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Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive

neurodegenerative disease that lacks e�ective early biomarkers. This study

investigated the potential of di�usion kurtosis imaging (DKI) as a non-

invasive biomarker for detecting and monitoring ALS progression through a

comprehensive analysis of white matter alterations.

Methods: We performed a cross-sectional analysis of magnetic resonance

images with advanced di�usion imaging techniques in ALS patients recruited

from a neurodegenerative consultation service over a 3-year period and healthy

controls. Our methodology employed multi-shell multi-tissue constrained

spherical deconvolution (MSMT-CSD) for tract reconstruction and di�usion

kurtosis imaging for microstructural analysis. The study focused particularly

on the corticospinal tract and associated pathways, utilizing both tract-

specific Bundle Analytics (BUAN) and whole-brain Tract-Based Spatial Statistics

(TBSS) approaches.

Results: The study included 33 ALS patients and 37 controls with no significant

di�erences in age or gender. ALS patients predominantly presented with spinal

onset and exhibited moderate functional impairment (ALSFRS-R: 39.09 ± 5).

Whole-brain TBSS revealed widespread white matter alterations, with increased

MD, RD, and AD, and decreased FA notably in the corona radiata, internal capsule,

and corticospinal tracts. Detailed fiber tracking of the corticospinal tracts showed

significant microstructural changes, with the left CST displaying pronounced

increases in MD and AD alongside reduced FA, while the right CST exhibited

distinctive regional variations. Additionally, analyses of the frontopontine and

parietopontine tracts uncovered further alterations in di�usion metrics. Despite

imaging findings, clinical-radiological correlations with functional scores and

disease progression were not statistically significant.

Conclusions: This study explores DKI as a potential biomarker for ALS pathology,

revealing microstructural changes in both motor and extra-motor pathways.

Using whole-brain TBSS analysis and tractography with DIPY, we identified

an asymmetric pattern of degeneration and involvement of integrative neural
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networks, providing new insights into ALS pathophysiology. These findings

contribute to our understanding of the complex structural alterations in ALS

and suggest that DKI-derived metrics may have utility in characterizing the

disease process.

KEYWORDS

amyotrophic lateral sclerosis, di�usion kurtosis imaging, white matter, tractography,

biomarkers, corticospinal tract, neurodegeneration, di�usion MRI

1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal
neurodegenerative disorder characterized by progressive
degeneration of upper motor neurons (UMN) and lower
motor neurons (LMN), with a median survival of 2–5 years
post-diagnosis (Brown and Al-Chalabi, 2017). Despite advances
in molecular characterization, early diagnosis remains hampered
by clinical heterogeneity and the absence of biomarkers detecting
pre-symptomatic axonal degeneration (Goutman et al., 2022). The
diagnosis of ALS remains primarily clinical, following a complex
process that often results in significant diagnostic delays. The
current diagnostic framework relies on the revised El Escorial
criteria (Brooks et al., 2000), which were updated in 2015 (Ludolph
et al., 2015) to improve diagnostic sensitivity while maintaining
specificity. However, several challenges persist in the early and
accurate diagnosis of ALS.

Early symptoms can be subtle and non-specific, often
resembling other neurological conditions. Physical examination
focuses on identifying both upper motor neuron and lower motor
neuron signs, but the heterogeneous presentation of these signs can
complicate early diagnosis. Progressive muscle weakness typically
begins focally, making it challenging to differentiate from other
neuromuscular conditions (Hardiman et al., 2017).

Electrophysiological (EMG) studies and nerve conduction
studies (NCS) have been essential diagnostic tools, but these
techniques have limits in detecting early changes in denervation.
These techniques do not allow detection of abnormalities until
there is a significant loss of motor neurons, requiring about
30% motor neuron loss (Lari et al., 2019). Furthermore, EMG
findings can be non-specific and may appear similar to other
neuromuscular disorders.

Current biomarkers lack sufficient sensitivity and specificity
for early diagnosis. Neurofilament light chain (NfL) levels in
cerebrospinal fluid and blood show promise but are not yet
validated for routine clinical use. The absence of a definitive
biomarker significantly impacts early diagnosis and disease
monitoring (Poesen et al., 2017).

