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Objective: This study aimed to extract the radiomic features of intracranial 
aneurysm (IA) and parent artery (PA) walls from high-resolution vessel wall 
imaging (HR-VWI) images and construct and validate machine learning (ML) 
predictive models by comparing them with the radiomics score (Rad-score).

Methods: In this study, 356 IAs from 306 patients were retrospectively analyzed 
at Yuzhong Center and randomly divided into training and test cohorts in an 
8:2 ratio. Additionally, 66 IAs from 58 patients were used at Jiangnan Center 
to validate the predictive model. Radiomic features of the IA and PA walls 
were extracted from the contrast-enhanced HR-VWI images. Univariate and 
least absolute shrinkage and selection operator (LASSO) regression analyses 
were performed on the training cohort features to identify optimal rupture-
associated features. The Rad-score model was constructed by calculating the 
total score derived from the weighted sum of optimal radiomic features, and 
three ML models were built using the XGBoost, LightGBM, and CART algorithms, 
and evaluated using both the test and external validation cohorts.

Results: Eight optimal IA wall features and four PA wall features were identified. 
The Rad-score model demonstrated an area under the curve (AUC) of 
0.858, 0.800, and 0.770 for the training, test, and external validation cohorts, 
respectively. Among the three ML models, the XGBoost model performed best 
across all cohorts, with AUC values of 0.983, 0.891, and 0.864, respectively. 
Compared to the Rad-score model, the XGBoost model exhibited superior AUC 
values (p < 0.05), better calibration curve Brier scores, and greater net clinical 
benefit.

Conclusion: The radiomic features extracted from HR-VWI images demonstrated 
robust predictive utility for IA rupture risk in both the Rad-score and ML models. 
The XGBoost-based ML model outperformed the Rad-score model in efficacy 
and performance, and proved to be a noninvasive, efficient, and accurate tool 
for identifying high-risk IA patients.
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1 Introduction

Intracranial aneurysms (IAs), affecting 1–3% of adults, are a leading 
cause of aneurysmal subarachnoid hemorrhage (Etminan et al., 2019; 
Sauvigny et al., 2020; Tjoumakaris et al., 2024). Initial rupture carries a 
30–40% mortality rate, while re-bleeding escalates this to 70–80%. 
Overall, IA rupture leads to disability or death in 25–50% of cases 
(Malhotra et al., 2018; Frączek et al., 2024).Early detection and accurate 
rupture risk assessment are crucial for effective clinical management.

Cerebrovascular imaging techniques are pivotal for diagnosing, 
treating, and preventing IAs. Digital subtraction angiography 
(DSA) remains the gold standard for morphological assessment of 
IAs due to its unparalleled spatial and temporal resolution (Veeturi 
et al., 2024). However, its invasive nature, associated procedural 
risks, and limited ability to evaluate vessel wall pathophysiology 
restrict its utility in routine clinical surveillance. Computed 
tomography angiography (CTA) and magnetic resonance 
angiography (MRA) provide non-invasive alternatives but are 
constrained by their focus on luminal morphology and insufficient 
resolution for detailed wall characterization. In contrast, high-
resolution vessel wall imaging (HR-VWI) offers a paradigm shift by 
enabling non-invasive, three-dimensional visualization of both the 
IA and parent artery (PA) walls, shifting the assessment focus from 
the lumen to the vessel wall (Larsen et al., 2018; Lehman et al., 2018; 
Samaniego et al., 2019; Semin et al., 2023). Moreover, HR-VWI 
reveals arterial wall enhancement (AWE) as a critical marker of 
inflammatory activity, offering significant value for rupture risk 
assessment (Lauric et al., 2022). This capability positions HR-VWI 
as a critical tool for advancing precision in IA risk stratification.

However, the interpretation of HR-VWI images remains subjective, 
highlighting the need for more objective quantitative assessment 
methods (Veeturi et al., 2022; Dier et al., 2024a). Radiomics addresses 
this by extracting extensive image features to achieve comprehensive 
quantitative characterization of lesions. Recent studies have demonstrated 
the application of radiomics in quantifying aneurysm wall enhancement 
(AWE) heterogeneity (Veeturi et al., 2023, 2025; Dier et al., 2024b) and 
validated that radiomic-based models outperform traditional methods 
in predicting IA rupture risk (Tong et al., 2021; Lauric et al., 2022). 
Despite these advances, more robust and comprehensive HR-VWI-based 
models are still required for reliable IA rupture risk assessment.

