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Research on the effect of TMS on 
insomnia patients: EEG changes 
and prognostic modeling
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Objective: Insomnia (ID) is the most common clinical disorder afflicting people 
of all ages, races, and social classes. This study was to explore changes in the 
brain’s nervous system of insomnia patients after TMS treatment and construct 
a prognostic prediction model.
Method: This study involved collecting EEG data of 15 patients before and after 
treatment, extracting features (approximate entropy, sample entropy, alignment 
entropy, power spectral density, median, mean, kurtosis, and skewness), and 
building an SVR model.
Results: Fifteen subjects (8 females, 7 males, mean age 42 years) received 7 days 
of TMS on the right prefrontal lobe. Five eigenvalues were used to analyze EEG 
data in 5 frequency bands. Statistically significant indicator eigenvalues (p < 0.05). 
Paired t-test showed significant differences in PSQI and ISI total scores before 
and after TMS treatment, indicating its therapeutic effect. Correlation coefficients 
between 40 indicators and scale differences were calculated, and significant 
characteristic values were further analyzed. SVR models for predicting ISI and 
PSQI scale pre-post differences were constructed. Both had predictive ability.
Conclusion: This work proposes the first SVR model leveraging pre-treatment 
EEG features to predict TMS therapeutic outcomes for insomnia. TMS treatment 
can change brain waves, and the model is expected to be  applied clinically, 
though with limitations such as small sample size and insufficiently detailed 
brain region division.
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1 Introduction

Insomnia (ID) is the most common clinical disorder afflicting people of all ages, races, and 
social classes. Epidemiologic surveys show that more than 40% of the population suffers from 
insomnia, with 47% of them suffering from voluntary sleep deprivation (SD). Insomnia affects 
the entire body, from immunity to the mind. Sleep and immunity are linked in both directions. 
Sleep reduces the risk of infection and improves infection outcomes and vaccination responses. 
Sleep deprivation leads to chronic, systemic low-grade inflammation and is associated with a 
variety of diseases with an inflammatory component, including diabetes, atherosclerosis, and 
neurodegeneration (Besedovsky et al., 2019). Short sleep is associated with atherosclerosis, 
which is directly linked to the risk of cardiovascular disease (Huang et al., 2023; Baranwal 
et al., 2023), and a higher risk of diabetes (Huang et al., 2023; Jin et al., 2023). Sleep is directly 
related to memory and mood regulation, and insomnia not only leads to mood disorders such 
as anxiety, depression, and possibly even mania but also increases the risk of Alzheimer’s disease.
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Transcranial Magnetic Stimulation (TMS) is a non-invasive 
physical therapy, the main principle is that the pulsed magnetic field 
generated when an electric current is passed through a coil is applied 
non-invasively through the skull to the corresponding cortical area. 
This will change the membrane potential of the cells in the cerebral 
cortex, generating an induced current that ultimately affects the 
metabolism and electrical activity of neurotransmitters in the brain, 
thereby treating neurological disorders by inducing the 
reconstruction of neural networks and regulating the secretion of 
various neurotransmitters. Low-frequency transcranial magnetic 
stimulation can relieve and treat insomnia symptoms (Feng et al., 
2019). An analysis of transcranial magnetic stimulation and insomnia 
showed that transcranial magnetic therapy is effective and safe for 
treating CID (Jiang et al., 2019; Huang et al., 2018). Meta-studies 
have also shown that transcranial magnetic stimulation therapy is 
effective in improving insomnia in patients with CID (Sun et al., 
2021; Ma et al., 2021), whether the treatment time is short or long, 
and can effectively reduce Pittsburgh sleep quality index (PSQI) 
scores and improve insomnia in patients (Huang et al., 2018; Wu 
et al., 2021).

To study changes in the nervous system of the brain, EEG signals 
provide valuable information through the oscillatory dynamics of 
brain waves (Barkley and Baumgartner, 2003). EEG generally refers to 
scalp EEG, which is used to record the electric potential of the entire 
scalp generated by electrical activity in the brain, and there are 
advantages of high temporal resolution non-invasiveness. In the last 
10 years, studies about sleep disorders’ EEG paid more attention to 
classification, both diseases and sleep stages. Sharma used a support 
vector machine getting a 78.0% average accuracy in all sleep disorder 
classification (Sharma et al., 2021), and accuracy of 83.0, 78.0, 77.0, 
and 72.0% in healthy people, narcolepsy, restless legs syndrome, 
insomnia, and rapid eye movement disorder (Sharma et al., 2021). In 
sleep stage classification, the team of Kinoshita received the result of 
76.9% sensitivity, and 61.2% accuracy using the RUS-Boost classifier 
(Kinoshita et al., 2020). Some EEG analysis methods, such as power 
spectral density (PSD) used in sleep disorder studies. A meta-analysis 
of EEG spectral analysis suggested that patients with ID have a 
significant increase in EEG, especially beta and theta band power in 
resting-state wakefulness (Zhao et al., 2021).