Conventional magnetic resonance imaging (MRI) is primarily
used to exclude other conditions rather than confirm ALS
diagnosis. While advanced neuroimaging techniques show promise
in detecting early neural pathway changes, they are not yet part
of standard diagnostic criteria (Turner et al., 2009). However, the
active search for biomarkers for the detection of the disease does
not cease, different investigations carried out in the field of MRI
have provided a lot of information.

Advanced neuroimaging techniques have emerged as
promising tools for the detection and monitoring of ALS, offering
insights beyond conventional MRI.

Diffusion tensor imaging (DTI) has emerged as a particularly
valuable technique for investigating microstructural alterations
in ALS, with meta-analyses confirming consistent abnormalities
in white matter tracts, especially the corticospinal tract (Li et al.,
2012; Foerster et al., 2013). Despite its widespread application,
the diagnostic utility of DTI metrics has been limited by
methodological heterogeneity and the complex pathophysiology
of ALS, necessitating careful interpretation of imaging findings
(Bede and Hardiman, 2014). Recent studies have demonstrated
the potential of DTI parameters as biomarkers for ALS, showing
significant correlations with clinical measures and disease
progression (Baek et al., 2020). However, the sensitivity and
specificity of single-modality approaches remain suboptimal
for individual patient assessment. To address these limitations,
multimodal MRI approaches that integrate structural, diffusion,
and functional techniques have shown promising results,
improving diagnostic accuracy and sensitivity to longitudinal
changes in ALS (Pisharady et al., 2023).

Studies, where diffusion tensor imaging (DTI) has been
applied, have shown significant alterations in fractional anisotropy
(FA) and mean diffusivity (MD) values in ALS patients compared
to healthy controls, and these changes correlate with disease
progression and functional impairment (Chió et al., 2014).
Nevertheless, DTI techniques have limitations to reliance on
Gaussian diffusion models, which oversimplify the complex
microstructure of degenerating white matter (Assaf and
Pasternak, 2008). Diffusion kurtosis imaging (DKI) addresses
these limitations by quantifying non-Gaussian water diffusion,
revealing microstructural features such as axonal density, dendritic
complexity, and glial reactivity–key pathological hallmarks in ALS
(Jensen and Helpern, 2010).

DKI captures non-Gaussian water diffusion properties, offering
more detailed information about tissue complexity and cellular
barriers than conventional DTI. Studies implementing DKI have
revealed significant alterations in mean kurtosis (MK) values in
the motor cortex and along the CST of ALS patients, potentially
serving as earlier and more sensitive markers of neurodegeneration
(Andica et al., 2020; Chen et al., 2017). These findings suggest
that DKI metrics might detect pathological changes even before
conventional DTI parameters show significant alterations (Welton
et al., 2019). However, inconsistencies in analytical approaches and
limited focus on extramotor pathways hinder clinical translation
(Bede and Hardiman, 2018).
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Recent developments in fiber tractography, combining both
DTI and DKI approaches, have enabled more comprehensive
mapping of white matter pathway alterations in ALS. These
advanced tractography methods have revealed specific patterns
of degeneration along the CST, with changes often beginning in
the primary motor cortex and progressing causally, offering new
perspectives on the pathophysiological mechanisms underlying
ALS progression (Anand et al., 2023).

Despite advances in neuroimaging techniques, there remains a
critical need for sensitive and reliable biomarkers that can detect
early microstructural changes in amyotrophic lateral sclerosis.
While diffusion tensor imaging has shown promise in identifying
white matter alterations, its inability to capture non-Gaussian
water diffusion potentially limits its sensitivity to complex tissue
changes (Steven et al., 2014). Our research proposes that DKI
assessment within sensorimotor tracts will reveal distinct patterns
of microstructural degeneration in ALS patients, with metrics
that correlate significantly with clinical measures of upper motor
neuron dysfunction and disease progression. The application of
DKI metrics is expected to demonstrate superior sensitivity in
detecting pathological changes compared to conventional diffusion
tensor parameters, especially in regions where traditional measures
remain within normal ranges (Steven et al., 2014). Moreover,
the integration of advanced 3D fiber tractography techniques
will provide unprecedented visualization of these microstructural
alterations, offering a comprehensive spatial mapping of disease-
related pathology along these critical white matter pathways.
This multi-modal approach aims to establish DKI as a robust
biomarker for detectingmicrostructural alterations in ALS patients,
potentially advancing our understanding of the disease’s underlying
pathophysiology at the time of diagnosis.

