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Dynamical system models have proven useful for decoding the current brain

state from neural activity. So far, neuroscience has largely relied on either

linear models or non-linear models based on artificial neural networks (ANNs).

Piecewise linear approximations of non-linear dynamics have proven useful in

other technical applications. Moreover, such explicit models provide a clear

advantage over ANN-based models when the dynamical system is not only

supposed to be observed, but also controlled, in particular when a controller

with guarantees is needed. Here we explore whether piecewise-linear dynamical

system models (recurrent Switching Linear Dynamical System or rSLDS models)

could be useful for modeling brain dynamics, in particular in the context of

cognitive tasks. Thesemodels have the advantage that they can be estimated not

only from continuous observations like field potentials or smoothed firing rates,

but also from sparser single-unit spiking data. We first generate artificial neural

data based on a non-linear computational model of perceptual decision-making

and demonstrate that piecewise-linear dynamics can be successfully recovered

from these observations. We then demonstrate that the piecewise-linear model

outperforms a linear model in terms of predicting future states of the system and

associated neural activity. Finally, we apply our approach to a publicly available

dataset recorded from monkeys performing perceptual decisions. Much to our

surprise, the piecewise-linear model did not provide a significant advantage

over a linear model for these particular data, although linear models that were

estimated from di�erent trial epochs showed qualitatively di�erent dynamics. In

summary, we present a dynamical system modeling approach that could prove

useful in situations, where the brain state needs to be controlled in a closed-loop

fashion, for example, in new neuromodulation applications for treating cognitive

deficits. Future work will have to show under what conditions the brain dynamics

are su�ciently non-linear to warrant the use of a piecewise-linear model over a

linear one.
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cognitive neural dynamics, dynamical system models, non-linear dynamics, perceptual

decision-making, piecewise-linear
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1 Introduction

Applications like brain-computer/machine interfaces for
controlling prostheses or responsive neuromodulation for
therapeutic purposes require estimating the current brain state
from neural activity (Amunts et al., 2016; Kriegeskorte and
Douglas, 2018; Ruff et al., 2018; Hurwitz et al., 2021). Dynamical
system models improve the quality of the state estimate by
reducing the problem’s dimensionality, eliminating noise, and
taking advantage of knowledge about how the brain state tends
to evolve over time (Rabinovich et al., 2006; Kao et al., 2015;
John et al., 2022; Nozari et al., 2024). Dynamical system models,
however, do not only allow estimating the brain state, they also
support predictions of how the brain state is likely to progress in
the near future, which is essential for model-based control, i.e.,
planning state trajectories for adjusting the brain state through
stimulation (Shanechi, 2019; Kim and Bassett, 2020; Srivastava
et al., 2020; Moxon et al., 2023). Intelligent implantable stimulators
based on such a strategy could open up new avenues for the
treatment of, for example, cognitive deficits resulting from
neurological and psychiatric disorders (Rao et al., 2018; Sani et al.,
2018; Scangos et al., 2021a,b, 2023).

Linear dynamical system models have desirable mathematical
properties and seem adequate for decoding movement intentions
from the motor cortex (Kao et al., 2015), but cognitive functions
might be associated with more complex dynamics and require
non-linear models. Neuroscience has largely focused on artificial
neural networks for learning non-linear dynamics (Pandarinath
et al., 2018; Schulz et al., 2020; Abbaspourazad et al., 2024; Lee
et al., 2024), but these black-box models are not ideal for model-
based control. Technical applications in engineering often rely
on linear approximations of non-linear dynamics (Doyle et al.,
2013; Gu et al., 2015; Yang et al., 2018, 2019; Åström and Murray,
2021). The dynamics are still considered sufficiently linear in a
local neighborhood in state space, but the systems are allowed
to switch/transition to a different dynamic mode based on how
the state evolves. In other words, a globally non-linear model
can be sufficiently approximated by a piecewise linear model, a
collection of locally linear models (Le Quang, 2013; Xu and Xie,
2014). Piecewise linear models (a particular class of hybrid systems)
together with linear dynamical models are two of the main pillars
of modern control (Borrelli et al., 2017; Hespanha, 2018). Here we
ask whether such piecewise linear dynamical system models could be

useful for applications in neuroscience.
Dynamical systemmodels are often estimated from continuous

observations of neural activity (local field potentials or smoothed
firing rates). Here we also address the question of whether these

models could be estimated from sparse firing patterns of individual

neurons, as they might be observed in higher-order cortical areas

related to cognitive processing.
We approach these questions by first generating synthetic

neural data based on a piecewise linear computational model
of perceptual decision-making inspired by the model proposed
by Wong and Wang (2006). We generate both continuous
observations as well as single-neuron spike trains based on
Poisson processes, whose rates are controlled by the state of
the dynamical system. We demonstrate that the piecewise-linear
or recurrent switching linear dynamical system (rSLDS) models

(Linderman et al., 2017) can be successfully recovered from the
synthetic data. Furthermore, we show that the estimated rSLDS
models provide a significantly better explanation for the observed
data than linear dynamical system (LDS) models and, more
importantly, also make significantly better predictions for future
states of the system. Finally, we apply our approach to a publicly
available dataset collected from non-human primates performing a
perceptual decision task.

2 Materials and methods

We start by introducing the rSLDSmodel, explaining the theory
behind it and how it is applied to neural data. We then outline the
synthetic data generation process, which is essential for testing our
models before applying them to actual neural data. Next, we present
the evaluation metrics we use to measure the performance of the
different models. Our overall approach is illustrated in Figure 1.

2.1 rSLDS model

Recurrent Switching Linear Dynamical Systems (rSLDS)
(Linderman et al., 2017) are an advanced class of piecewise linear
dynamic models designed to decompose complex non-linear time-
series data into a series of discrete segments (modes), each governed
by a simpler linear dynamical system (LDS). The rSLDS framework
can be conceptualized as a composite of multiple LDS models,
where transitions between these models are determined by the
latent state itself.

