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Age-related and sex-specific 
trends in sleep quality in children 
and adolescents 
Hugi Hilmisson1 , Solveig Dora Magnusdottir1* and 
Robert Joseph Thomas2 

1 MyCardio LLC, SleepImage R , Denver, CO, United States, 2 Division of Pulmonary, Critical Care 
and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 
United States 

Introduction: Strong developmental trends are well described in non-rapid 

eye movement (NREM) sleep characteristics but also seen in cyclic-alternating-

pattern (CAP). The latter shows a bimodal distribution: slow wave dominant (A1) 

complexes early in life and A2/A3 complexes later in life. This analysis aimed to 

assess trends in CAP-linked cardiopulmonary coupling (CPC) calculated Sleep 

Quality Index (SQI) from childhood through adolescence. 

Methods: Analysis of de-identified data from the SleepImage R  System (MyCardio 

LLC, Denver, CO, United States), using CPC-calculations evaluating integrated 

electrocortical-autonomic-respiratory interactions to derive sleep states, SQI, 

and combined with oxygen saturation, an apnea hypopnea index (AHI). 

Results: Forty-one thousand nights of continuous sleep recordings of ≥ 6 h 

in duration and ≥ 4 h of total sleep time (TST), with good signal quality 

(≥ 80%) from individuals < 18 years of age were included in the analysis (48% 

girls-52% boys). Age groups were defined as 2–5 years (preschool-age, 39% 

girls-61% boys), 6–9 years (school-age, 47% girls-53% boys), 10–13 years (early-

adolescent, 47% girls-53% boys), 14–17 years (late-adolescent, 52% girls-48% 

boys). In the cohort 20% had moderate- (AHI3% 5–10) and 8% severe sleep apnea 

(AHI3% ≥ 10). SQI is highest in school-aged children that are expected to sleep 

for 9–12/24 h with no sex differences observed (75.8 ± 15.8 and 75.3 ± 16.2; 

p = 0.06). Preschool-aged children are expected to sleep for 10–13/24 h, have 

a slightly lower SQI compared to school-aged children, with SQI higher in girls 

(73.4 ± 17.5 and 71.6 ± 19.2; p < 0.001). During early adolescence, when sleep 

duration is expected to be 8–10/24 h, SQI is significantly lower in girls compared 

to boys (70.5 ± 17.4 and 71.8 ± 17.0; p < 0.001). In late adolescence, SQI decline 

continues, but at a slower rate in girls who, at this age, girls have higher SQI than 

boys (63.1 ± 18.3 and 60.5 ± 18.2); p < 0.001. AHI3% is significantly lower in girls 

in all age-groups; it is lowest in school-age children and gradually increases 

during adolescence. 

Conclusion: Children seem to reach their full potential in sleep stability and 

quality around school-age. In early adolescence, measured sleep stability and 

quality start to gradually decline, with the decline starting earlier in girls while 

larger in boys during the adolescent years. 
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Graphical abstract 

1 Introduction 

Many physiological functions, including sleep duration and 
sleep patterns, are associated with age-related changes during 
childhood and adolescence. With progressing age sleep duration 
declines, with recommended sleep duration (per 24 h) for 
preschool-aged children 10–13 h, school-aged children 9–12 h 
and adolescents is 8–10 h (Paruthi et al., 2016). Sleep patterns 
also change with polysomnography (PSG) recorded amount and 
amplitude of non-rapid eye movement (NREM) showing slow wave 
sleep (SWS; 1–4 Hz delta EEG) decreasing, and the duration of 
NREM stage-1 and stage-2 increasing (Scholle et al., 2011). Cyclic 
alternating patterns (CAP) is a measure of EEG-estimated NREM-
sleep stability, which increases during childhood, peaks at puberty, 
and then decreases during adolescence (Parrino et al., 2012; Parrino 
et al., 2014). After adolescence, an increase in CAP continues with 
advancing age. The early increases are dominated by slow-wave 
phasic complexes (A1 CAP), while later-life CAP shows substantial 
dominance of faster EEG activities (A2/A3 CAP). 