Therefore, this study aims to develop a more objective predictive 
model by integrating radiomic features from HR-VWI-based IA walls 
and PA walls, combined with radiomics scores (Rad-scores) and 
machine learning algorithms, to enable more accurate assessment of 
IA rupture risk.

2 Materials and methods

2.1 Patient selection

This study was approved by the Institutional Review Board. 
Written informed consent was obtained according to ethical guidelines 
(Ethics No. Colum Review No. 194). Clinical and imaging data were 
comprehensively collected and statistically analyzed from patients 
diagnosed with IAs at the Yuzhong and Jiangnan centers between 
January 2020 and July 2024.

Patients with IAs were included, with HR-VWI images of the IAs 
and the PAs. The included patients can be  categorized into the 

following groups: (1) unruptured aneurysm patients: individuals in 
whom aneurysms were incidentally discovered through imaging 
studies; (2) ruptured aneurysm patients: patients with a confirmed 
aneurysm accompanied by subarachnoid hemorrhage. The exclusion 
criteria were as follows: (1) incomplete HR-VWI datasets; (2) 
non-aneurysmal SAH or coexisting cerebrovascular diseases; (3) 
treated IAs; (4) unclear responsible artery for rupture in multiple IAs; 
(5) poor HR-VWI quality.

In this study, 356 ruptured and unruptured IAs from 306 patients 
were enrolled at the Yuzhong Center and randomly categorized into 
training and test cohorts in an 8:2 ratio. The cohorts were used for 
radiomic feature extraction. Specifically, 284 (80%) IAs were 
designated as the training cohort to develop the Rad-score and three 
ML models, while 72 (20%) IAs constituted the test cohort. 
Furthermore, 66 IAs from 58 patients were enrolled at Jiangnan 
Center for model validation. The screening workflow chart and overall 
ML and Rad-score modeling framework are shown in Figures 1, 2.

2.2 Patient image acquisition

Magnetic resonance imaging (MRI) was performed on all subjects 
using Ingenia CX 3.0 T MRI scanner equipped with a 32-channel head 
coil (Philips, Best, Netherlands). The imaging protocol commenced 
with three-dimensional (3D) time-of-flight (TOF) MRA for IA 
localization, followed by axial 3D T1-weighted isotropic turbo spin-
echo acquisition HR-VWI sequences focused on the PAs. A contrast 
agent, methylammonium gadopentetate (0.1 mmol/kg, Gd-DOTA, 
Jiangsu, China), was administered via manual injection into the 
antecubital vein. HR-VWI was repeated 5 min post-injection to 
acquire contrast-enhanced HR-VWI (CE-HR-VWI) images over 
identical anatomical ranges. The detailed scanning setup parameters 
are presented in Supplementary Table S1.

2.3 Segmentation of target patient images

The original CE-HR-VWI images were imported into the ITK-SNAP 
software (version 4.0.2) in DICOM format. The IA wall was manually 
delineated on the slice with the maximum IA diameter, while the PA wall 
was manually traced within 3 mm on both sides of the aneurysm neck. 
The process of segmenting target patient images is illustrated in Figure 3.

2.4 Image preprocessing and feature 
stability analysis

All images were preprocessed to ensure consistency. The voxel 
dimensions of CE-HR-VWI sequences (0.6 × 0.6 × 0.6 mm3) were 
isotropic. Image intensity normalization was performed using Z-score 
normalization (mean = 0, standard deviation = 1) to mitigate scanner 
variability. Addtionally, the gray-level intensity values were discretized 
into 64 equidistant bins to reduce noise and enhance the robustness 
of the radiomic features. Subsequently, the radiomic features were 
then automatically extracted from the IA walls and PA wall ROIs using 
the PyRadiomics platform (version 3.0.1).

To evaluate the stability of radiomic features, a reproducibility 
analysis was conducted on a randomly selected subset of 100 patients 
from the training cohort. Specifically, one month apart, the aneurysm 
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wall and vessel wall ROIs of each patient were manually re-segmented 
using the method mentioned above by the same radiologist (with over 
10 years of experience in neuroimaging diagnosis) and another 
radiologist (with over 15 years of experience in neuroimaging 
diagnosis), respectively. Following the extraction of radiomic features 
from the ROIs, we only selected those radiomic features with a high 
correlation (Intraclass correlation coefficient >0.8).

