-way conduction of stimulation,

so the farthest end of the network is neuron 50, while the

farthest end of the chemical synaptic coupling network is neuron

100. The action potential delay of neuron 50 in Figure 14 is

100mS, and the delay of neuron 100 in Figure 10 is greater than

200mS. In terms of delay characteristics, due to the bidirectional

conduction characteristics, the electrical synapse is better than

the Hansel chemical synapse without considering the feedback

circuit. Comparing the above two synapses with the complex

Rabinovich chemical synapse, the action potential delay of neuron

100 in Figure 12 is less than 50mS, which is better than the

electrical synapse and Hansel chemical synaptic coupling network.

It can be seen that the electrical synapse has the characteristics of

bidirectional conduction stimulation, which is superior to some
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FIGURE 15 (Continued)

simple chemical synaptic models that do not consider delay and

feedback current. At the same time, comparing Figures, it can

be seen that the action potential delay of neuron 100 in NW

small-world network is lower than that in the ring network.

Combined with the results of correlation coefficient analysis,

it can be explained that the network topology also affects the
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FIGURE 15 (Continued)

The waveform of neuronal potential in NW small-world network coupled by electrical synaptic model. [(a–f) Action potential waveforms of 1, 2, 4, 5,

25, and 100 neurons without interference were recorded; (g–l) The action potential waveforms of neurons 1, 2, 4, 5, 25, and 100 were interfered].

delay and correlation, and the NW small-world network also

enhances the synchronization of the network by reducing the

delay. In Figures, the action potential waveform of neuron 1 was

distorted after superposition interference. The subliminal response

was produced before the interference was not superimposed,

which affected the stimulation signal transmission. However, the

action potential waveforms of neurons 2, 4, 5, 25, and 100

were restored by the conduction of the neural network, which

was close to the waveform before the superposition interference.

Based on the analysis of Figures, the following conclusions can

be drawn: Different synaptic models have different delays in

the coupled network, and the delay affects the synchronization

of the network; and the electrical synaptic coupling network is

slightly better than the Hansel chemical synaptic coupling network

without considering the delay and feedback mechanism due to its

bidirectional conduction characteristics, but it is not as good as

the Rabinovich chemical synaptic coupling network considering

the delay and feedback mechanism. The NW small-world network

enhances network synchronization by reducing the conduction

delay, and the Rabinovich chemical synapse coupling NW small-

world network has the best effect.

It can be seen that synaptic and network conduction delay is

one of the important factors affecting the anti-interference ability

and synchronous discharge ability of neural networks. In the case

of interference, selecting synapses with a time delay mechanism

and better performance can improve the synchronization and
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TABLE 5 Correlation coe�cient of electrical synaptic coupling network.

Condition r(1–25) r(15–30) r(20–35) r(5–45)

Ring network topology, sine wave stimulation 0.292 0.136 0.134 0.134

Ring network topology, sine wave superposition interference 0.099 0.06 0.016 0.07

NW small-world network topology, sine wave 0.569 0.478 0.31 0.142

NW small-world network topology, sine wave

Superimposed interference

0.569 0.309 0.282 0.216

anti-interference ability of neural networks. At the same time,

the complexity of the synaptic conduction structure can also

enhance the synchronous discharge and anti-interference ability

of the network. In the face of strong interference, the mechanism

of the synapse itself and the complexity of the network can be

combined to better achieve the effect of network anti-interference.

The experimental results in this study have reference significance

for the development of anti-interference technology in the fields

of neuroscience, computing, and engineering. Future research can

focus on exploring the synergy between synaptic mechanisms

and network complexity to further enhance the anti-interference

performance of neural networks and promote the application of

related models in practical anti-interference scenarios.

5 Conclusion

The coupling network with different synaptic models will lead

to differences in their anti-interference ability and characteristics.

The synchronization ability of the neuron network coupled by

the electrical synaptic model is generally weaker than that of the

neuron network coupled by the chemical synaptic model, and

the interference will affect the correlation coefficient results. In

the NW small-world network topology, the correlation coefficient

is increased compared with the ring network. By comparing the

correlation coefficient between the two neurons in the Hansel

chemical synaptic coupling network and the electrical synaptic

coupling network and the potential waveform of the neurons, it

can be seen that the network performance of the two synaptic

couplings in the ring network is similar. Comparing the correlation

coefficient, the electrical synaptic coupling network in the NW

small-world topology has better synchronization ability. However,

Hansel chemical synapses have the characteristics of one-way

transmission of stimulation signals.

According to the calculation results of the correlation

coefficient, the NW small-world network of Rabinovich chemical

synaptic coupling has obvious advantages. By comparing the

neuron potential waveforms and correlation coefficient calculation

results in chapters 2.3, 2.4, and 2.5, it is found that the Rabinovich

chemical synapse model shows significant advantages in improving

network synchronization and anti-interference characteristics due

to its significantly reduced signal transmission delay. The reduction

of delay enables the neuron cluster to achieve more accurate phase

locking, and the reduction of synchronization error makes the

network maintain a stable synchronous discharge mode under

noise. At the same time, the NW small-world network constructs

more signal transduction pathways than the ring network by

establishing redundant connections. This topology optimization

shortens the average path length of the network, significantly

reduces the conduction delay, improves the synchronization

efficiency, and enhances its anti-interference characteristics at the

same time. The topology complexity significantly enhances the

dynamic robustness of the network through delay optimization.

This study investigates the anti-interference and

synchronization dynamics of neuronal networks using the

Hodgkin–Huxley (HH) model coupled with electrical synapses

(ES), Hansel chemical synapses (HS), or Rabinovich chemical

synapses (RS) under two topologies: ring and NW small-world

networks. The RS model’s feedback mechanism mirrors biological

processes that enable precise neural synchronization, offering

insights into how real neural circuits balance plasticity and

stability. NW small-world topologies align with brain network

structural efficiency, suggesting evolutionary optimization for

noise resistance. Future research will focus on investigating

hybrid networks to mimic brain complexity and identify optimal

anti-interference configurations and to explore how spike-timing-

dependent plasticity (STDP) or adaptive coupling strengths

interact with network dynamics under interference.
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