Restorative and regenerative functions of sleep depend on 
age and adaptation to demands. In healthy children the rapid 
advances in growth, cognition and behavior are reflected in sleep 
duration and sleep architecture, but sex dierences in sleep may be 
more diÿcult to capture (Lokhandwala and Spencer, 2022; Mason 

Abbreviations: ANOVA, analysis of variance; AHI, apnea hypopnea index; 
ANS, autonomic nervous system; CPC, cardiopulmonary coupling; CSA, 
central sleep apnea; CAP, cyclic alternating pattern; CVHR, cyclic variation 
of heart rate; EEG, electroencephalogram; e-LFCBB, elevated low-frequency 
coupling broad-band; e-LFCNB, elevated low-frequency coupling narrow-
band; FDA, Food and Drug Administration; HRV, heart rate variability; HIPAA, 
Health Insurance Portability and Accountability Act; HFC, high-frequency 
coupling; PSG, polysomnography; PRV, pulse rate variability; LFC, low-
frequency coupling; n-CAP, non-cyclic alternating pattern; MDDS, medical 
device data system; NREM, non-rapid eye movement; OSA, obstructive 
sleep apnea; PPG, photoplethysmography; PLETH, plethysmography; REM, 
rapid eye movement; SDB, sleep disordered breathing; SR, SleepImage Ring; 
SE, sleep efficiency; SF, sleep fragmentation; SWS, slow wave sleep; SQI, 
sleep quality index; SaMD, Software as a Medical Device; TVV, tidal volume 
variability; TST, total sleep-time; WASO, wake after sleep onset. 

et al., 2021). During adolescence, when children reach puberty, 
sexual hormones and their related changes begin to aect sleep 
architecture and sex dierences in sleep quality become more 
evident (Pengo et al., 2018). After puberty, the anatomy of the 
upper airway and its collapsibility, arousal response and ventilatory 
control changes which can influence sex dierences in prevalence 
of sleep disordered breathing (SDB) (Lozo et al., 2017), which may 
impact sleep quality. 

Studies comparing sex dierences in sleep quality derived from 
EEG based PSG sleep studies (Barbato, 2021) have found that 
females often report lower subjective sleep quality than males, 
despite having better sleep quality when objectively evaluated with 
PSG (Markovic et al., 2020; Mong and Cusmano, 2016). 

Non-EEG methods have been developed to assess sleep quality, 
including analysis of movement, peripheral arterial tone, and 
autonomic activity in respiratory and cardiovascular interactions. 
Cardiopulmonary-coupling (CPC) analysis provides an integrated 
output of electrocortical modulation of cardiovascular and 
respiratory-autonomic interactions, a foundation for sleep quality 
evaluation. An embodiment of this technology is the SleepImage R 

System (United States Food and Drug Administration, (US FDA-
cleared) and European Union Medical Device Regulatory (EU-
MDR CE-marked) compliant). The input signals are heart rate 
variability (HRV) and respiratory tidal volume variability (TVV), 
and the output including sleep stability measures and the Sleep 
Quality Index (SQI) which is heavily weighted by stable NREM 
sleep [high frequency coupling (HFC)]. Combining the CPC-
output with oxygenation information (SpO2), a PSG-equivalent 
FDA cleared apnea hypopnea index (AHI) is generated (Al Ashry 
et al., 2021a,b; Lu et al., 2023; Magnusdottir et al., 2020; Thomas 
et al., 2005; Thomas et al., 2014; Wood et al., 2020). In children, 
the SQI has demonstrated relationship with cardiometabolic health 
(Hilmisson et al., 2019; Magnusdottir et al., 2022), cognition 
and behavior (Magnusdottir et al., 2021), memory and learning 
(Yuanjie et al., 2025). 

The aim of this study was to estimate developmental dynamics 
of sleep quality/stability, age and sex related trends across 
childhood and adolescence, based on the CPC-calculated SQI. 
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2 Materials and methods 

This retrospective analysis of de-identified data analyzed by the 
SleepImage System (MyCardio LLC, Denver, CO, United States; 
SleepImage), a Health Insurance Portability and Accountability 
Act (HIPAA) compatible Software as a Medical System (SaMD) 
that is US FDA-cleared (K182618) and EU-MDR CE compliant. 
The SaMD can analyze plethysmography (PLETH) and SpO2 data 
based on data acquisition characteristics from approved devices. 
The data in this analysis was collected with the SleepImage Ring 
(SR), that includes a photoplethysmography-sensor (PPG) that 
collects continuous PLETH-signal and SpO2-data. The SR connects 
over Bluetooth to the SleepImage Mobile Application, a non-
Medical Device Data System (MDDS) that stores the data during 
the sleep recording; and at the end of recording the data is 
transferred to the SleepImage-SaMD cloud from the MDDS for 
automatic analysis. 