2.5 Radiomic feature selection and 
Rad-score calculation

The radiomic features were screened using Python (version 3.2). 
Initially, missing values were imputed using the median value of their 
respective feature types, and features with zero variance were removed 
from the dataset. Subsequently, the feature dataset was standardized 
using zero-mean normalization. The LASSO regression model was 

used to select the most discriminative radiomic features, with 
parameter tuning conducted through 10-fold cross-validation. The 
Rad-score is a linear combination of LASSO-selected features 
weighted by their regression coefficients. The Rad-score for each IA 
was derived using an radiomic scoring algorithm (Equation 1).

 
( )i

i i 01Rad score X 100− = β +β ×∑
 

(1)

Χi  is the thi  selected radiomic features and βi is the LASSO 
regression coefficient for that feature, intercept = 0.026.

2.6 Modeling and validation

A predictive model for IA rupture was developed using the 
Rad-score based on optimal radiomic features derived from 

FIGURE 1

Screening workflow chart.
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HR-VWI. The predictive accuracy of the model was assessed using 
receiver operating characteristic (ROC) curves. Concurrently, these 
optimal features were integrated into three ML algorithms, XGBoost, 
LightGBM, and CART, to construct predictive models for IA rupture 

from HR-VWI radiomic images. The three ML models are non-linear 
ensembles that iteratively optimize feature interactions.

The predictive performance of the ML models was evaluated 
using ROC curves, and the best model was selected based on these 

FIGURE 2

Overall ML and Rad-score modeling framework.

FIGURE 3

Unruptured and ruptured aneurysms in Cases 1 and 2. Case 1: A 57-year-old male with an unruptured 5.3 × 4.4 mm aneurysm on the left MCA M1 
segment. Case 2: A 49-year-old male with a ruptured 7.0 × 3.4 mm aneurysm on the right MCA M1 segment. The Panel shows original imaging (A,D), 
outlined aneurysms (B,E), and volume-rendered reconstructions (C,F). The IA wall is in red, and the PA wall is in green.
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analyses. The predictive efficacy of each ML model was quantified 
using metrics, including ROC, area under the curve (AUC), sensitivity, 
specificity, accuracy, positive predictive value (PPV), and negative 
predictive value (NPV). Calibration curves were used to assess the 
concordance between predicted probabilities and observed outcomes 
for the best ML and Rad-score models. Decision curve analysis (DCA) 
was employed to compare the net clinical benefits of the optimal ML 
and Rad-score models.

2.7 Statistical analysis

In this study, quantitative data are presented as mean ± standard 
deviation or median (interquartile range), and categorical data are 
expressed as counts (percentages). The predictive performance of the 
Rad-score and three ML models was evaluated using ROC curves. A 
p < 0.05 was considered statistically significant. The Rad-score cut-off 
for IA rupture was determined using the Youden index. The data were 
statistically analyzed, and images were graphically represented using 
R software (version 4.2.3).

3 Results

3.1 Patient characteristics

The clinical and radiological characteristics of the patients in the 
training, test, and external validation cohorts are summarized in 
Table 1. Significant differences were observed in the morphological 
features of ruptured and unruptured IAs, including irregular shape 
(p < 0.001 in the training cohort, p = 0.030 in the test cohort) and the 
presence of daughter aneurysms (p < 0.001 in the training cohort, 
p = 0.011 in the test cohort). Additionally, the anatomical locations of 
IAs showed significant variations across cohorts (p = 0.001  in the 
training cohort, p < 0.001  in the test cohort, and p = 0.004  in the 
external validation cohort).

3.2 Radiomic feature extraction and 
optimal radiomic features selection

We automatically extracted 107 radiomic features from each ROI 
in the IA and PA walls of the HR-VWI images, resulting a total of 214 
distinct features. The detailed results of these features were categorized 
into seven classes (Table 2).

One-way analysis of 214 radiomic features from the training 
cohort identified 138 significant features (p < 0.05). Figure  4 
presents the optimal features selected using the least absolute 
shrinkage and selection operator (LASSO) regression, with 
parameter tuning conducted using 10-fold cross-validation to 
minimize overfitting. Post-regression, eight IA and four PA wall 
features were identified as optimal for the IA risk association 
(Figure 4, Table 3).