To study the changes in the brain’s nervous system, EEG signals 
can provide valuable information through the oscillatory dynamics of 
brain waves (Barkley and Baumgartner, 2003). EEG, generally referred 
to as scalp electroencephalography, is used to record electrical 
potentials across the scalp generated by the electrical activity of the 
brain, and has the advantages of high temporal resolution and 
non-invasiveness. In the last decade, EEG studies on sleep disorders 
have focused more on classifying disorders and sleep stages. Sharma 
classified all sleep disorders using support vector machines with an 
average accuracy of 78.0% (Sharma et al., 2021) and 83.0, 78.0, 77.0, 
and 72.0% for healthy individuals, narcolepsy, restless legs syndrome, 
insomnia, and REM sleep disorder (Sharma et al., 2021), respectively. 
For sleep stage classification, Kinoshita’s team obtained 76.9% 
sensitivity and 61.2% accuracy using the RUS-Boost classifier 
(Kinoshita et al., 2020). Some EEG analysis methods such as power 
spectral density (PSD) have been used in sleep disorder research. A 
meta-analysis of EEG spectral analysis showed a significant increase 
in beta and theta band power in the EEG of patients with ID, especially 
in the resting wakefulness state (Zhao et al., 2021).

2 Method

In this study, we analyzed the effector brain areas and therapeutic 
effects of TMS treatment by daytime awake and closed-eye EEG of 
insomnia patients before and after TMS treatment and proposed a 
prediction model for the prognosis of TMS treatment.

TMS treatment was referred to Stanford Accelerated Intelligent 
Neuromodulation Therapy (SAINT). TMS stimulation site right 
dorsolateral prefrontal cortex, stimulation frequency intensity: 
1 Hz/80%MT, number of pulses/number of pulses: 1500/10, treatment 
duration: 7 days. The main technical processes are as follows:

2.1 EEG data

We collected pre- and post-treatment EEG data from a total of 15 
insomnia patients as resting EEG in awake, quiet, and closed-eye 
states for 5 min. All patients were from the Neurology Clinic of the 
Second Affiliated Hospital of Air Force Military Medical University. 
Inclusion criteria: (1) Age greater than 18 years old; (2) patients with 
chronic insomnia disorder meeting the diagnostic criteria of ICSD-3; 
(3) able to complete the assessment of various scales according to 
clinical needs; (4) able to complete the treatment; (5) informed 
consent to participate in the clinical EEG study. Exclusion criteria: (1) 
patients who cannot complete the self-assessment questionnaire; (2) 
patients who refuse to participate in this study; (3) patients who the 
researcher considers to be inappropriate to participate in this study; 
(4) organic brain diseases such as traumatic brain injury, intracranial 
tumors, infections, etc.; (5) patients with psychiatric disorders such as 
anxiety and depression, bipolar disorder, etc.; and (6) patients with 
stents in their body and other patients unable to undergo transcranial 
magnetic therapy.

The scale used was the Insomnia Severity Index (ISI) scale with 
the nuclear-modified PSQI scale. The modification was to change the 
period from 1 month to 1 week, to assess the sleep changes of the 
patients in 1 week of treatment. The sleep quality assessment after 1 
month was also performed using the original PSQI scale.

This study was ethically reviewed by the Second Affiliated 
Hospital of Air Force Military Medical University (ID: 202308-19). All 
the EEG data were collected and completed using a Delikai 
EEG instrument.

Then, we completed the pre-treatment of EEG, including filtering 
and ICA, with the EEGLAB toolbox (Delorme and Makeig, 2004) 
(2021.1, Arnaud Delorme and Scott Makeig, CA, United States) and 
Matlab software (2017b, MathWorks Company, Natick, MA, 
United  States). The filtering parameters are 0–45 Hz, segmented 
according to a 1 s time window, and the artifacts are removed by ICA, 
after which the process proceeds to the next step.