Data including age, gender and sleep output was extracted 
from the SleepImage System, a HIPAA compliant database, to 
analyze age and sex related trends in sleep quality comparing 
girls and boys, based on the FDA-cleared and proprietary Sleep 
Quality Index (SQI). On average there were 3-nights of sleep 
recordings for each participant in the analysis. Informed consent 
for this analysis was not required as the data extracted was de-
identified, permitting use under HIPAA and CCPA; for further 
information, please refer to the SleepImage Privacy Policy. No 
clinical data was accessible. 

2.1 Cardiopulmonary coupling 

The CPC-method applies mathematical methodologies to 
generate the output, based on physiological measures calculating 
heart (HRV) or pulse (PRV) rate variability (R-R interval time 
series) and fluctuations in R-wave/pulse-wave amplitude induced 
by respiration to detect changes in breathing (TVV, tidal volume 
variability). These outputs are strongly modulated by sleep-wake 
state and stages. The cross spectral power and coherence of the 
RR-time series and corresponding TVV-time series are calculated 
for consecutive windows and a product of coherence and cross-
spectral power is used to obtain the ratio of coherent cross 
power in the low frequency [Low frequency Coupling (LFC), 
0.01–0.1 Hz] to that in the high-frequency band [High Frequency 
Coupling (HFC), 0.1–0.4 Hz]. The logarithm of the high to low 
frequency CPC-ratio is then computed to yield a continuously 
and moving average of overlapping CPC windows and output 
of stable-NREM sleep and unstable-NREM sleep, REM-sleep and 
wake. Graphing CPC at relevant frequencies (ordinate) vs. time 
(abscissa) provides the SleepImage spectrogram (Al Ashry et al., 
2021b; Thomas et al., 2005; Hilmisson et al., 2020). 

Stable NREM-sleep relates to a global condition of brain 
oscillation stability when all the subsystems that control and 
influence the sleep mechanisms are in balance/harmony. Stable 
NREM-sleep is characterized by stable breathing and stable 
oxygenation, high vagal tone, non-cyclic alternating pattern (n-
CAP) on the electroencephalogram (EEG) (Parrino et al., 2012), 
continuous occurrence of slow oscillations, high delta power, blood 

pressure dipping and stable arousal threshold. This state could 
be considered as “eective” (performing core functions) NREM-
sleep. Eective sleep enables the desirable functions of sleep across 
multiple dimensions (e.g., neuronal networks, cardiovascular, 
metabolic, immune etc.) such that spending periods in this state 
enables recovery and restorative processes. 

Unstable NREM-sleep is a marker of sleep instability that has 
exactly the opposite features of Stable NREM-sleep, with variability 
in TVV, cyclic variation in heart rate (CVHR), CAP on EEG, low 
relative delta power, non-dipping of blood-pressure and unstable 
arousal thresholds. This state may be considered as “ineective” 
NREM-sleep. Two pathological patterns are calculated during 
Unstable sleep; (1) elevated low frequency coupling broad-band (e-
LFCBB), an indicator of sleep pathology such as pain, insomnia, 
anxiety and/or disordered breathing patterns like Obstructive Sleep 
Apnea (OSA) and Upper Airway Resistance Syndrome (UARS) 
and (2) elevated low frequency coupling narrow-band (e-LFCNB) 
identifying a periodic-type breathing and heart-rate patterns 
indicating sustained periods of periodic breathing and central sleep 
apnea (CSA) or “physiologic” periodicity due to Periodic Limb 
Movements in Sleep (PLMS) when drop in SpO2 is not observed 
(Al Ashry et al., 2021b; Thomas et al., 2007; Thomas et al., 2005; 
Thomas et al., 2014; Wood et al., 2020). The Sleep Quality Index 
(SQI) is a proprietary summary index of the CPC biomarkers of 
sleep quality, sleep stability, fragmentation, and periodicity, which 
provides a meaningful unit of measure of sleep health. The SQI 
is displayed on a scale of 0–100 with expected values for both 
children and adults (Hilmisson et al., 2019; Magnusdottir et al., 
2020; Magnusdottir et al., 2022; Yuanjie et al., 2025). 