The analysis revealed that eight radiomic features were positively 
correlated with IA rupture risk, and four were inversely correlated. Of 
these, Surface Volume Ratio, Mean, and Total Energy contributed 
most significantly to the Rad-score predictive model.

3.3 Rad-score predictive modeling and 
evaluation

The Rad-score for each IA in the training cohort was calculated 
using 12 optimal radiomic features, yielding an AUC, sensitivity, 
specificity, and accuracy of 0.858 [95% confidence interval (CI): 
0.804–0.911], 71.3, 88.4, and 80.9%, respectively. In the test cohort, the 
model demonstrated an AUC, sensitivity, specificity, and accuracy of 
0.800 (95% CI: 0.726–0.875), 73.3, 83.5, and 79.6%, respectively. The 
external validation cohort results yielded an AUC, sensitivity, 
specificity, and accuracy of 0.770 (95% CI: 0.720–0.819), 69.2, 76.4, 
and 73.3%, respectively. Table 4 presents the detailed outcomes of 
this comparison.

3.4 ML predictive modeling and evaluation

In the training cohort, 12 optimal radiomic features were 
employed to construct IA rupture prediction models using the 
XGBoost, LightGBM, and CART algorithms. After 10-fold cross-
validation and model refinement, the XGBoost model achieved the 
highest AUC values with sensitivity, specificity, and accuracy of 95.4, 
93.8, and 94.5%, respectively. In the test cohort, the XGBoost model 
maintained the highest AUC, with sensitivity, specificity, and accuracy 
of 83.7, 85.2, and 84.6%, respectively. In the external validation cohort, 
the XGBoost model exhibited the highest AUC, with sensitivity, 
specificity, and accuracy of 82.0, 84.0, and 90.3%, respectively (Table 4, 
Figure 5).

3.5 Comparison of the XGBoost and 
Rad-score models

Compared with the rad-score model, the XGBoost model also 
achieved higher AUC values (Table 4, Figure 5). The DeLong test 
revealed statistically significant AUC differences between the XGBoost 
and Rad-score models in the test and external validation cohorts 
(p < 0.05). Calibration curves for the test cohort presented Brier scores 
of 0.130 for XGBoost and 0.183 for Rad-score, while the external 
validation cohort scores were 0.144 and 0.193, respectively (Figure 6). 
DCA indicated that the XGBoost model provided a greater net clinical 
benefit than the Rad-score model (Figure 6).

4 Discussion

In this study, HR-VWI was employed for the initial extraction of 
radiomic features from IAs and their PAs, and 12 key radiomic 
features were successfully identified. Rad-score and ML models were 
developed independently of patient clinical characteristics and 
conventional morphological features of IAs. Both models were 
effective in predicting the risk of IA rupture, with the ML model, 
particularly the one using the XGBoost algorithm, exhibiting 
enhanced predictive accuracy, including improved differentiation, 
calibration, and clinical applicability. These findings indicate that the 
XGBoost model could provide an innovative, non-invasive, and 
radiation-free approach for IA rupture risk assessment.
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TABLE 1 Clinical and radiological characteristics of enrolled patients.

Characteristics Cohorts

Training (n = 284) Test (n = 72) External Validation (n = 66)

Ruptured 
(n = 64)

Unruptured 
(n = 220) p value Rupture(n = 25)

Unruptured 
(n = 47) p value

Ruptured 
(n = 27)

Unruptured 
(n = 39) p value

I. Clinical Characteristics

Age, mean ± SD (years) 58.0 ± 10.4 60.2 ± 10.3 0.132 57.4 ± 12.0 57.1 ± 10.7 0.719 58.3 ± 7.7 61.3 ± 11.0 0.232

Gender (%) 0.721 0.989 0.534

  Male 21 (32.8) 67 (30.5) 9 (36.0) 17 (36.2) 11 (40.7) 7 (18.0)

  Female 43 (67.2) 153 (69.5) 16 (64.0) 30 (63.8) 16 (59.3) 32 (82.0)

Previous SAH history (%) 0 (0) 2 (0.9%) 0.446 1 (4.0) 1 (2.1) 0.651 1 (3.7) 1 (2.6) 0.794