Unlike traditional linear dynamical system (LDS) models,
recurrent switching linear dynamical system (rSLDS) models
offer a piecewise-linear approximation of non-linear dynamics by
dividing the state space into multiple regions, each governed by
its own linear dynamics. This approach allows rSLDS to capture
more complex dynamics while maintaining the mathematical
tractability and interpretability of linear systems. In contrast,
artificial neural networks (ANNs), although powerful for modeling
highly non-linear relationships, often act as black-box models,
making it difficult to interpret their internal workings or
apply them effectively in model-based control scenarios. The
transparency and structure of rSLDS models facilitate not only
better understanding of the underlying neural dynamics but also
enable precise computation of necessary stimuli for achieving
desired brain states through existing control algorithms. Thus,
rSLDS presents a balanced solution between capturing the
complexity of neural systems and providing actionable insights for
therapeutic applications.

Given an rSLDS model comprising K distinct LDS models, or
modes, and time-series data observed over T time steps, the model’s
formulation is as follows:

For each time step t ∈ T, a discrete latent state zt ∈ {1, 2, . . . ,K}
is defined to signify the LDS model currently in effect that only
depends on the last state, exhibiting Markovian characteristics.
This state evolves according to the logistic regression model with
a weight matrix Rzt ∈ R

(K−1)×H and a bias vector rzt ∈ R
K−1:

zt+1 | zt , xt ∼ πSB(νt), νt = Rztxt + rzt , (1)
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FIGURE 1

Illustration of the overall approach to inferring latent states from either Gaussian or Poisson observations and to predicting latent states and either

continuous observations or Poisson rates.

Here, xt ∈ R
H represents the continuous latent state, and

πSB :R
K−1 → 1K−1 denotes a stick-breaking link function that

maps the continuous state xt and the discrete state zt to a set of
K normalized probabilities, governing the probabilistic transition
between modes (see Linderman et al., 2017 for details). The weight
matrix Rzt specifies the recurrent dependencies, indicating how the
continuous latent state xt influences the transition probabilities to
the next discrete state zt+1. The bias vector rzt captures the Markov
dependency, affecting the baseline probability of transitioning to
the next discrete state zt+1 given the current discrete state zt . In this
paper, we use a “recurrent only” rSLDS model (Linderman et al.,
2017), where all modes share the same R and r, a special case where
the next discrete state is fully determined by the current continuous
state, corresponding to hard boundaries in state space between the
different modes.

Upon the determination of zt+1, the evolution of the
continuous latent state xt+1 is governed by:

xt+1 = Azt+1xt + bzt+1 + vt , vt
i.i.d.
∼ N (0,Qzt+1 ) (2)

with Azt+1 ∈ R
H×H being the transition matrix, bzt+1 ∈ R

H a
bias vector, and vt representing independent, identically distributed
(i.i.d.) zero-mean Gaussian noise with covariance matrix Qzt+1 ∈

R
H×H Thus, each mode is characterized by its own transition

matrixA, bias vector b, and noise covariance matrixQ. Specifically,
the matrix A plays a crucial role in determining the stability of
the system within that mode. If all eigenvalues λi of A satisfy
|λi| < 1, then the system is asymptotically stable, meaning
that any perturbation from an equilibrium point will decay over
time, leading to convergence toward this point. Conversely, if
any eigenvalue has an absolute value larger than one (|λi| >

1), the system is unstable and will diverge away from the
equilibrium point.

Subsequently, the relationship between the latent state xt and
the observed data yt ∈ R

N is established through a general

linear transformation:

yt = Cxt + d+ wt , wt
i.i.d.
∼ N (0, S) (3)

where C ∈ R
N×H is the observation matrix, d ∈ R

N is another bias
vector, and wt is another source of i.i.d. zero-mean Gaussian noise
with covariance matrix S ∈ R

N×N .
For modeling Poisson-distributed data yt ∈ N

N , a non-
linear softplus link function is employed to ensure non-negative
Poisson rates:

rt = softplus(Cxt + d), yt
i.i.d.
∼ Poisson(rt) (4)

resulting in the number of spikes in each bin being drawn
from a Poisson distribution with the current rate as its mean.
By setting the number of modes to one (K = 1), the rSLDS
model can be simplified to a standard LDS model. We used
the Python package ssm, developed by the Linderman Lab at
Stanford (https://github.com/lindermanlab/ssm) for the estimation
of models, with the model fitting process relying on Variational
Expectation Maximization (VEM).

When estimating hidden states using a rSLDS model, we
sometimes observed discontinuities in the estimated continuous
state, in particular when working with Poisson observations. Upon
closer inspection, we noticed that, whenever a hidden state was
to be decoded, the distribution of possible discrete states p(zt)
was initialized with a uniform distribution, but had the tendency
to very quickly (within just one or two iterations) settle on a
particular discrete state, which constrained the continuous state to
be confined to the associated part of the state space. Our solution to
this issue was tomodify the ssm package and to introduce a learning
rate to only gradually update p(zt) and p(xt). This approach proved
to be simple yet effective inmitigating the problem described above.
Themodified ssm code as well as additional code used for this study
can be found at https://github.com/peractionlab/Decision_rSLDS.
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2.2 Evaluation metrics

To test model quality, we used the following three metrics:
(1) the evidence lower bound (ELBO), (2) the coefficient of
determination (R2), and (3) the Mean Euclidean Distance (MED).

The ELBO, synonymous with the variational lower bound,
serves as ametric for the log-likelihood of observational data within
the framework of variational Bayesian models. It is instrumental in
comparing the performance of various probabilistic models across
a consistent dataset, with a larger ELBO being indicative of better
model performance.