2.2 Outcome measures 

The primary outcome measures were to evaluate age-related 
and sex-specific trends in SQI during childhood and adolescence, 
based on pre-defined age-groups. 

2.3 Statistical analysis 

Descriptive statistics are presented as means with standard 
deviation (± SD). Analysis of variance (ANOVA) was utilized to 
investigate dierent categorical variables (groups) including age 
and genders on dependent variables measuring sleep quality, sleep 
stability, sleep fragmentation and sleep apnea. The calculations 
were based on a simple average, not a weighted average. The 
Shapiro-Wilk test was used to test for normality, which revealed 
that all dependent variables for which results are presented 
are normally distributed. Levene’s test was used to assess 
homogeneity of variances. 

Analysis of variance was chosen as the statistical method due 
to its eectiveness in assessing whether the means of two or more 
groups are significantly dierent from each other. ANOVA was 
chosen in favor of multiple t-tests for its reduced risk of type I error 
when comparing dierences among group means. Post hoc analysis 
was performed using the Games-Howell post hoc method for 
pairwise comparisons to identify dierences between the groups. 

Frontiers in Neuroscience 03 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1581929
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1581929 July 25, 2025 Time: 19:47 # 4

Hilmisson et al. 10.3389/fnins.2025.1581929 

Pearson’s correlation (r) analysis was utilized to assess 
associations between two quantitative variables, separately for each 
sex. For all statistical analysis p < 0.01 was considered significant. 

SciPy version 1.10.1 and Pingouin version 0.5.5 were used 
for the analysis. 

1 https://scipy.org 
2 https://pingouin-stats.org/build/html/index.html 

3 Results 

3.1 Sleep recordings 

Forty-one thousand nights of sleep recordings of ≥ 6 h in 

duration and ≥ 4 h of total sleep time (TST), with good signal 
quality (≥ 80%) from individuals < 18 years of age were included 

in the analysis (48% girls). Age groups were defined as 2–5 years 

TABLE 1 Comparison of sleep quality index (SQI), on pre-defined sleep apnea groups based on the apnea hypopnea index-3% (AHI3%; group-1 
AHI3% < 2, group-2 AHI3% 2–5, group-3 AHI3% 5–10, group-4 AHI3% > 10) stratified based on pre-defined age groups (mean ± SD). 

Age gropus 2-5 years; n = 3,738 
G1 = 1,380 (36.8%) 
G2 = 1,351 (36.0%) 
G3 = 721 (19.2%) 
G4 = 301 (8.0%) 

6-9 years; n = 14,025 
G1 = 6,030 (42.8%) 
G2 = 5,042 (35.8%) 
G3 = 2,195 (15.6%) 

G4 = 813 (5.8%) 

10-13 years; 
n = 12,430 

G1 = 4,869 (39.0%) 
G2 = 4,218 (33.8%) 
G3 = 2,369 (19.2%) 

G4 = 996 (8.0%) 

14–18 years; 
n = 10,807 

G1 = 2,982 (27.5%) 
G2 = 3,595 (33.1%) 
G3 = 2,964 (27.3%) 
G4 = 1,309 (12.1%) 

Group-1 AHI3% < 2 81.5 (± 15.7) 81.8 (± 13.8) 78.4 (± 15.3) 70.8 (± 18.5) 

Group-2 AHI3% 2–5 71.8 (± 14.7) 73.5 (± 13.7) 70.8 (± 14.7) 64.8 (± 14.9) 

Group-3 AHI3% 5–10 62.5 (± 18.1) 67.1 (± 16.7) 62.1 (± 16.6) 54.4 (± 16.3) 

Group-4 AHI3% > 10 56.2 (± 23.1) 63.4 (± 21.8) 59.1 (± 20.2) 50.3 (± 17.7) 

P-values P-values P-values P-values 

Group-1 vs. Group-2 < 0.001 < 0.001 < 0.001 < 0.001 

Group-1 vs. Group-3 < 0.001 < 0.001 < 0.001 < 0.001 

Group-1 vs. Group-4 < 0.001 < 0.001 < 0.001 < 0.001 

Group-2 vs. Group-3 < 0.001 < 0.001 < 0.001 < 0.001 

Group-2 vs. Group-4 < 0.001 < 0.001 < 0.001 < 0.001 

Group-1 37.1% (n = 15,261), Group-2 34.5% (n = 14,206), total with AHI < 5 71.6% (n = 29,467). SQI, sleep quality index; AHI, apnea hypopnea index; SD, standard deviation. 