Hypertension (%) 35 (54.7) 118 (53.6) 0.882 12 (48.0) 20 (42.6) 0.663 6 (22.2) 31 (79.5) 0.481

Hyperlipemia (%) 22 (34.4) 77 (35.0) 0.927 11 (44.0) 18 (38.3) 0.644 12 (44.4) 14 (35.9) 0.492

CAD (%) 3 (4.7) 24 (10.9) 0.136 1 (4.0) 5 (10.7) 0.339 1 (3.7) 7 (18.0) 0.084

Diabetes mellitus (%) 4 (6.3) 28 (12.7) 0.150 0 (0) 2 (4.3) 0.302 3 (11.1) 6 (15.4) 0.625

History of smoking (%) 14 (21.9) 48 (21.8) 0.992 6 (24.0) 13 (27.7) 0.742 6 (22.2) 10 (25.6) 0.534

II. Morphological characteristics of aneurysm

Irregular aneurysm shape 44 (68.8) 61 (27.7) <0.001 14 (56.0) 14 (29.8) 0.030 16 (59.3) 14 (35.9) 0.062

Daughter Aneurysm 26 (40.6) 24 (10.9) <0.001 7 (28.0) 3 (6.4) 0.011 5 (18.5) 4 (10.3) 0.344

Position 0.001 <0.001 0.004

 Internal carotid artery 22 (34.4) 125 (56.8) 6 (24.0) 30 (63.8) 4 (14.8) 20 (51.3)

 Anterior cerebral artery 6 (9.4) 9 (4.1) 1 (4.0) 5 (10.7) 5 (18.5) 4 (10.3)

  Anterior communicating 

artery
7 (10.9) 13 (5.9) 5 (20.0) 2 (4.3) 6 (22.2) 1 (2.6)

 Middle cerebral artery 10 (15.6) 41 (18.6) 4 (16.0) 8 (17.0) 4 (14.8) 9 (23.1)

 Posterior circulation 5 (7.8) 18 (8.2) 4 (16.0) 1 (2.1) 5 (18.5) 0 (0)

  Posterior communicating 

artery
14 (21.9) 14 (6.4) 5 (20.0) 1 (2.1) 3 (11.1) 5 (12.8)

Lateral wall 49 (76.6) 183 (83.2) 0.230 19 (76.0) 43 (91.5) 0.072 20 (74.1) 32 (82.1) 0.443

Bifurcation 15 (23.4) 37 (16.8) 6 (24.0) 4 (8.5) 7 (25.9) 7 (17.9)

SD, standard deviation, CAD, coronary artery disease.
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Previous radiomic studies predicting IA rupture risk have 
predominantly used DSA and CTA imaging, each with inherent 
limitations, including the invasiveness of DSA and radiation exposure 
associated with CTA (Chen et al., 2022; Beaman et al., 2023). This 
study pioneered the application of non-invasive, radiation-free 
HR-VWI for radiomic feature extraction, offering a significant 

advancement over traditional methods. From a comprehensive set of 
214 features, 12 were identified as optimal: 8 from the IA walls and 4 
from the PA walls. The surface-area-to-volume ratio among the IA 
wall features exhibited the greatest impact, signifying the geometric 
relationship between the aneurysm surface area and volume. A lower 
ratio indicates a smoother IA wall, potentially reducing the shear force 

TABLE 2 Types and quantities of radiomic features with IAs and parent arteries.

Feature category Abbreviation Quantity

First-order statistics / 36

Shape / 28

Gray-level co-occurrence matrix GLCM 48

Gray-level dependence matrix GLDM 28

Gray-level run length matrix GLRLM 32

Gray-level size zone matrix GLSZM 10

Neighboring gray-tone difference matrix NGTDM 10

FIGURE 4

Radiomics feature selection based on the least absolute shrinkage and selection operator (LASSO). Plot of LASSO coefficients-lambda (A), 10-fold 
cross-validation via minimum criteria was used in the LASSO model. The LASSO coefficient profiles of the radiomic features (B), Coefficients of the 12 
optimal radiomics features(C).

TABLE 3 Categories, names, coefficients and interpretation of optimal radiomics features.