2 Methods

2.1 Participants

The recruitment of ALS cases and controls was carried out in
the ALS unit of the University Hospital of Navarra (HUN) for three
consecutive years.

The inclusion criteria for the patient group was a diagnosis
of probable or defined ALS according to the El Escorial
criteria. Patients were excluded if they had a medical history
of cerebral ischemic events, other previous neurodegenerative or
neuropsychiatric diseases, significant respiratory insufficiency, or
contraindications for MRI. In the healthy control group, subjects
had no family history of neurodegenerative disease, no history
of severe head trauma, ischemic events, or any other serious
neurological, psychiatric, or other diseases.

This study was reviewed and approved by the local ethics
committee, and written informed consent was obtained from
all participants.

2.2 Data acquisition

The MRI studies were carried out on a 3T MAGNETON
Vida system (Siemens Healthineers, Erlangen, Germany) using a

32-channel head coil array, with the following imaging parameters
for each technique:

High-resolution T1-weighted structural images were acquired
using a three-dimensional magnetization-prepared rapid gradient-
echo (MPRAGE) sequence with inversion time (TI) = 1,020 ms,
echo time (TE) = 2.61 ms, repetition time (TR) = 2,100 ms, field
of view (FoV) = 230 × 230 mm2, acquisition matrix = 256 ×

256, and 192 sagittal slices. The sequence employed a GRAPPA
acceleration factor of 3, yielding an isotropic voxel resolution
of 0.9 mm3.

The diffusion weighting data were acquired using a multi-
shell acquisition protocol with 64 diffusion-encoding directions.
The protocol included three b-values (b = 0, 1,000, and 2,000
s/mm2) to enable advanced diffusion modeling, resulting in a
total of 140 diffusion-weighted volumes, each containing 66
anatomical slices. The sequence parameters were: echo time
(TE) = 91 ms, repetition time (TR) = 3,800 ms, with a field
of view (FoV) = 200 × 200 mm2, and acquisition matrix =
100 × 100. The protocol employed a simultaneous multi-slice
(SMS) acceleration factor of 3 and GRAPPA parallel imaging
acceleration factor of 2, resulting in an isotropic voxel resolution
of 2 mm3.

Clinical and neurophysiological data were obtained
concurrently with MRI acquisition. Functional status was
evaluated using the Amyotrophic Lateral Sclerosis Functional
Rating Scale-Revised (ALSFRS-R) and disease progression rate
was calculated as (48 - ALSFRS-R score)/symptom duration
in months.

2.3 MRI analysis

2.3.1 Data preprocessing
The diffusion-weighted and T1-weighted images were

visually inspected for possible acquisition problems such as
motion, susceptibility, and artifact noise. As a first step, all
acquisitions were subjected to an initial pre-processing to correct
acquisition problems.

All raw diffusion scans were denoised using the Diffusion
Imaging in Python (DIPY https://dipy.org/index.html)
(Garyfallidis et al., 2014) software package applying self-supervised
denoising via statistical independence (Fadnavis et al., 2020)
and motion corrected (Jenkinson and Smith, 2001). Distortion
susceptibility was corrected using topup (Andersson et al., 2003) of
FSL’s (Jenkinson et al., 2012). Before performing the susceptibility
correction, Synb0-DiscCO (Schilling et al., 2020) was used to
synthesize a distortion-free image b = 0. Eddy current correction
is performed using eddy (Andersson and Sotiropoulos, 2016) of
FSL implementation, the b matrix was rotated to preserve the
correct orientation information after the eddy current and tilt
angle corrections (Leemans and Jones, 2009). Finally, a Gibbs
ring correction is applied to reduce artifacts in the white matter
(Veraart et al., 2016). Additionally, the T1-weighted images were
denoised using the Non-Local Means (Coupe et al., 2008).