The coefficient of determination, denoted as R2, quantifies the
proportion of variance in the observed data that can be explained
by a model. R2 is typically used for one-dimensional, continuous
data. Since we are dealing with observation vectors, we adopted
the multi-dimensional R2 measure proposed by Jones and Meyer
(2024), which is based on the Euclidean distances between observed
and predicted vectors. For multi-dimensional Poisson-distributed
spike count data, we extended the deviance-based R2 measure for
one-dimensional Poisson-distributed data proposed by Cameron
andWindmeijer (1996), assuming statistical independence between
the observed spike counts for different neurons. We define the
deviance term D(yn,t , µ̂n,t) as:

D(yn,t , µ̂n,t) = yn,t · log

(

yn,t

µ̂n,t

)

− (yn,t − µ̂n,t) (5)

where yn,t is the observed spike count for neuron n in a time bin at
time point t. µ̂n,t is the model’s predicted rate for the same neuron
and time point. Using this deviance term, the deviance-based R2 for
Poisson-distributed data is given by:

R2DEV,P = 1−

∑N
n=1

∑T
t=1 D(yn,t , µ̂n,t)

∑N
n=1

∑T
t=1 D(yn,t , ȳn)

(6)

where ȳn is themean spike count for neuron n across all time points,
N is the number of observed neurons, and T is the total number of
time bins.

It is important to note that, while R2 can approach values
close to unity in the context of assessing model quality, reflecting
the extent to which measurement noise limits its value, the
scenario is different for Poisson-distributed observations. Even for
a model that accurately captures the underlying rates of the Poisson
processes, there remains an inherent stochastic variability in the
observed counts, which cannot be captured by the model and
therefore imposes a ceiling on the attainable R2 values. To address
this, we calculate the expected value of the numerator in the R2

computation, assuming a Poisson process with rates as determined
by the model, i.e., assuming that yn,t is Poisson-distributed with
mean µ̂n,t :

R2Expected,DEV,P = (7)

1−

∑N
n=1

∑T
t=1 Eyn,t∼Poisson(µ̂n,t)[D(yn,t , µ̂n,t)]
∑N

n=1
∑T

t=1 D(yn,t , ȳn)

A model that can explain all systematic (i.e., other than Poisson)
variability in the data is therefore expected to have a R2DEV,P that
matches R2Expected,DEV,P.

Finally, the mean Euclidean distance (MED) is utilized to
measure the average discrepancy between the model’s predictions
ŷt and the observed data yt , and is expressed as:

MED =
1

T

T
∑

t=1

‖yt − ŷt‖2 (8)

This metric directly assesses the model’s accuracy in predicting the
observed phenomena.

2.3 Synthetic data

We first generated synthetic data on the basis of a piecewise
linear adaptation of the Wong and Wang decision-making model
(Wong and Wang, 2006), designed for decision-making between
two choice options. This simulation assumed an equal provision of
sensory evidence for both options on average. Since we can access
the underlying dynamics, this synthetic data allowed us to test the
piecewise approach.

2.3.1 Latent dynamics
The model underlying our synthetic data has a two-

dimensional state space consisting of three modes (Mode 1:
blue, Mode 2: red, Mode 3: yellow) as illustrated in Figure 2A.
Trials initiate in Mode 1, characterized by the accumulation of
noisy sensory evidence for both alternatives. This noisy evidence
directs the state predominantly along the diagonal. When enough
excess evidence has been accumulated in favor of one of the two
choices, the system transitions into either Mode 2 or 3. These
latter modes are each defined by a point attractor, which the
system state converges toward. The transition from Mode 1 to
the next is determined by whether the system state has crossed
the boundary of the region of Mode 2 or 3. State transitions
are governed by Equation 2, where zt represents the active mode
from the set {1, 2, 3}. Trials start at the origin (0,0) and proceed
into the first quadrant, with mode switches occurring when the
absolute difference between state coordinates exceeds one unit. The
point attractors of Mode 2 and 3 are located at (1,6) and (6,1),
respectively, and sample trajectories are depicted in Figure 2B.

2.3.2 Observations
Employing the three-mode latent dynamic structure, we

generated synthetic datasets following Gaussian and Poisson
distributions, as detailed in Equations 3, 4. Some example Gaussian
observation trajectories (for two-dimensional observations) are
shown in Figure 2C. Parameters C and d were adjusted to achieve
a range of average firing rates. Similar to the situation in our
real dataset, the firing rate varied across neurons. For example, in
the case of an average firing rate of 2 spikes/bin across neurons,
the firing rates of individual neurons ranged from about 0.1
spikes/bin (10th percentile) to about 5 spikes/bin (90th percentile).
Each dataset comprised 250 trials, with 200 designated for model
identification and 50 reserved for performance evaluation in a
testing period. This process allowed us to ascertain the predictive
capabilities of our model through a controlled assessment.
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FIGURE 2

Overview of synthetic data dynamics and examples of generated trajectories. (A) The three-mode latent dynamic structure. (B) Sample latent

trajectories in various colors. (C) Observed trajectories with significant noise.

2.4 Visualization of higher-dimensional
states

We employed Principal Component Analysis (PCA) to project
these dynamics onto a 2-D embedding space for a visual
representation of the inferred high-dimensional latent dynamics.
PCA is a method of linear dimensionality reduction that
effectively maps high-dimensional data into a lower-dimensional
space, optimizing for preserving maximum data covariance and
maintaining large pairwise distances.

To ensure that the choice information embedded within
the inferred high-dimensional latent dynamics, denoted as
x ∈ R

L, is retained as much as possible after dimension
reduction via PCA, we derived the normalized difference response
matrix D using the following computation (Galgali et al.,
2023):

D = 0.5× (x̄choice1 − x̄choice2) (9)

Here, x̄choice1, x̄choice2 ∈ R
T×L represent the trial-averaged

latent dynamics. Each row within matrix D corresponds
to the average observation difference between the two
choices at a given time step. These row vectors serve as
samples from which a PCA model can be fitted, yielding
the final 2-D embedding of the latent dynamics, denoted
as x2D.