Category Name Coefficient Interpretation

Aneurysm

Shape features
Maximum 3D diameter 0.069642 (+) Larger size → Higher risk

Surface volume ratio −1.574122 (−) Complex morphology → Lower risk

First-order statistics

10 Percentile 0.048111 (+) Lower calcification/thrombus → Higher risk

Kurtosis −0.295855 (−) Homogeneous intensity → Lower risk

Mean 1.174627 (+) Elevated intensity → Inflammation/edema

GLCM
Correlation 0.035542 (+) Ordered texture → Mechanical stability

Joint average 0.537752 (+) Uniform composition → Lower risk

GLDM Dependence non-uniformity normalized −0.000202 (−) Uniform dependencies → Lower risk

Parent Artery

Shape features
Flatness −0.000314 (−) Spherical shape → Uniform stress distribution

Maximum 2D diameter slice 0.306635 (+) Focal enlargement → Higher hemodynamic stress

First-order statistics
Voxel volume 0.355955 (+) Enlarged parent artery → Vascular remodeling

Total energy 0.898951 (+) Signal heterogeneity → Inflammatory activity

GLCM, Gray-level co-occurrence matrix; GLDM, Gray-level dependence matrix.
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and associated rupture risk, thereby highlighting the critical link 
between IA shape and rupture propensity. This is consistent with the 
findings of Liu et al. (2021) using DSA image analysis, where the 
surface-area-to-volume ratio and IA wall smoothness were key 
predictors. Furthermore, gray-level co-occurrence matrix (GLCM) 
correlation features, denoting the linear relationship between gray 
values in IA wall images, were selected as the optimal features. These 
features, along with others reflecting the distribution of high gray 
values, provide nuanced insights into IA wall characteristics.

Previous studies have suggested that 3D radiomics features may 
provide a more comprehensive characterization of aneurysms. 
However, 2D and 3D radiomics features inherently capture different 
spatial information. Additionally, 3D features are sensitive to 
anisotropic voxel resolution and require substantial computational 
resources for segmentation and feature extraction. Therefore, in this 

study, the target area was delineated by selecting the slice with the 
largest aneurysm diameter.

Building on recent research suggesting a correlation between 
HR-VWI enhancement within 3 mm of the IA neck and saccular 
aneurysm development (Samaniego et  al., 2020), this study 
incorporated PA wall imaging features. The total energy from first-
order statistics, indicating the overall gray-scale intensity, emerged as 
the most influential PA wall feature. Besides, IA wall flatness, 
maximum 2D diameter, and voxel volume were identified as the 
optimal features. These radiomic features provide a multidimensional 
profile of IAs and PAs, encompassing size, shape, gray-scale 
distribution within the ROI, and linear correlations.

Rad-score, a composite radiomic feature score, encapsulates a 
multitude of radiomic features into a single, biologically meaningful, 
and clinically relevant metric (van Timmeren et al., 2020). Tong et al. 

TABLE 4 The performance of four constructed models to predict IA risk in training, test, and external validation cohorts.

Cohorts Model AUC Cut-off Sens Spec Acc PPV NPV F1-score

Training

XGBoost

0.983 

(0.970–

0.996)

0.412 

(0.377–

0.462)

0.954 

(0.910–

0.998)

0.938 

(0.893–

0.982)

0.945 

(0.944–

0.945)

0.922 

(0.867–

0.978)

0.963 

(0.928–

0.999)

0.938 (0.888–

0.988)

LightGBM

0.916 

(0.880–

0.952)

0.471 

(0.446–

0.523)

0.793 

(0.708–

0.878)

0.884 

(0.825–

0.943)

0.844 

(0.843–

0.846)

0.841 

(0.762–

0.921)

0.846 

(0.781–

0.912)

0.816 (0.734–

0.899)

CART

0.909 

(0.868–

0.951)

0.499 

(0.451–

0.545)

0.805 

(0.721–

0.888)

0.857 

(0.792–

0.922)

0.834 

(0.833–

0.836)

0.814 

(0.732–

0.896)

0.850 

(0.784–

0.915)

0.812 (0.726–

0.892)

Rad-score

0.858 

(0.804–

0.911)

52.7 (47.8–

59.2)

0.713 

(0.618–

0.808)

0.884 

(0.825–

0.943)

0.809 

(0.808–

0.811)

0.827 

(0.741–

0.912)

0.798 

(0.728–

0.869)

0.766 (0.674–

0.857)

Test

XGBoost

0.891 

(0.856–

0.927)