All diffusion image processing, including both the
reconstruction of diffusion models and fiber tracking procedures,
was performed using the DIPY software package (version 1.9.0), a
comprehensive library for diffusionMRI analysis and tractography.
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2.3.2 DWI reconstruction
Diffusion reconstruction was performed using two

complementary models. First, DKI (Jensen and Helpern, 2010;
Henriques et al., 2021) was implemented to obtain enhanced
diffusion metrics, including fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD).
Subsequently, Multi-Shell Multi-Tissue Constrained Spherical
Deconvolution (MSMT-CSD) (Jeurissen et al., 2014) was applied
to optimize tractographic reconstruction, allowing a more accurate
characterization of tract anatomy.

Prior to diffusion metric computation, a binary mask was
applied to the diffusion-weighted images to exclude background
noise and non-brain tissue. The DKI model was then fitted to the
masked diffusion data to estimate multiple diffusion metrics: FA,
AD, MD, and RD. These metrics were computed for each voxel
within the brain mask to quantify local water diffusion properties.

For the reconstruction of fiber orientations, T1-weighted
images were first used to perform tissue segmentation,
distinguishing between white matter, gray matter, and
cerebrospinal fluid. These tissue maps were then incorporated into
the Multi-Shell Multi-Tissue Constrained Spherical Deconvolution
(MSMT-CSD) method. This technique takes advantage of both
the tissue segmentation and the additional information provided
by different b-values to separate the contributions from different
tissues and provide amore accurate estimation of fiber orientations.
The response function for each tissue was estimated in a tissue-
specific manner using an iterative self-calibration process adapted
for multi-shell data.

2.3.3 DWI fiber traking
The fiber tracking of white matter was performed using the

parallel transport algorithm (Aydogan and Shi, 2021), which
preserves the local differential geometry of diffusion space. To
ensure anatomical specificity, the tractography was constrained
using tissue-specific masks derived directly from MSMT-CSD
analysis and T1 segmentation.

For quantitative analysis of the reconstructed tracts, scalar
metrics were mapped onto each streamline using DIPY. This
process involved interpolating the scalar values from the DKI
metric maps at each point along the streamlines, allowing for
detailed characterization of microstructural properties along the
entire length of each tract. The mapping was performed using
a trilinear interpolation method to ensure accurate sampling of
the scalar values while maintaining the native resolution of the
diffusion data.

2.3.4 Tract segmentation analysis
In our tract segmentation analysis, each reconstructed white

matter tract is divided into 100 segments through the creation
of assignment maps in a common model space. This approach,
as described in previous studies (Garyfallidis et al., 2012, 2014),
allows us to capture local variations in diffusion properties—such
as fractional anisotropy (FA)—that might be overlooked when
the entire tract is analyzed as a single entity. By assigning each
point on a streamline to its nearest segment based on Euclidean

distance, we preserve the natural distribution of points without re-
sampling, ensuring that regional differences in tract integrity are
accurately reflected.

2.3.5 TBSS
Following the initial preprocessing steps and diffusion metric

computation described above, the data were further analyzed
using Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006).
Using the previously obtained diffusion metrics (FA, MD, AD, and
RD) derived from the DKI model, all subjects’ FA images were
nonlinearly registered to a common space. Next, a mean FA image
was created and thinned to generate a mean FA skeleton, which
represents the centers of all white matter tracts common to the
group. This skeleton was thresholded at FA > 0.2 to exclude
peripheral tracts with high inter-subject variability and partial
volume effects. Subsequently, each subject’s aligned FA data was
projected onto this skeleton for voxelwise cross-subject statistical
analysis. The transformation matrices derived from the FA images
were then applied to the other diffusion metrics (MD, AD, and RD)
to allow for multi-metric voxelwise statistical analysis.

2.4 Statistical analysis

Demographic comparisons between ALS patients and healthy
controls were conducted using appropriate statistical tests. Age
differences were assessed using two-sample independent t-tests,
while gender distribution was analyzed using chi-squared test. For
the ALS group, clinical characteristics including disease duration,
ALSFRS-R scores, and progression rates were summarized using
descriptive statistics.