2.5 Choice decoding

To evaluate the preservation of choice information after
dimensionality reduction, we decoded the animal’s choice using
a Support Vector Machine (SVM) for each time step. For each
time step t, we combined the latent states from trajectories
corresponding to choice 1 and choice 2, and then split this
combined dataset into a training set (90%) and a testing set
(10%). We trained an SVM classifier on the training set to

classify the latent states into two classes based on their ground
truth labels, performing this training for both the original 8-
D latent states and the 2-D embedding latent states. After
training, we applied the SVM to the testing set to predict the
choice labels and computed the predictive accuracy, which is the
proportion of correctly classified test samples. By comparing the
predictive accuracies obtained from classifying the original 8-D
latent states and the 2-D embedding, we assessed the effect of the
dimensionality reduction.

2.6 Model comparison

To provide a clear and thorough comparison of the LDS and
rSLDS models’ performance on the synthetic dataset, we designed
a series of analyses focused on three critical areas: (1) estimating
models, (2) making predictions, and (3) subsequent analysis of
results.

2.6.1 Estimating models
Prior to initiating our data analysis, we systematically

partitioned the synthetic dataset into three subsets: a training set,
a validation set, and a test set, adhering to a 7:1:2 ratio. Given
the stochastic nature of model initialization and the utilization of
the variational EM algorithm, there exists an inherent variability
in the training outcomes, even when the model configurations
and training data remain constant. To mitigate the risk of models
converging to suboptimal solutions, particularly under conditions
characterized by high noise levels and a limited dimensionality
of observed variables, we implemented a strategy of training 40
instances of both the LDS and rSLDS models concurrently for each
analysis setup. Subsequently, we identified the model variant that
demonstrated the most robust performance, as indicated by the
highestR2 value (smallest prediction error) on the validation set, for
advancement to the subsequent predictive tasks and comparative
result analysis.
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2.6.2 Making predictions
Following the training period, each model was tasked

with forecasting observations (Gaussian observations or spike
counts) for the next 10 time points, leveraging historical
data up to the current time point for every trial within
the test set. These predictive outputs were then juxtaposed
with their corresponding ground truth observation data and
aggregated to facilitate the computation of the evaluation metrics:
the coefficient of determination (R2) and Mean Euclidean
Distance (MED).

2.6.3 Analysis of results
The analysis of results involved a detailed examination of

model performance across different hyperparameter settings,
particularly focusing on the effects of varying the number of
modes and latent dimensions. A Wilcoxon signed-rank test
(Woolson, 2005) was applied to the R2 and MED metrics
to assess the significance of differences between the models.
Additionally, we visualized the inferred latent trajectories
and computed discrepancy scores relative to the ground
truth model.

For the computation of discrepancy scores in relation to
the ground truth model, it is essential to first map the
estimated model into the same state space as the ground
truth model. This alignment is necessary because, even if the
estimated model converges to an optimal solution, it can still
be an arbitrary linear transformation of the original model
that generated the data. This arises due to the observation
equation introducing a separate linear transformation between
the hidden states and the observations. Therefore, before
comparing the models, they must be aligned through a common
linear transformation.

We denote the true model parameters as Az , bz , C, d, R,
and r, and the model parameters that were estimated from the
observations as Âz , b̂z , Ĉ, d̂, R̂, and r̂. Our goal is to find the linear
transformation that establishes the link between a location x̂n in the
state space of the estimated model and the corresponding location
xn in the original state space:

x̂n = Fxn + g (10)

The transformation matrix F and the bias vector g can be found
using the original observation equation determined by C and d and
the estimated observation equation determined by Ĉ and d̂, as the
observations have to be the same. F and g can then be used to map
the estimated model parameters back into the original state space,
resulting in A′

z , b
′
z , R

′, and r′. F and g are determined by:

F = (Ĉ)−1C, g = (Ĉ)−1(d− d̂) (11)

If Ĉ is not invertible, the Moore-Penrose pseudo-inverse can
be used instead. With F and g determined, the other estimated
parameters are transformed as follows:

C′ = ĈF = C, d′ = Ĉg+ d̂ = d (12)

A′
z = F−1ÂzF, b′z = F−1(Âzg+ b̂z − g) (13)

R′ = R̂F, r′ = R̂g+ r̂ (14)

These transformations allow us to align the estimated parameters
with the ground truth model for a direct comparison. Using these
aligned parameters, we computed the discrepancy score, which
included differences in attractor locations, switching boundaries,
and eigenvalues ofAz . Based on these scores, models were classified
as “excellent” (score < 0.5), “good” (0.5 to 2), or “poor” (score
> 2), providing a quantitative assessment of model fidelity to the
true parameters.

The same type of transformation was also used for aligning
different models in section Models for different task periods and

Model initialization.
To allow for a comparison of prediction errors across models

using a Wilcoxon signed-rank test, we computed the R2 and MED
distributions on a trial-by-trial basis for the test set.

3 Results

3.1 Analysis of synthetic data

3.1.1 Gaussian observations
Our model fits are based on variational expectation

maximization, which does not guarantee convergence to an
optimal solution. We therefore always fitted a larger number of
models of the same type with somewhat different initialization,
report the distribution of the quality of these models, and then
used the best one for further analysis (see section 2.6.1 for details).
For Gaussian observations with low noise levels, we observed
that a multitude of piecewise-linear model fits achieved excellent
convergence, yet not all models were equally successful. The
probability of identifying a superior model diminished with
increasing observation noise, as depicted in Figure 3A. Conversely,
increasing the number of simultaneous observations, or the
observation dimensions, significantly elevated the likelihood of
discovering a model of high quality, as illustrated in Figure 3B.