2.2 Feature extraction

This study used approximate entropy, sample entropy, alignment 
entropy, power spectral density, median, mean, kurtosis, and skewness.

2.2.1 Entropy analysis
Entropy is a means of information analysis that indicates the 

degree of chaos or disorder in a system. It was first proposed in Clause 

https://doi.org/10.3389/fnins.2025.1586509
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


He et al.� 10.3389/fnins.2025.1586509

Frontiers in Neuroscience 03 frontiersin.org

Shannon in his paper “Mathematical Principles of Communication” 
in 1948 (Shannon, 1984). Three entropy value analyses were used in 
this study, namely approximate entropy, sample entropy, and 
arrangement entropy.

2.2.2 Power spectral density
PSD, known as the power spectrum, represents the signal power 

within a unit frequency band. The PSD shows the changes in signal 
power by frequency, that is, the power distribution of the signal in the 
frequency domain. The basic definition of PSD can be expressed as:

	 ( )= ∫ −P 1T T/2 T /2 f 2 t dt� (1)

In Equation 1, P represents the average power of power signal f (t) 
over the period [−T/2, T/2]. Additionally, the unit of PSD is V2/Hz. 
To reduce the bias during PSD analysis, Pwelch’s method (Welch, 
1967) was used in the experiment.

2.2.3 Linear feature extraction
Some linear features were used in signal processing in the time-

frequency domain, such as median, mean, skewness, and kurtosis.

2.2.4 Frequency bands
We divided all EEG data into delta band (1 ~ 4 Hz); theta band 

(4 ~ 8 Hz); alpha band (8 ~ 13 Hz); beta band (13 ~ 30 Hz); and 
gamma band (30 ~ 45 Hz) according to the common frequency bands. 
And calculate the above 8 eigenvalues under 5 frequency bands.

2.3 Significant value analysis

We performed paired-sample t-tests for each indicator separately 
to examine whether the difference between the above indicators 
before and after treatment was significant and plotted the average 
inter-subject topography of the above 40 indicators.

We calculated the correlation coefficients between the pre-and 
post-differences of the above 40 indicators and the pre-and post-
differences of the ISI scale and the PSQI scale. The correlation 
coefficients were obtained to analyze the r-value and p-value data, and 
the topographic maps were plotted.

2.4 Model construction

We obtain the indicators that are significantly correlated with the 
ISI scale and PSQI scale pre- and post-score differences by calculating 
the correlation coefficients between the difference before and after 
treatment of each indicator and the ISI scale pre- and post-score 
differences, and the PSQI scale pre- and post-score differences, 
respectively.

For the ISI scale, the pre-and post-score differences of the 
significant indicators were used to predict the pre- and post-score 
differences of the ISI scale scores, modeled as a support vector 
regression model. Further, we used a more rigorous approach to 
test whether the SVR model could be used to predict ISI scale 
pre-post differences. This was done by randomly disrupting the 
predictor variables between subjects and later re-examining the 

correlation coefficients between the predicted ISI scale pre-post 
differences and the true ISI scale pre-post differences using the 
SVR model and the leave-one-out method on the randomly 
disrupted data. This process was repeated for 5,000 to obtain 
5,000 correlation coefficients. These 5,000 correlation coefficients 
can form distribution, and this part can be  considered as the 
distribution of correlation coefficients if the null hypothesis (i.e., 
the predicted values of SVR model are not significantly correlated 
with the true values) is satisfied, so the percentile of the 
correlation coefficients of the predicted pre- and post-differences 
of the ISI scale with the true pre- and post-differences of the ISI 
scale for the original undisturbed scenario in the above 
distribution can be  taken as a p-value for this correlation 
coefficient. The constructed model was considered predictive if 
p < 0.05.

The same method was used for modeling the PSQI scale.

3 Results

3.1 Base information

A total of 15 subjects, including 8 females and 7 males, with 
a mean age of 42 years, were enrolled in this study. All subjects 
received 7 consecutive days of transcranial magnetic stimulation, 
targeting the right prefrontal lobe, stimulation frequency 
intensity: 1 Hz/80%MT, number of pulses/number of times: 
1,500/10. The results are shown in the Table 1 below. Subject 10’s 
PSQI worsened (9 → 15). After TMS treatment, we asked about 
this result, he did not tell the reason; after 1 month, he told us 
because of quarrel between couple, actually he had great sleep in 
recently 1 month. So we kept his EEG data.