Neuroimaging analyses were performed using two
complementary methodological approaches to comprehensively
assess white matter alterations.

The first approach is whole brain analysis, voxelwise statistical
tests were performed using FSL’s randomize tool, implementing
nonparametric permutation tests with 500 permutations. The
analysis included age and sex as covariates to control for
demographic effects. Correction for multiple comparisons was
performed using threshold-free cluster enhancement (TFCE), and
statistical significance was set at p < 0.05 corrected. This dual
analytic approach allowed both detailed examination of specific
tracts of interest and comprehensive assessment of whole-brain
white matter changes.

The second approach consists of an analysis using the Bundle
Analytics (BUAN) module within DIPY to examine tract-specific
changes. Linear mixed models (LMM) were implemented to
analyze differences in diffusion metrics along the corticospinal
tract and associated white matter pathways. The statistical model
incorporated group status as the main factor of interest while
controlling for age, sex, and ALSFRS-R scores as covariates.
Subject-specific random effects were included to account for
individual variability in tract measurements. Statistical significance
was assessed using a hierarchical approach with multiple thresholds
(p < 0.05 and p < 0.01) to control for multiple comparisons across
tract profiles.
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TABLE 1 Comparison between patients and controls.

Characteristics Controls Patients p-Values

n 37 33

Age, years 60.8± 9.7 64.6± 10.35 0.114a

Gender (male, female) 16, 21 19, 14 0.144b

aTwo-sample independent t-test.
bChi-squared test.

Correlation analyses examined the relationships between
diffusion metrics and clinical variables. Pearson’s correlation
coefficients were calculated to assess the associations between the
average value of diffusion parameters (FA, MD, AD, and RD)
along fiber tracts and clinical measures, specifically the ALSFRS-R
scores and disease progression rate. Statistical significance was set
at p < 0.05.

3 Results

3.1 Demographic and clinical
characteristics

The study included 33 ALS patients (19 males, 14 females) and
37 controls (16 males, 21 females), with no significant differences
in age (64.6 ± 10.35 vs. 60.8 ± 9.7 years, p = 0.114) or gender
distribution (p = 0.144) (Table 1).

Among ALS patients, the distribution of symptom onset
patterns was spinal onset being predominant (66.7%, n = 22),
followed by bulbar onset (27.3%, n = 9), and a small proportion
presenting with generalized onset (6.0%, n = 2) (Table 2). The
analysis of disease characteristics revealed that patients had a
mean symptom duration of 27.46 ± 20.40 months at the time of
MRI acquisition (Table 2). Laterality of initial symptoms show no
significant differences in distribution (p = 0.307). Functional status
assessment indicated moderate impairment, with a mean ALSFRS-
R score of 39.09± 5 out of 48, and a disease progression rate of 0.38
± 0.38. One patient was excluded from the ALSFRS-R analysis due
to missing data (Table 2).

3.2 Whole-brain white matter analysis

Tract-Based Spatial Statistics (TBSS) analysis revealed
significant white matter alterations in all diffusion metrics
with a left predominance (Figure 1). We corrected for multiple
comparisons using TFCE and p < 0.05 for the MD, RD, and AD
metrics and p < 0.05 uncorrected for the FA diffusion metric.

Multiple comparison correction was not applied to the FA
analyses because the effects on FA were more subtle than on
the other diffusion metrics. When applying multiple comparison
correction to FA, an insufficient number of voxels exceeded
the threshold to allow meaningful interpretation of corticospinal
tract alterations. Uncorrected FA results are presented as
exploratory findings.

MD showed increased bilateral diffusivity (z = 28–68),
predominantly affecting the corona radiata and internal capsule.

TABLE 2 Clinical characteristics of ALS patients.