0.409 

(0.360–

0.454)

0.837 

(0.777–

0.896)

0.852 

(0.803–

0.900)

0.846 

(0.845–

0.846)

0.799 

(0.735–

0.862)

0.881 

(0.837–

0.926)

0.818 (0.755–

0.879)

LightGBM

0.870 

(0.833–

0.907)

0.497 

(0.447–

0.533)

0.694 

(0.619–

0.768)

0.890 

(0.848–

0.932)

0.809 

(0.808–

0.810)

0.816 

(0.748–

0.884)

0.805 

(0.754–

0.856)

0.750 (0.677–

0.822)

CART

0.834 

(0.789–

0.878)

0.499 

(0.451–

0.539)

0.735 

(0.663–

0.806)

0.837 

(0.787–

0.887)

0.795 

(0.794–

0.796)

0.761 

(0.690–

0.831)

0.818 

(0.766–

0.869)

0.748 (0.676–

0.818)

Rad-score

0.800 

(0.726–

0.875)

42.1 (39.9–

48.6)

0.733 

(0.621–

0.845)

0.835 

(0.761–

0.909)

0.796 

(0.794–

0.798)

0.733 

(0.621–

0.845)

0.835 

(0.761–

0.909)

0.733 (0.621–

0.845)

External 

Validation

XGBoost

0.864 

(0.825–

0.903)

0.409 

(0.361–

0.453)

0.82 (0.729–

0.896)

0.840 

(0.790–

0.889)

0.903 

(0.819–

0.820)

0.787 

(0.787–

0.851)

0.844 

(0.795–

0.893)

0.789 (0.726–

0.853)

LightGBM

0.841 

(0.801–

0.881)

0.46 (0.409–

0.486)

0.679 

(0.607–

0.752)

0.840 

(0.790–

0.889)

0.771 

(0.770–

0.772)

0.761 

(0.690–

0.831)

0.777 

(0.723–

0.831)

0.718 (0.646–

0.79)

CART

0.803 

(0.756–

0.849)

0.499 

(0.451–

0.538)

0.679 

(0.607–

0.752)

0.825 

(0.774–

0.877)

0.763 

(0.762–

0.764)

0.745 

(0.674–

0.816)

0.774 

(0.720–

0.829)

0.71 (0.639–

0.783)

Rad-score

0.770 

(0.720–

0.819)

43.4 (41.3–

48.8)

0.692 

(0.620–

0.764)

0.764 

(0.707–

0.821)

0.733 

(0.732–

0.734)

0.688 

(0.616–

0.759)

0.768 

(0.711–

0.825)

0.69 (0.618–

0.761)

IA, intracranial aneurysm; AUC, area under the receiver operating characteristic curve; Sen, sensitivity; Spe, specificity; Acc, accuracy; PPV, positive predictive value; NPV, negative predictive 
value.
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(2021) conducted a landmark multicenter study using DSA images, 
examined 105 cases of multiple IAs, and demonstrated the superiority 
of the Rad-score over traditional morphological models in predicting 
IA rupture. This study extended the evaluation of the relationship 
between HR-VWI radiomic features and the risk of IA rupture by 
focusing on rupture risk and excluding patient clinical characteristics 
or conventional morphological features. In our study, the Rad-score 
was calculated using 12 optimal features from both the IA and PA 
walls derived from HR-VWI images. The resulting multidimensional 
Rad-score model, which integrated HR-VWI heterogeneity, yielded 
an AUC of 0.800  in the test cohort (sensitivity, 73.3%; specificity, 
83.5%; accuracy, 79.6%) and 0.770 in the external validation cohort 
(sensitivity, 69.2%; specificity, 76.4%; and accuracy, 73.3%). These 
results suggest that the Rad-score can quantitatively capture imaging 
heterogeneity and offer a valuable imaging biomarker for IA rupture 
risk assessment.

The Rad-score model, developed using HR-VWI radiomics, 
demonstrated promising predictive capabilities. However, there is 
scope for further enhancement. Yang et al. (2023) demonstrated that 
integrating CTA radiomic features with ML models could significantly 
enhance the prediction of IA rupture, with an AUC of 0.918 following 
extensive cross-training. This underscores the potential of ML 
algorithms to unravel complex variable interactions within large 
datasets, thereby facilitating the identification of novel model 
configurations or training methodologies to enhance predictive  
accuracy.