TABLE 1  All participants’ basic information.

Subject Age PSQI-
before

ISI-
before

PSQI-
after

ISI-
after

1 56 14 15 10 11

2 39 16 28 12 18

3 18 12 20 10 15

4 47 14 12 8 10

5 38 17 20 15 16

6 53 18 23 16 15

7 33 15 26 10 16

8 44 18 18 10 13

9 38 11 8 9 7

10 56 9 9 15 15

11 42 18 27 14 16

12 47 17 17 11 8

13 37 14 13 12 11

14 32 18 21 16 17

15 50 19 28 13 14

Average 42 15.3333 19 12.0667 13.4667
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3.2 EEG feature results

We used five eigenvalues to describe the EEG data and analyzed 
the eigenvalues for each channel in each of the five EEG frequency 
bands. We  compared changes before and after treatment and 
determined whether these changes were statistically significant by 
t-test. As shown in the Table  2 below, we  selected statistically 
significant indicator eigenvalues (p < 0.05) for all outcomes for 
further analysis.

3.3 Relationship with treatment scores

In this study, we compared the PSQI total score and ISI total score 
before and after transcranial magnetic stimulation treatment, and the 
difference between the before and after comparisons was statistically 
significant (p < 0.05) as calculated by paired t-test (Table 3; Figure 1), 
which indicates that transcranial magnetic stimulation treatment has 
a certain therapeutic effect on chronic insomnia.

Next, we  calculated the correlation coefficients between the 
before-and-after differences of the above 40 indicators the before-and-
after differences of the ISI scale, and the before-and-after differences 
of the PSQI scale. The following topographic map was drawn. 
We  selected the characteristic values of the indicators that were 
statistically significant (p < 0.05) in all the results in the following 
Tables 4, 5 for further analysis.

3.4 Model construction

An SVR model was constructed as described in the research 
methodology. In predicting the pre-post differences of the ISI scale 
using the SVR model and the leave-blank method, we found that the 
correlation coefficient between the predicted pre-post differences of 
the ISI scale and the true pre-post differences of the ISI scale was 
0.7805, with a p-value of 0.0077. After further training, we obtained a 
p-value of 0.0150 < 0.05, indicating that the constructed SVR model 
can be used to predict the pre- and post-differences of the ISI scale.

The same is true for the PSQI prediction model. The correlation 
coefficient between the pre-and post-differences of the predicted PSQI 
scales and the pre-and post-differences of the true PSQI scales was 
0.7136, with a p-value of 0.0205. After further rigorous training, 
we  obtained a p-value of 0.0396 < 0.05, which suggests that the 
constructed SVR model can be used for predicting pre-post differences 
in PSQI scales.

4 Discussion

In this study, we used awake and closed-eye EEGs of insomnia 
patients before and after TMS treatment to discover the brain regions 
that changed before and after treatment by methods of eigenvalue 
extraction, significance analysis, and model construction, and 
successfully constructed a prognostic prediction model for insomnia 
TMS treatment. We built an SVR prediction model by using awake 
and closed-eye EEGs of 15 insomnia patients before and after TMS 
treatment for 7 days, through the significance differences of 8 
eigenvalues in 5 EEG frequency bands, i.e., proximity entropy, sample 

TABLE 2  The result of t-test between PSQI + ISI and features.

Feature PSQI + ISI

Frequency 
bands

Channel t p

ApEn Gamma P4 −2.449 0.018

Delta Fp2 2.171 0.229

F4 1.921 0.044

C3 2.074 0.034

P3 2.009 0.038

O1 1.846 0.049

T5 1.971 0.04

Theta Fp2 2.365 0.021

P3 2.044 0.036

T3 2.119 0.032

Alpha T3 2.038 0.036

T6 1.833 0.049

sampEn Delta F4 1.851 0.049

F8 1.973 0.04

Beta C4 −2.101 0.033

O1 −2.725 0.012

F8 −2.021 0.037

Gamma F3 −1.892 0.046

PE Delta Fp2 2.047 0.036

P3 2.438 0.019

P4 2.179 0.029

O1 2.996 0.008

F7 2.081 0.034

T3 1.989 0.039

T5 2.475 0.018

Alpha P3 −1.944 0.042

Beta F4 −2.602 0.014

Gamma F3 −2.173 0.029

PSD Alpha Fp1 1.96 0.041

Fp2 2.56 0.015

Beta F3 2.342 0.022

T3 2.414 0.02

T5 2.415 0.02

Skewness Gamma T6 −2.921 0.009

Kurtosis Delta F4 −2.307 0.023

Theta P3 −2.021 0.037

Gamma T6 −2.968 0.008

TABLE 3  The result of t-test between before and after treatment in PSQI/
ISI.