Characteristics Values p-Values

Symptom onset [n, (%)]

Bulbar 9 (27.3)

Spinal 22 (66.7)

Generalized 2 (6.0)

Symptom duration before MRI (months) 27.46± 20.40 -

ALSFRS-R/48 score 39.09± 5b -

Disease progression rate 0.38± 0.38b -

Initial symptoms of laterality [n, (%)] 0.307a

Left 10 (30.3)

Right 8 (24.2)

Others 15 (45.5)

ALSFRS-R, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised.
aChi-squared test.
bOne patient was excluded because of missing ALSFRS-R score.

FA showed markedly decreased values (shown in red/brown)
in the anterior and superior regions of the white matter, with
marked involvement of the corticospinal tract. RD showed a
pronounced increase in diffusivity (shown in blue) concentrated in
the central areas of the white matter, from the corona radiata to
the internal capsule. In addition, AD showed increased diffusivity
along the white matter tracts. The most significant changes for
MD, FA, and RD were observed in anterior and superior brain
regions (z = 18–48).

3.3 Alterations of the corticospinal tract in
fiber tracking

The corticospinal tract, being the principal motor pathway
and a known site of pathology in ALS, demonstrated
the most pronounced changes in our analysis. As shown
(Figure 2), both left and right CST showed altered
DKI parameters along their trajectories, with significant
differences (p < 0.05).

3.3.1 Left corticospinal tract
Analysis of the left corticospinal tract revealed significant

microstructural alterations in multiple diffusion metrics (Figure 3).
MD values showed higher mean values in patients (red line)
compared to controls (green line), with statistically significant
differences particularly evident at segments 50–90 (p < 0.05)
and more pronounced differences at segments 70–75, 85–90 (p <

0.01). FA trajectories showed maximum values around segments
35–45, where both groups reached peaks between 0.75–0.80, and
patients exhibited lower mean values and significant reductions
compared to controls at segments 35–40 (p < 0.05). FA differences
became most evident in segments 90–95, where the patient group
consistently showed reduced values. RD analysis revealed similar
trajectory patterns between groups with initially elevated peaks at
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FIGURE 1

Voxel-wise comparison of di�usion metrics (MD, FA, RD, and AD) displayed on axial brain slices (z = –32 to 68 mm). Green outlines show a white

matter skeleton. Blue regions indicate areas where patients > controls, while brown/red regions (in FA) show areas where patients < controls.

Images in radiological convention (R: Right, L: Left).

segments 0–5, followed by similar trajectories between segments.
A notable separation occurred at segments 35–40 and 80–95,
where patients showed elevated mean values compared to controls,
with multiple segments reaching statistical significance thresholds
(p < 0.05). AD demonstrated significantly higher patient values at
segments 55–85 (p < 0.05), and particularly prominent differences
at segments 65–85 (p < 0.01). The AD trajectory showed a
characteristic pattern with elevated values in the middle portions
(segments 20–60), reaching peaks of approximately 0.00175 mm2/s
in the patient group, before gradually decreasing toward the
tract endpoints.

3.3.2 Right corticospinal tract
The right corticospinal tract exhibited a pattern of changes

that revealed distinctive microstructural alterations in multiple
diffusion metrics (Figure 4). MD values in patients (red line)
showed similar trajectories to controls (green line) with subtle
variations, particularly in segments 70–100 where patients showed
slightly elevated values, although statistical significance was not
achieved (p < 0.05). FA demonstrated maximal values in segments

35–45, reaching peaks of approximately 0.70–0.75, with patients
showing consistently lower mean values. Notable reductions in
FA were observed in segments 30–35 (p < 0.01), primarily
affecting the central region of the tract. RD analysis showed an
initial peak in segments 0–5, followed by stable trajectories in
both groups. The patient group showed slightly elevated RD values
throughout the tract length, with scattered segments reaching
statistical significance (p < 0.05), particularly at segments 5–10 and
85–90. AD values showed the most prominent differences between
groups, with controls showing higher mean values, particularly
at segments 25–40, where peak values reached approximately
0.00175 mm2/s and patients showing slightly lower values, and
notable differences at segments 80–90, although most differences
remained at significance level p < 0.05. The AD trajectory
showed a characteristic pattern with elevated values in the middle
portions (segments 25–50) before gradually decreasing toward the
endpoints of the tract reaching significance at segments 30–40
and 75–80 at p < 0.05. These findings were visualized in three-
dimensional reconstructions, with color-coded representations
highlighting the spatial distribution of these alterations along the
length of the tract. This pattern of changes, although similar to
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FIGURE 2