Building upon these findings, we categorized the trained
models into three distinct tiers based on their computed distance
scores relative to the ground truth dynamics: poor, good, and
excellent. To provide a visual context to this classification,
Figures 3C–E presents examples of dynamic vector fields of models
that correspond to each of these categories.

To test whether the rSLDS model provided a more useful
description of the dynamics in terms of being able to predict
how the system would evolve in the near future compared to
a LDS model, we tasked both models with predicting how the
(hidden) model state and the associated observations would evolve
over the next 10 time steps and compared these predictions
with the ground truth data. Figure 4 elucidates the comparative
performance between the LDS and rSLDS models on Gaussian
data in observation space (top) and latent state space (bottom),
highlighting the distinct advantages of the rSLDS model in terms
of both the coefficient of determination (R2) and Mean Euclidean
Distance (MED)metrics (between predicted and observed vectors).
The results from a Wilcoxon signed-rank test strongly indicate
a significant advantage of the rSLDS model over the LDS model
(smaller prediction errors), with a p-value of <0.001 for all
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FIGURE 3

Gaussian observations: Experimental results and representative examples of identified dynamics. (A) and (B) show the impact of observation noise

(for 5 observation dimensions) and number of observation dimensions (for a noise variance of 0.01) on model quality. (C–E) illustrate examples of

identified dynamics with varying quality (for a noise variance of 0.01 and 5 dimensions). (C) An excellent model (distance score = 0.15). (D) A good

model (distance score = 0.55). (E) A poor model (distance score = 2.47).

measures and all prediction horizons, underscoring the robustness
of the rSLDS model in accurately capturing the dynamics of the
synthetic datasets.

3.1.2 Poisson observations
When dynamical system models have to be estimated from

single-unit spiking data, the typical approach is to count spikes
in bins of some chosen width, apply some smoothing, and
treat the result as continuous observations. However, when
dealing with neurons with low firing rates and/or when a
good temporal resolution is desired, i.e., when the time bins
should be rather narrow, the spike count data can become
pretty sparse (with a substantial number of zero counts), and
this approach doesn’t work anymore. We therefore wanted to
test whether it is still possible to estimate rSLDS models from
these data, treating them as Poisson rather than continuous
observations. Since the variance of a Poisson distribution is
identical to its mean, the inherent observation noise will typically
be larger than what we have been considering in the case of
Gaussian observations.

As a consequence, as can be seen in Figure 5, the number of
excellent fitted models is much smaller. The quality of the fits
depends on the expected number of spikes per bin and on the

number of observed neurons. The higher the Poisson rate, the more
likely it is to obtain a good or perhaps even excellent model. About
20% of the fitted models were still good for an expected spike
count of 0.5 spikes per bin. We would not recommend applying
the technique to much lower rates. For an expected spike count
of 2 spikes per bin, a few excellent models were only observed for
a large number of observations. Higher firing rates (e.g., 4 or 8
spikes/bin) improved model quality, with excellent fits increasing
to 8% and 15%, respectively. At the same time, the number of poor
models also increased with the number of observations (neurons),
likely due to the increasing number of model parameters, which
increases the risk of getting stuck in suboptimal solutions. As
mentioned before, it is therefore important to always fit a larger
number of models and to select the best one. Similar to Figures 3C–
E, Figures 5C–E present examples of models with varying quality,
which were estimated from the synthetic Poisson data (with an
average rate of 2 spikes/bin and 200 observation dimensions).

When creating our synthetic dataset, we used a model with two
hidden dimensions and three modes. When fitting models with
various numbers of hidden dimensions and modes to the data, the
Evidence Lower Bound (ELBO) indicated that, when starting with a
2-dimensional model with one mode, adding a 2nd and a 3rd mode
to the model improved the quality of the fit muchmore than adding
more hidden dimensions (see Figure 6).
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FIGURE 4

Gaussian observations (observation dimensions = 5, variance = 0.01): Predictive performance comparison of the LDS and rSLDS models. (A)

Observation space comparison using R2 and MED. (B) Latent state space comparison using R2 and MED. The rSLDS model significantly outperformed

the LDS model in both spaces. Stars indicate a significant di�erence between both models at p < 0.001.

Despite the larger challenge of estimating a good rSLDS model
from the Poisson data compared to the Gaussian data earlier,
its predictive accuracy still surpasses that of an LDS model, as
illustrated in Figure 7.

An analysis leveraging the coefficient of determination (R2)
and Mean Euclidean Distance (MED) metrics demonstrates that
the rSLDS model significantly outperforms the LDS model in
forecasting up to at least 7 time steps ahead. Due to the inherent
variability of the Poisson observations, the observed R2 values are
much lower than in the earlier case of Gaussian observations. To
still get an idea of the quality of the estimated models, we calculated
what the R2 value was expected to be, if the model had perfectly
captured the Poisson rates, which we refer to as the “Expected R2”
(see Section 2), plotted in green in Figure 7A. The results suggest

that our rSLDS model is close to optimal for predictions one and
two time steps ahead.

Since we know the ground-truth hidden states underlying
our synthetic data, we can also calculate the predicition error in
the latent state space, which is shown in Figure 7B. Since this
eliminates the inherent variability of the Poisson observations,
the observed R2 values are much larger, and the significant
advantage of the rSLDS model compared to the LDS model is
more obvious and statistically significant for all analyzed prediction
horizons. This indicates that the rSLDS model outperforms the
LDS model in terms of decoding and predicting system states from
Poisson observations. We will not be able to perform this latter
analysis for the real neural data, as the ground-truth hidden states
are unknown.
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FIGURE 5

Poisson observations: (A) Model quality as a function of average firing rate (for 200 observation dimensions). (B) Model quality as a function of the

number of observation dimensions, i.e., neurons (for an average firing rate of 2 spikes/bin). (C–E) illustrate examples of identified dynamics with

varying quality (for an average firing rate of 2 spikes/bin and 200 observation dimensions). (C) An excellent model (distance score = 0.47). (D) A good

model (distance score = 0.78). (E) A poor model (distance score = 2.31).