FIGURE 1 

Trends in the sleep quality index (SQI) and the apnea hypopnea index (AHI) stratifying the cohort based on age in 3 years increments as 
preschool-aged children (2–5 years), school-aged children (6–9 years), early adolescents (10–13 years) and late adolescents (14–17 years). 
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(n = 3,738; 39% girls/61% boys, average three-nights), 6–9 years 
(n = 14,025; 47% girls/53% boys, average three-nights), 10–13 years 
(n = 12,430; 47% girls/53% boys, average three-nights), 14–17 years 
(n = 10,087; 52% girls/48% boys, average four-nights). 

The dataset that was expected to be clinically enriched and 
skewed toward children evaluated for sleep disordered breathing 
(Table 1); 37% did not have sleep apnea (AHI3% < 2), 35% had mild 
sleep apnea (AHI3% 2–5), 20% had moderate sleep apnea (AHI3% 

5–10) and 8% severe sleep apnea (AHI3% ≥ 10). A prevalence 
marginally higher than could be expected in the general population 
(Magnusdottir and Hill, 2024). 

3.2 Sleep quality index 

Based on pre-defined age-groups, age-related and sex-specific 
sleep metrics comparing girls and boys based on pre-defined 
age-groups are presented in Figure 1 and Table 2. Included 
sleep parameters from the CPC-analysis are the sleep quality 
index (SQI), sleep eÿciency (SE), sleep stability (HFC), sleep 
fragmentation (SF) and the apnea-hypopnea index (AHI3%). 
The SQI was highest in school-aged children (6–9 years) 
with no significant dierence comparing girls (75.8) and boys 
(75.3), p = 0.06. Preschool-aged children had a lower SQI 
compared to school-aged children and preschool-aged girls have 
significantly higher SQI (73.4) than boys (71.6), p < 0.001. 
The SQI starts to decline in early adolescence, when girls 
have significantly lower SQI (70.5) compared to boys (71.8), 
< 0.001. 

From early adolescence to late adolescence, the SQI 
decreased in both sexes while girls maintained higher SQI 
(63.1) compared to boys (60.5), p < 0.001. During childhood 
the sexes did not dier in SF but during early adolescence girls 
developed higher SF compared to boys that again changed 
during late adolescence when boys have higher SF compared 
to girls. 

3.3 Correlation of CPC measures 

The Pearson correlation coeÿcient (r) analysis is reported 
in Table 3. The SQI had the strongest negative correlation with 
SF, moderate negative correlation with SE, while the correlation 
with AHI3% was low, in both sexes and in all age groups: The 
correlation of SQI with SF is strong and higher in girls compared 
to boys in all age groups −0.83 vs. −0.81 (2–5 years); −0.82 
vs. −0.79 (6–9 years); −0.84 vs. −0.82 (10–13 years); −0.85 
vs. −0.84 (14–17 years). The correlation of SQI with SE was 
moderate in young children and during early adolescence, lower 
in girls compared to boys −0.46 vs. −0.58 (2–5 years); −0.43 
vs. −0.45 (6–9 years); −0.41 vs. −0.44 (10–13 years), changing 
to be stronger in girls compared to boys during late adolescence, 
but still moderate −0.43 vs. −0.40 (14–17 years). The correlation 
of SQI with AHI3% is weak in all age groups; higher in girls 
compared to boys; −0.35 vs. −0.26 (2–5 years); −0.36 vs. −0.30 
(6–9 years); −0.35 vs. −0.30 (10–13 years); −0.34 vs. −0.32 (14– 
17 years). T
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TABLE 3 Pearson correlation coefficient (r) evaluating correlation of the Sleep Quality Index (SQI) with the Apnea Hypopnea Index (AHI), sleep 
fragmentation (SF) and sleep efficiency (SF). 