Analysis of bilateral CST in ALS patients vs. controls, showing (a) left MD, (b) right MD, (c) left FA, (d) right FA, (e) left RD, (f) right RD, (g) left AD and (h)

right RD, for both groups along tract segments (0–100). Blue bars represent the p-value of the two-sample test, with blue and red thresholds

indicating statistical significance (p < 0.05 and p < 0.01).
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FIGURE 3

3D representation of the statistical significance (p > 0.05) of the (a) MD, (b) FA, (c) RD, and (d) AD over the left CST tract. Red stripe significant values,

blue stripe non-significant values.

that observed in the left corticospinal tract, showed a distinctive
regional involvement.

Analysis of the aforementioned corticospinal tracts revealed
differences in diffusion metrics between ALS patients and controls.
The pattern of changes suggests a possible superior-to-inferior
gradient of pathological involvement, which may reflect the
progressive nature of ALS. Moreover, the alterations showed
distinct patterns of involvement between the left and right
hemispheres, suggesting potential asymmetric progression of
pathology in ALS, a finding that may have important implications
for understanding disease progression.

3.4 Extended white matter pathway
involvement

Our analysis revealed that white matter alterations in ALS
extend beyond the primary motor pathways, affecting several
associated tracts crucial for motor function and cognitive

processing. This broader involvement may help explain the
spectrum of clinical manifestations observed in ALS patients.

3.4.1 Frontopontine tract
Analysis of the left frontopontine tract revealed distinctive

patterns of microstructural alterations (Figure 5). In the left tract,
MD demonstrated significant differences at segments 60–85 (p <

0.05) with two segments reaching statistical significance (p <

0.01). FA reached maximal values of approximately 0.70–0.75 at
segments 30–45, and patients showed subtle reductions throughout
the tract reaching statistical significance at segments 5–10, 30–
35, and 95–100 (p < 0.05). RD exhibited consistent elevations
in patients across all segments reaching statistical significance at
segments 30–35 and 85–90 (p < 0.05). AD values showedmarkedly
elevated trajectories in patients compared to controls, particularly
in segments 60-85 (p < 0.05), with peak values reaching
approximately 0.00175 mm2/s in segments 20–25, Figure 5 shows
the projection in the reconstructed 3D tracts.
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FIGURE 4

3D representation of the statistical significance (p > 0.05) of the (a) MD, (b) FA, (c) RD, and (d) AD over the right CST tract. Red stripe significant

values, blue stripe non-significant values.

3.4.2 Parietopontine tract
Analysis of left parietopontine tracts revealed distinct patterns

of microstructural changes (Figure 6). In the left tract, MD
measures demonstrated increased values in patients, particularly
between segments 60–85 (p < 0.05). FA showed maximum
values around segments 35–45 (approximately 0.75–0.80), with
patients showing subtle reductions throughout reaching statistical
significance at segments 0–5, 85–100 (p < 0.05). AD values showed
markedly elevated trajectories in patients compared to controls
at segments 20–40 (peaking at approximately 0.00165 mm2/s)
and maintained higher values at segments 60–80, with consistent
statistical significance (p < 0.05), Figure 6 shows the projection in
the reconstructed 3D tracts.

3.5 Clinical-radiological correlations

Correlations between diffusivity metrics (MD, FA, RD, and
AD) and the clinical parameters evaluated (ALSFRS-R and rate

of progression) did not reach statistical significance. The patterns
of microstructural alteration observed in the white matter tracts
analyzed showed a spatial distribution consistent with the typical
clinical manifestations of ALS. However, the finding of greater
involvement in the left hemisphere in our study population did
not correlate with the laterality of the onset of motor symptoms
reported by the patients.

4 Discussion

Our findings provide several insights into ALS
pathophysiology. First, the asymmetric nature of white matter
changes suggests that disease progression may not be uniform
across hemispheres. Second, the involvement of non-motor
pathways supports the contemporary view of ALS as a complex
neurodegenerative disorder affecting multiple neural systems.