3.2 Analysis of real neural data from
perceptual decision-making

To test our approach with real neural data, we took
advantage of a publicly available dataset of ∼200 simultaneously
recorded neurons in prefrontal cortex of monkeys performing a
perceptual decision task. The “Kiani dataset” was derived from a
direction discrimination task involving macaque monkeys trained
to perform a task, in which they viewed a patch of randomly
moving dots for 800 ms, followed by a variable-length delay
period (Kiani et al., 2014). At the end of the delay, a “Go” cue
prompted the monkeys to report their perceived motion direction
by making a saccadic eye movement to one of two targets (T1
or T2). We analyzed either data from the whole trial or from
two particular time periods: the “Decision Period,” which extends
from the onset of the dots to the “Go” cue, representing the time
during which the monkey makes its decision, and the “Motor
Period,” which was defined as starting 100 ms before the “Go”
cue and ending 150 ms after the saccade onset, indicating the
window in which the monkey prepares and executes its eye

movement response. Neural activity was simultaneously recorded
from hundreds of single- and multi-neuron units in the prearcuate
gyrus (area 8Ar) using a 96-channel multi-electrode array, which
covered a 4 mm × 4 mm area of the cortical surface. This
setup allowed for the dynamic decoding of the decision variable
and the prediction of the monkeys’ choices based on neural
population responses.

In this section, we delve into the analysis of the Kiani dataset,
aiming to uncover insights into the neural dynamics underlying the
Decision andMotor Periods.We begin by comparing the predictive
performance of two models, the linear dynamical system (LDS)
and the recurrent switching linear dynamical system (rSLDS),
across varying levels of model complexity, using data from the full
trials. For the rSLDS model, we utilize a 2-mode configuration,
as our preliminary tests with three and four modes did not
yield significantly different results. We then explore the Decision
and Motor Periods separately to address whether the underlying
dynamics are different or the same. Subsequently, we examine
how well the animal’s choice can be decoded from estimated
hidden states.
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FIGURE 6

Poisson observations: Impact of varying the number of modes and

hidden dimensions of the rSLDS model on the Training ELBO (ability

of the model to explain the data). Adding a second and a third mode

provides more benefit than adding a third or fourth hidden

dimension.

3.2.1 LDS vs. rSLDS models
The number of hidden dimensions is a pivotal hyperparameter

for both linear and piecewise linear models in modeling neural
data. To evaluate the efficacy of these models in capturing the latent
dynamics encoded in the neural data, we conducted a comparative
analysis using the T33 session from the Kiani dataset, the session
with the best behavioral performance. The dataset was segmented
into 80 ms-long time bins, a duration chosen based on the average
firing rate of the recorded neurons, which is ∼7 spikes per second
[ranging from about 2 spikes/s (10th percentile) to about 12 spikes/s
(90th percentile)]. This results in an expected spike count per bin
of about 0.6, a value for which we anticipate being able to estimate
good models, based on our insights from the synthetic data.

We estimated models with hidden dimensions varying from
2 to 24, aiming to predict the spike count of the next time
bin based on the current one. The predictive accuracy of these
models was again measured using the coefficient of determination
(R2) and Mean Euclidean Distance (MED) metrics. As illustrated
in Figure 8, the comparative results show that the performance
metrics for both LDS and rSLDS models improve with an
increasing number of hidden dimensions. Notably, as the number
of hidden dimensions increases, the R2 values approach the
expected value for Poisson-distributed observations with the rates
predicted by the model, indicating that our largest models (24
hidden dimensions) capture almost as much variability as they
possibly can for Poisson observations.

Our results on synthetic data, which were inspired by a popular
non-linear computational model of perceptual decision-making,
have shown that the rSLDS model was able to capture these
nonlinearities and provide a better explanation for the data than a
linearmodel. This led us to expect that the rSLDSmodel should also
achieve superior predictive performance over the LDS model for
the Kiani dataset. However, contrary to these expectations, rSLDS
models with twomodes did not significantly exceed the LDSmodels

in performance (see Figure 8). The same qualitative observation
was made when using data from the C42 session (data not shown).
To rule out that the missing benefit of additional modes was not
just due to the rSLDS models not having converged to an optimal
solution, we conducted further analyses.

3.2.2 Models for di�erent task periods and model
initialization

First, we fitted separate linear models based on data from the
Decision Period and the Motor Period. To be able to visualize the
results, we use models with two hidden dimensions. The resulting
vector fields, plotted in a common state space (see Section 2)
are shown on the left side of Figure 9. The dynamics during the
decision period were found to be stable, while those in the motor
period were characterized by instability. To maximize the chances
of a 2-mode rSLDS model being able to capture this difference in
dynamics for different task periods, we initialized the two modes
with these two linearmodels. The boundary between the twomodes
was determined as follows: we calculated the latent trajectories for
all trials during different task periods and identified the midpoints
of these trajectories for each phase. The perpendicular bisector of
the line segment connecting these two midpoints was then used
as the boundary between the two modes (see middle panel of
Figure 9).

The result after optimizing the model using the full trial data is
shown in the top-right panel of Figure 9. The unstable dynamics
have disappeared, and the result is virtually identical to a linear
model fitted to the same data (bottom-right panel), again plotted
in a common state space.

Considering that the Decision Period is substantially longer
than the Motor Period, we questioned whether the Variational EM
algorithm might favor a model that more accurately represents the
decision period, potentially neglecting the motor period due to its
relatively minor contribution in terms of data points. To address
this, we constructed a dataset containing only the final part of
the Decision Period and the entire Motor Period, equalizing their
durations. Despite these modifications, our findings mirrored those
presented in Figure 9. Consequently, we conclude that a piecewise
linear model with a common observation equation cannot capture
the observed change in dynamics from the decision period to the
motor period. We will revisit this observation later in Discussion.