Age-groups 

2–5 years 6–9 years 10–13 years 14–17 years 

AHI3% AHI3% AHI3% AHI3% 

Girls Boys Girls Boys Girls Boys Girls Boys 

SQI −0.35* −0.26* −0.36* −0.30* −0.35* −0.30* −0.34* −0.32* 

SF SF SF SF 

Girls Boys Girls Boys Girls Boys Girls Boys 

SQI −0.83*** −0.81*** −0.82*** −0.79*** −0.84*** −0.82*** −0.85*** −0.84*** 

SE SE SE SE 

Girls Boys Girls Boys Girls Boys Girls Boys 

SQI 0.46** 0.58** 0.43** 0.45** 0.41** 0.44** 0.43** 0.40** 

All p-values for the comparisons are < 0.0001 most likely due to the large samples size and therefore not shown in the table. Magnitude/strength of correlation is marked as: *** high correlation 
(0.70–0.89), **Moderate correlation (0.40–0.69), *low/week correlation (0.10–0.39) (Schober et al., 2018). 

3.4 Sex differences 

Table 4 shows that school-aged girls have significantly higher 
SQI, better SE, less SF and lower AHI3% than preschool-aged girls 
(Figure 1). During the adolescence years there was a negative trend 
with a decrease in SQI, SE as SF and AHI3% increases. Preschool-
aged children had on average significantly higher AHI3% than 
school-aged children and during the adolescence years there was a 
gradual significant increase in AHI3% with age. Table 5 shows that 
school-aged boys had significantly higher SQI, better SE, less SF and 
lower AHI3% than preschool-aged boys (Figure 1). In boys there 
are not statistically significant dierences between preschoolers and 
early adolescents in SQI, SE, sleep stability, sleep fragmentation or 
AHI3%. Preschool-aged boys had on average higher AHI3% than 
school-aged boys, and during the adolescence years there was a 
gradual significant increase in AHI3% with age. 

Girls have significantly lower AHI3% in all age groups 
compared to boys. Week correlation of AHI3% with SQI was 
observed and stronger in girls than boys. 

3.5 Age-related trends in sleep Quality 
related to sleep apnea severity 

The pathology of sleep apnea includes both the severity and 
frequency of oxygen-desaturations and sleep fragmentation during 
sleep. Table 1 shows how increase in sleep apnea severity negatively 
aects sleep quality in all the predefined age-groups in both girls 
and boys. 

4 Discussion 

This analysis evaluated sleep quality in children and adolescents 
using the CPC-method and whether age-related and/or sex-specific 
trends were observed during childhood and adolescence. Age 
and sex dierences were noted, as described above. The absolute 
dierences were small. 

Though all the studies were performed clinically, presumably 
for concern of sleep apnea, the results give a reasonable view of 

sleep stability/quality dynamics across the growth and development 
years, with 72% of the cohort having no- or mild sleep apnea 
and when apnea is known to have only mild eects on PSG sleep 
architecture. Children with significant comorbidities would also 
likely undergo laboratory polysomnography, so we presume this is 
a relatively healthy group of children and adolescents. It would be 
diÿcult to collect data on trends in sleep metrics in thousands of 
healthy children, though that would be ideal. 

Children reach their full potential SQI and sleep stability 
around school-age which may be linked to age-related development 
in maturation and integration of subcortical and cortical 
subsystems of sleep, which are necessary to generate sleep 
stability (HFC). During early adolescence, SQI and sleep stability 
start to gradually decline. Brain development begins in prenatal 
life and is accompanied by dramatic changes in brain gray and 
white matter that increases rapidly during early childhood and 
peaks around early adulthood (Alex et al., 2024; Anastasiades et al., 
2022). Total brain white and gray matter volumes increase linearly 
with age and roughly at the same rate in girls and boys, though 
consistently on average larger in boys. The relative volume of 
thalamus has been found to be larger in girls during adolescence 
compared to boys. This may aect developmental changes in sleep 
stability and SQI during childhood and adolescence (Sussman 
et al., 2016). The SQI is heavily weighed by stable sleep (high 
frequency coupling, HFC), a metric correlated with SWS (Thomas 
et al., 2014). Even though slow waves can be generated at a cortical 
level, subcortical structures including thalamus have an active role 
in regulating expression of slow waves and coordinating with sleep 
spindles, a process that changes with maturation and age (Bergamo 
et al., 2024; David et al., 2013; Schreiner et al., 2022). The sex-based 
dierences in the size of thalamus may possibly be related to the 
higher sleep stability and SQI seen in girls during adolescence 
compared to boys. 