This study employed a dual analytical approach to assess white
matter alterations in ALS patients in a comprehensive manner.
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FIGURE 5

Analysis of left FPT in ALS patients vs. controls, showing (a) MD and (b) FA for both groups across tract segments (0–100). Blue bars represent the

p-value of the two-sample test, with blue and red thresholds indicating statistical significance (p < 0.05 and p < 0.01). This is complemented by a 3D

representation of the left FPT tract showing in red the segments where there are significant di�erences between groups (p < 0.05) no significant

di�erences were found on the right side.

The combination of whole-brain voxelwise analysis and tract-
specific examination allowed for a nuanced understanding of white
matter integrity.

DKI analysis in ALS patients revealed significant white matter
alterations compared to healthy controls. In neurodegenerative
diseases, overall white matter microstructural damage is typically
expressed by increased MD and decreased FA, whereas RD and
AD are more specific markers of myelin and axon degeneration,
respectively. Although our study reproduced most of the expected
results, it found a paradoxical increase in AD, suggesting a more
complex pattern of neurodegeneration.

The comprehensive pattern of involvement across multiple
diffusion metrics corroborates our tract-specific findings and
provides further evidence of asymmetric motor pathway
involvement in ALS. Left gray and white matter asymmetry

has been previously described in volumetric and DTI studies and is
postulated to represent an increased vulnerability in the dominant
motor cortex in right-handed patients, regardless of the laterality
of symptoms at disease onset (Devine et al., 2015; Menke et al.,
2012).

DKI analysis revealed significant white matter alterations,
with prominent changes in the CST and additional involvement
of the FPT and PPT tracts. The evidence, obtained by tract-
specific and whole-brain analyzes, demonstrates that white matter
degeneration extends beyond primary motor pathways, especially
involving sensorimotor integration regions (TPF segments 60–
80) and suggesting a pattern of disease spread along functionally
connected pathways.

Regarding the lack of statistical significance in the segments
proximal to the motor cortex observed in Figure 3, this
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FIGURE 6

Analysis of left PPT in ALS patients vs. controls, showing (a) MD and (b) FA for both groups across tract segments (0–100). Blue bars represent the

p-value of the two-sample test, with blue and red thresholds indicating statistical significance (p < 0.05 and p < 0.01). This is complemented by a 3D

representation of the left PPT tract showing in red the segments where there are significant di�erences between groups (p < 0.05) no significant

di�erences were found on the right side.

phenomenon can be explained by inherent limitations of
tractography reconstruction. The variability in the termination
of the reconstructed streamlines represents a known technical
challenge: some streamlines terminate prematurely due to
limitations in the tractography algorithm when faced with
areas of low anisotropy or fiber crossings, while others reach
the cortex with greater extension. This heterogeneity in the
reconstruction generates greater statistical variability in the
diffusion values projected precisely in these cortical segments,
reducing the statistical power to detect differences between
groups. This phenomenon has been documented in previous
tractography studies (Garyfallidis et al., 2012) and represents
a methodological limitation rather than a biological finding
in itself.

The findings, validated by both tract-specific (BUAN)
and whole-brain (TBSS) analyses, highlight ALS as an
integrative neural network disorder affecting motor

planning and execution. Three-dimensional reconstructions
confirm this spatial distribution of changes, which follows
a pattern parallel to that observed in the corticospinal
tract, providing evidence that ALS pathology impacts
networks beyond primary motor pathways and suggesting
broader implications for understanding the full spectrum of
the disease.

While our study establishes that DKI is sensitive to ALS-
related white matter pathology based on previous investigations
demostrating its superior performance compared to DTI (Zhu
et al., 2015; Huang et al., 2020), certain limitations must be
acknowledged. The limited sample size prevents consideration
of the substantial heterogeneity of ALS, both in terms of
phenotype and prognosis. Future research directions should focus
on multicenter cohorts to standardize protocols and expand
subtype-specific analyses. Combining DKI with other biomarkers
could further elucidate structure-function relationships in ALS,
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potentially refining its role in therapeutic trials and personalized
prognostic models.
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