In this study, 12 optimal radiomic features derived from HR-VWI 
were incorporated into three ML models, followed by rigorous 
training and 10-fold cross-validation, revealing that the XGBoost 
model was the most effective. In the training cohort, the AUC was 
0.983, with a sensitivity, specificity, and accuracy of 95.4, 93.8, and 
94.5%, respectively. These metrics were slightly reduced but still 
impressive in the test cohort, with an AUC, sensitivity, specificity, and 
accuracy of 0.891, 83.7, 85.2, and 84.6%, respectively. Similarly, the 
external validation cohort exhibited an AUC, sensitivity, specificity, 
and accuracy of 0.864, 82.0, 84.0, and 90.3%, respectively. The 
XGBoost model demonstrated high stability and generalization, and 
significantly outperformed the Rad-score model in predictive efficacy 
(Delong test, p < 0.05), including calibration and clinical net benefit.

Radiomic-based ML has shown promising accuracy in early 
identification of IA rupture status or prediction of rupture risk, 
revealing its potential application in clinical practice (Daga et al., 2024; 
Zhong et  al., 2024). XGBoost, an efficient and novel boosting 
algorithm optimized from fundamental ML techniques, has 
advantages such as high training efficiency, effective predictive power, 
adjustable parameters, and user-friendliness (Wang et al., 2022). It has 
been successfully applied in various medical imaging contexts, 
including diagnosing lung nodules (Nishio et  al., 2018), risk 
assessment in coronary CTA (van Rosendael et  al., 2018), and 
predicting acute strokes in magnetic resonance perfusion imaging 
(Livne et al., 2018). This study marks the inaugural application of the 
XGBoost algorithm to HR-VWI radiomic data, yielding a satisfactory 

FIGURE 5

Receiver operating characteristic (ROC) curves compared in three machine learning (ML) models in different cohorts: training (A), test (B), and external 
validation (C). And Receiver operating characteristic (ROC) curves displayed in XGBoost and Rad-score models in different cohorts: training (D), test (E), 
and external validation (F).
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FIGURE 6

Calibration curves and DCA of XGBoost and Rad-score models in test (A,C) and external validation (B,D) cohorts.

predictive accuracy for IA rupture risk. Exploration of ML algorithms, 
particularly XGBoost, in the diagnosis, risk assessment, and predictive 
modeling of IAs is warranted and holds considerable promise.

Our study focused on HR-VWI radiomic features for predicting IA 
rupture risk. To isolate the independent predictive power of these 
features, we eliminated confounding clinical factors and subjectivity-
prone aneurysm morphological features. Instead, we concentrated on 
radiomic features of the IA wall and PA wall. By doing so, we aimed to 
establish a baseline reference for future multimodal integration, while 
acknowledging that established clinical and morphological factors, such 
as aneurysm multiplicity, family history, smoking, and hypertension, 
also significantly contribute to rupture risk (Thompson et al., 2015).

This study has several limitations. First, the retrospective design 
may introduce selection bias, potentially compromising the 
generalizability of the conclusions. Second, the limited external 
validation cohort restricts robust verification of the model’s 
generalizability. Third, the radiomic methodology faces some 
constraints: two-dimensional cross-sectional analysis fails to fully 
characterize three-dimensional morphological heterogeneity, while 
potential contrast extravasation in ruptured aneurysms may distort 

feature stability and subjective variations inherent in manual target 
delineation may reduce result reproducibility, particularly due to 
inter-observer differences in boundary definition. Finally, the lack of 
standardized cross-institutional imaging protocols and unified feature 
definitions reduces result reproducibility. Future work should involve 
prospective multicenter studies integrating three-dimensional whole-
lesion segmentation techniques and establishing standardized imaging 
processing criteria to systematically enhance model performance.

5 Conclusion

Radiomic analysis of HR-VWI images successfully identified 
optimal features to predict IA rupture. The Rad-score model, 
developed using these HR-VWI-derived features, demonstrated 
effective predictive accuracy for IA rupture. Furthermore, the 
integration of these features with the XGBoost ML algorithm 
produced results that significantly exceeded those of the Rad-score 
model. This ML methodology has emerged as an invaluable tool for 
clinically identifying patients at a high risk of IA rupture.
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