When comparing preschool-aged children to school-aged 
children there was an increase in stable sleep (3.2% girls, 6.5% boys). 
School-aged children had the highest SQI and sleep stability, which 
was not surprising given the rapid changes with both physical 
growth and brain development reflected in cognition and behavior 
in young children. During early adolescence years, a decline in 
sleep stability starts (girls 10%, boys 6.5%) and continues during 
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TABLE 4 Evaluation of sleep quality, stability, fragmentation and disordered breathing in girls (47.6% of cohort) based on predefined age groups. 

SQI SE Sleep stability Fragmentation AHI 

Age group Mean (± SD) Mean (± SD) Mean (± SD) Mean (± SD) Mean (± SD) 

A. 2–5 years (n = 1,458) 73.4 (± 17.5) 84.1 (± 10.1) 60.2 (± 20.1) 6.6 (± 7.4) 3.6 (± 4.4) 

B. 6–9 years (n = 6,592) 75.8 (± 15.8) 84.9 (± 9.6) 62.2 (± 18.4) 5.5 (± 6.6) 3.2 (± 4.0) 

C. 10–13 years (n = 5,842) 70.5 (± 17.4) 83.3 (± 9.9) 56.0 (± 19.9) 7.9 (± 8.9) 3.8 (± 4.7) 

D. 14–17 years (n = 5,620) 63.1 (± 18.3) 82.9 (± 9.5) 48.2 (± 20.3) 11.5 (± 10.9) 4.5 (± 4.7) 

One-way ANOVA (F,p) 

Difference P-value Difference P-value Difference P-value Difference P-value Difference P-value 

A versus B −2.4 < 0.001 −0.8 0.203 −2.0 0.02 1.1 < 0.001 0.4 < 0.001 

A versus C 2.9 < 0.001 0.8 0.153 4.2 < 0.001 −1.3 < 0.001 −0.2 < 0.001 

A versus D 10.3 < 0.001 1.2 0.001 12.0 < 0.001 −4.9 < 0.001 −0.9 < 0.001 

B versus C 5.3 < 0.001 1.6 < 0.001 6.2 < 0.001 −2.4 < 0.001 −0.6 < 0.001 

B versus D 12.7 < 0.001 2.0 < 0.001 14.0 < 0.001 −3.0 < 0.001 −1.3 < 0.001 

C versus D 7.4 < 0.001 0.4 0.429 7.8 < 0.001 −3.6 < 0.001 −0.7 < 0.001 

AHI, Apnea Hypopnea Index; Fragmentation, elevated low-frequency coupling broadband, eLFCBB; SD, standard deviation; SE; sleep eÿciency; sleep stability (high frequency coupling, HFC), SQI, sleep quality index. 

TABLE 5 Evaluation of sleep quality, stability, fragmentation and disordered breathing in boys (52.4% of cohort) based on predefined age groups. 

SQI SE Sleep stability Fragmentation AHI 

Age group Mean (± SD) Mean (± SD) Mean (± SD) Mean (± SD) Mean (± SD) 

A. 2–5 years (n = 2,280) 71.6 (± 19.2) 81.9 (± 13.9) 56.9 (± 22.4) 6.6 (± 8.3) 4.7 (± 6.1) 

B. 6–9 years (n = 7,433) 75.3 (± 16.3) 83.7 (± 10.3) 60.9 (± 18.9) 5.4 (± 7.0) 3.8 (± 4.5) 

C. 10–13 years (n = 6,588) 71.8 (± 17.0) 82.7 (± 10.5) 56.9 (± 19.4) 7.1 (± 8.0) 4.2 (± 4.8) 

D. 14–17 years (n = 5187) 60.5 (± 18.2) 80.5 (± 11.0) 44.3 (± 20.2) 13.4 (± 11.4) 5.8 (± 5.7) 

One-way ANOVA (F,p) 

Difference P-value Difference P-value Difference P-value Difference P-value Difference P-value 