3.2.3 Decoding accuracy
Since the neural activity was recorded while monkeys were

making perceptual decisions, we also wanted to assess how well
an upcoming choice could be decoded from estimated hidden
states, depending on which dynamical system model was used.
Figure 8 had shown that adding hidden dimensions (within the
studied range of up to 24 dimensions) continually increased the
model’s ability to capture and predict the neural activity. This
prompted the question how the ability to decode the choice would
depend on the dimensionality of the hidden state space. For each
of the models, we first decoded the latent trajectories associated
with each experimental trial. Subsequently, for each time step,
we trained a Support Vector Machine (SVM) algorithm (Cortes
and Vapnik, 1995) on the training dataset. After establishing
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FIGURE 7

Predictive performance of the models for Poisson observations (observation dimensions = 200, average firing rate = 2). (A) Comparison in

observation space using R2 and MED. (B) Comparison in latent state space using R2 and MED. The rSLDS model significantly outperformed the LDS

model in both the observation and latent state spaces. Stars indicate a significant di�erence between both models at p < 0.001.

the SVM model, we evaluated its performance on a separate
test set by measuring the accuracy of choice classification as a
function of time.

Figure 10 illustrates that the rSLDS model’s choice-decoding
accuracy progressively increases across a broad range of hidden
dimensions, highlighting the dependency of choice information
preservation on the model’s dimensionality. With a limited number
of hidden dimensions (H), such as 2 to 4, the decoding accuracy
remains limited and only deviates from chance toward the end of
the decision trial, when the animal reports its choice, long after the
motion viewing period. For 6 or 8 dimensions, the ability to decode
choice starts earlier in the trial. Finally, for 10 dimensions or more
an accuracy of about 80% is reached toward the end of the motion
viewing period, which then further increases and approaches 100%
toward the end of the trial.

3.2.4 High-dimensional dynamics embedding
While an expanded number of hidden dimensions enhances

choice decoding accuracy and augments the model’s predictive
capabilities, it introduces challenges in visualizing the dynamics.
To address this issue, we started with an 8-dimensional model and
determined a two-dimensional projection of the hidden states that
would maximize the separation between the states associated with
both possible choices (see Section 2 for details). Figure 11A presents
the average latent trajectories in this two-dimensional space for
both possible choices. The trajectories start at the same location, but
diverge as time progresses, and end at very different locations. To
assess the efficacy of this 2D embedding approach, we recomputed
the choice decoding accuracy on the embedded trajectories. The
results, depicted in Figure 11B, closely resemble those derived from
the original 8-dimensional trajectories, indicating that almost all
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FIGURE 8

Performance comparison of 1-mode LDS and 2-mode rSLDS models across a range of hidden dimensions on the T33 dataset. The performance of

both models improves with additional hidden dimensions and eventually tends to plateau. No clear advantage of the rSLDS model is observed across

all three evaluation metrics compared to the LDS model.

FIGURE 9

Inferred latent dynamics of an LDS model and a 2-mode rSLDS model (right side), initialized by combining dynamics from separate LDS models

optimized on the decision and motor period datasets (left side). Despite this initialization that should maximize the chance of finding a piecewise

model that can integrate both the decision and motor dynamics, both models converge to similar latent dynamics following optimization.
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FIGURE 10

Choice decoding accuracy based on inferred latent states for di�erent numbers of hidden dimensions. A linear SVM decoder is applied to the latent

states of a given trial to determine the corresponding choice label at each time step. The decoding accuracy surpasses 90% ∼2000 ms after the onset

of the random dot motion stimulus for models with at least 10 hidden dimensions.

FIGURE 11

Finding a 2-dimensional subspace for choice decoding. (A) Two-dimensional embedded average latent trajectories for both possible choices. (B)

Comparison of choice decoding accuracy based on two-dimensional embedded dynamics vs. original eight-dimensional dynamics. These results

demonstrate that the 2D projection approach maintains choice decodability.

choice information is contained in a particular two-dimensional
subspace of the higher-dimensional hidden state space.

4 Discussion

4.1 Successful estimation of
piecewise-linear models from synthetic
neural data and superior prediction
performance

Using synthetic neural data generated by a piecewise-linear
adaptation of the computational model proposed by Wong and
Wang (2006) for perceptual decision-making, we were able to
demonstrate that the non-linear structure of the dynamical system

could be successfully estimated from the data. Not surprisingly, the
quality of the estimated models depended on how many signals
were observed and the amount of noise on these observations.
For continuous observations, the estimated models tended to
be of good quality, as long as the number of observed signals
matched at least the dimensionality of the hidden state space
and the observation noise was not too large. Estimating the
model structure from Poisson-distributed single-unit spiking data
was more challenging, but still possible. These observations are
inherently more noisy, due to the stochastic nature of the Poisson
process, and potentially quite sparse, if the firing rates of the
observed neurons are rather low. Good models could still be
obtained as long as the number of observed neurons was at least
an order of magnitude larger than the dimensionality of the hidden
state space and the average expected spike count per time bin
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wasn’t much lower than 0.5. Since the model estimation based on
Variational Expectation Maximization can get stuck in suboptimal
solutions, we recommend fitting a larger number of models and
selecting the best one.

Perhaps more importantly, the estimated piecewise-linear
dynamical models were able to make significantly more accurate
predictions for how the state of the system would evolve in the
near future than just a linear dynamical system model. This could
give these piecewise-linear models a significant advantage when
considering applications like closed-loop neural modulation, where
state predictions can be used for model-based control.

Being able to estimate these models not only from continuous
observations like field potentials or smoothed firing rates, which
requires sacrificing temporal resolution, but also from Poisson-
distributed observations, i.e., sparser single-unit spiking data,
is a clear advantage of this type of model. Most alternative
dynamic system models require continuous, normally-distributed
observations, although there are some alternative models that can
also be estimated from Poisson spike trains (e.g., Pandarinath et al.,
2018; Kim et al., 2021; Schimel et al., 2022).

4.2 Piecewise-linear models did not
outperform their linear counterparts when
applying the approach to a publicly
available dataset recorded from prefrontal
cortex of monkeys performing perceptual
decisions

To our surprise, we did not see the same benefit when
applying our approach to a publicly available dataset of about 200
simultaneously recorded neurons in prefrontal cortex of monkeys
performing perceptual decisions. Standard linear dynamical system
models and piecewise-linear models provided virtually identical
ability to explain the neural data and prediction performance.
This does not imply that the same would have to be true for
other datasets obtained from other brain areas or when performing
different tasks, but it certainly warrants some discussion.

One possibility would be that, for some reason, the structure
of the dynamical system, although compatible with our piecewise-
linear model, could not be estimated from the available data. Given
that the number of available neurons was at least an order of
magnitude larger than the dimensionality of the hidden state space
and given that we chose a time bin width of 80 ms, which resulted
in an average expected spike count per bin of ∼0.6, a value that
allowed robust model estimation when using our synthetic data,
this seems unlikely.

Another possibility would be that the neural dynamics are not
sufficiently non-linear to warrant fitting a non-linear model. Some
recent observations in the literature provide some support for this
idea. For example, Nozari et al. (2024) analyzed resting-state neural
activity (both fMRI and intracranial EEG data) and fitted a wide
range of both linear and non-linear dynamical models. The model
best capturing the data turned out to be a linear autoregressive
model, suggesting that the dynamics were not sufficiently non-
linear to give a non-linear model an advantage. Galgali et al.
(2023) analyzed the same dataset by Kiani et al. that was also used

for our analysis here and made a very similar observation: The
neural dynamics during a particular task period, like the decision
formation period and the saccadic eye movement period, were
well-described by a linear dynamical model.

Finally, it could be that the dynamical system, although
non-linear, is incompatible with certain assumptions made by
our model. Why could the different linear dynamics during the
different task periods not be captured by a piecewise linear
model with multiple modes? The rSLDS model we have been
using is designed to approximate one larger non-linear flow field
through breaking it down into multiple locally linear modes or
regions in state space. There is still one common observation
equation that applies to all modes/regions. The model switches to
a different mode due to the location in state space changing, and
the observations (firing pattern of the neurons) have to change
accordingly. In contrast, the change in linear dynamics when
transitioning between different task periods might happen without
a major change in the firing pattern/location in state space and
might therefore be better described by a time-variant linear system
rather than a non-linear system. Future research will have to show
whether time-variant models can provide a better description of the
neural dynamics.

We found that, up to the explored maximum of 24 dimensions,
the quality of our LDS models kept increasing when adding more
hidden dimensions and that a model with a minimum of 8 to 10
dimensions had to be chosen to be able to decode the animal’s
choice reliably from the hidden state throughout the trial. At first
glance, this might seem at odds with previous observations in the
literature that the neural dynamics underlying perceptual decisions
appear to be surprisingly low-dimensional. However, we were also
able to demonstrate that the choice information largely appears
to be contained in a two-dimensional subspace of the higher-
dimensional hidden state space. This suggests that the choice
encoding itself is still low-dimensional and that the additional
dimensions are required to capture variability in the neural state
due to factors other than choice.

4.3 Conclusions

We have set out to evaluate the suitability of piecewise-linear
dynamical system models for capturing cognitive neural dynamics.
We were able to demonstrate that piecewise-linear dynamical
system (rSLDS) models could be successfully estimated from
synthetic neural data generated by a non-linear computational
model of perceptual decision-making. Importantly, the rSLDS
model significantly outperformed a standard LDS model in terms
of predicting the state of the dynamical system in the near
future. Given the straightforward mathematical structure of a
piecewise-linear dynamical system model, it would be particularly
useful for model-based control applications, e.g., closed-loop
neuromodulation for the treatment of cognitive deficits resulting
from neurological or psychiatric disorders, when nonlinearities of
the dynamics need to be captured.

Much to our surprise, when applying our modeling approach
to a publicly available dataset of ∼200 simultaneously recorded
neurons in prefrontal cortex of monkeys performing perceptual
decisions, we did not find a significant advantage of rSLDS
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models over standard LDS models, suggesting that the neural
dynamics were not sufficiently non-linear at any given time to
warrant the use of a non-linear model. Future research will
have to show whether this finding applies to a wide range
of cognitive neural datasets, including different types of neural
activity (single-unit spiking, multi-unit activity, LFPs, iEEG) and
recordings from different brain areas and during different tasks,
or whether it was due to specific features of the particular dataset
that was used for our analysis, and other datasets will show a
benefit of using piecewise-linear dynamic models, similar to our
synthetic data.

Insights gained from the application of piecewise-linear
dynamic models to scientific and engineering systems suggest that
these models can offer clear advantages over linear dynamical
systems, particularly when the underlying dynamics exhibit
multiple equilibria (as seen in our synthetic dataset), non-linear
switching behavior, threshold effects, or operate across distinct
regimes. Representative examples include: (1) gene regulatory
networks, where gene expression is switched “off” below a
certain concentration threshold of a transcription factor and “on”
above it (Gouzé, 1998); (2) neuronal spiking dynamics, where
the membrane potential increases approximately linearly until it
reaches a threshold and then resets, producing a spike (Izhikevich,
2003); (3) legged locomotion, in which robots experience hybrid
dynamics due to alternating stance and swing phases during ground
contact (Lygeros et al., 2003). In each of these cases, piecewise-
linear models not only better capture the essential dynamics but
have also been shown to outperform linear models in both accuracy
and control performance.
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