A versus B −3.7 < 0.001 −1.8 < 0.001 −4.0 < 0.001 1.2 < 0.001 0.9 < 0.001 

A versus C −0.2 0.999 −0.8 0.359 0.0 1.000 −0.5 0.416 0.5 0.07 

A versus D 11.1 < 0.001 1.4 < 0.001 12.6 < 0.001 −6.8 < 0.001 −1.1 < 0.001 

B versus C 3.5 < 0.001 1.0 < 0.001 4.0 < 0.001 −1.7 < 0.001 −0.4 < 0.001 

B verus D 14.8 < 0.001 3.2 < 0.001 16.6 < 0.001 −8.0 < 0.001 −2.0 < 0.001 

C versus D 11.3 < 0.001 2.2 < 0.001 15.6 < 0.001 −6.3 < 0.001 −1.6 < 0.001 

AHI, apnea hypopnea index; Fragmentation, elevated low-frequency coupling broadband, eLFCBB; SD, standard deviation; SE, sleep eÿciency; sleep stability (high frequency coupling, HFC); SQI, sleep quality index. 
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late adolescence (girls 13.9%, boys 22.1%). Stable sleep is associated 
with occurrence of non-CAP on EEG (Thomas et al., 2005), 
that gradually increases from school-age, peaking during early 
adolescence and then starts to decline (Parrino et al., 2012). When 
sleep is evaluated during PSG-studies, a decrease in SWS has been 
reported to be approximately 14% between 5 and 15 years of age 
(Sun et al., 2023). 

Sex hormones contribute to sexual dysmorphism in brain 
development (Goddings et al., 2014) and sex dierences in sleep 
quality become more evident when children reach puberty, when 
sexual hormones begin to aect sleep architecture (Pengo et al., 
2018), anatomy of the upper airway, airway collapsibility, arousal 
response to increased inspiratory resistance, and ventilatory control 
that explains the sex dierences in SDB/OSA (Lozo et al., 2017). 
The AHI3%, the most common metric to evaluate SDB/OSA was 
lower in girls compared to boys in all age groups in this analysis. 
The AHI3% was higher in preschool-aged children compared to 
school-aged children, similar results to what others have reported 
based on PSG-studies evaluating children for SDB/OSA (Bonuck 
et al., 2011; Fernandes et al., 2024). During the preschool-age, 
the primary cause for airway blocking causing SDB/OSA, after 
accounting for obesity and certain cranial structures such as 
midface deficiency and mandibular hypoplasia that may aect 
the size of the upper airway, is often related to nasal resistance 
from adenoidal and/or tonsillar hypertrophy and that this tissue 
growth is often disproportionate to growth of the bony part of 
the nasopharyngeal space (Chuang et al., 2022). During school-
age the AHI3%, is lower, but starts to increase again in early and 
late adolescence when the increase may be related to the hormonal 
changes occurring during puberty. The eect of progesterone are 
not fully understood but progesterone may enhance sleep quality 
and increase activity of the genioglossus muscle dilating the upper 
airway, decreasing upper airway resistance with positive impact on 
breathing, lower SDB/OSA and better sleep quality during the luteal 
phase compared to the follicular phase in girls (Haufe et al., 2022). 

How may the type of information from this study be used? 
Charts reflecting developmental components are standard in 
pediatric practice, including weight/height (growth), language, and 
behavior. The sleep EEG shows well-known dynamic changes 
across development and sleep charts may add to evaluation of 
healthy growth and development. Though we were not able to track 
the same individual over time due to the nature of our data, various 
types of sleep assessments (e.g., questionnaires, activity trackers, 
EEG and autonomic-respiratory sleep analytics) will have distinct 
and clinically useable profiles in health and disease. 

Limitations of this analysis include: (1) no data on medications 
and/or comorbid diseases was available; (2) no concomitant 
polysomnography given the nature of this data was available; and 
(3) no longitudinal data follow-up data in individual subjects was 
available. (4) Based on current guidelines that children who may 
suer from sleep disorders should have a PSG-sleep study, it is 
not likely that children suering from comorbid disorders were 
tested with a home sleep test. It is though possible that this dataset 
includes children with disorders that may impact sleep. 

In conclusion, this analysis demonstrates that children seem 
to reach their full potential sleep quality, as estimated by 
cardiopulmonary coupling (CPC), around school-age. Starting 
from early adolescence, sleep stability and sleep quality start to 
gradually decline. SDB/OSA is higher in pre-school aged children 

compared to school-aged children and after early adolescence 
SDB/OSA starts to increase. 
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