PSQI ISI

Before 15.333 19

After 12.067 13.467

p <0.005 <0.005
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entropy, alignment entropy, power spectral density, median, mean, 
kurtosis, and skewness. The model combines the PSQI and ISI scale 
scores before and after treatment and can be  used to predict the 
prognosis of TMS treatment using the eigenvalue differences in 
the leads.

4.1 Insomnia treatment discussion

Insomnia brain area research has been a hot spot in insomnia 
research. Previous studies have mainly focused on the prefrontal 

cortex (Lee et al., 2022; Yuan et al., 2020), and related studies in recent 
years have gradually focused on the alteration and increase/decrease 
of the functional connectivity between the prefrontal cortex and other 
brain regions (Fasiello et al., 2022), such as the amygdala (Kweon et al., 
2023; Liu et al., 2024) and cerebellum (Lin et al., 2023). In this study, 
we distinguished the brain regions of insomnia patients by the regions 
corresponding to the EEG leads. Among the different brain regions, 
we found that in the fast-wave frequency band, the changes in F7 were 
the most obvious; the F7 lead was located in the prefrontal area, which 
was also the direct area of TMS stimulation in this study. This implies 
that transcranial magnetic stimulation treatment did reduce the 
appearance of fast waves in the prefrontal region of insomnia patients 
(Zhou et al., 2023); relevant literature suggests that an increase in fast 
waves inhibits the production and maintenance of sleep, which may 
be related to the improvement of insomnia. On the contrary, slow 

FIGURE 1

The result of t-test between before and after treatment in PSQI/ISI.

TABLE 4  The result of correlation coefficients between PSQI and 
features.

Feature PSQI

Frequency 
bands

Channel r_value p_
value

ApEn Theta O2 0.689 0.028

Alpha P3 0.662 0.037

T3 0.745 0.014

sampEn Gamma P3 0.922 <0.001

PE Beta T4 −0.745 0.013

Skewness Alpha P3 −0.808 0.005

Gamma P3 −0.761 0.011

O1 −0.664 0.036

F8 −0.649 0.042

Kurtosis Theta P3 0.735 0.016

Alpha P3 −0.814 0.004

Gamma P3 −0.738 0.015

O1 −0.679 0.031

F8 −0.635 0.049

TABLE 5  The result of correlation coefficients between ISI and features.

Feature ISI

Frequency 
bands

Channel r_value p_
value

ApEn Alpha P4 0.718 0.02

O2 0.689 0.027

T3 0.75 0.013

sampEn Gamma P3 0.658 0.039

PE Beta T4 −0.926 <0.001

PSD Beta T3 0.639 0.047

Skewness Delta F7 −0.685 0.029

Beta O1 −0.642 0.046

Gamma O1 −0.835 0.003

Kurtosis Beta O1 −0.643 0.045

Gamma O1 −0.838 0.003
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wave is an important component of sleep and is the main component 
of NREM3 sleep, and its appearance means that the patients entered 
deep sleep (McConnell et al., 2022), before and after the treatment, the 
frequency of slow waves increased, which suggests that the deep sleep 
of the insomnia patients has improved. The increase in the slow wave 
frequency in the temporal lobe region was the most significant after 
the treatment, which means that the sleep quality of insomnia patients 
was improved after TMS treatment, and the improvement of long-
term memory function may be related to this (Han et al., 2023).

4.2 SVR and other artificial intelligence 
models

The prognostic predictive modeling of TMS for insomnia was 
implemented by the SVR model. In this study, outcomes were 
predicted by scores on two insomnia scales. For the results of the 
Modified PSQI scale and the ISI scale, a reduction of 25% or more was 
considered valid, and after 1 week of TMS treatment, the treatment 
efficacy rate was approximately 50% for the Modified PSQI scale and 
80% for the ISI scale, with a combined efficacy rate of 100% for both 
scales. Combining the scale scores of the 15 subjects, there was a 
statistically significant decrease in both the modified PSQI and ISI 
after 1 week of TMS treatment. This demonstrated that 1 week of 
transcranial magnetic stimulation treatment could improve sleep 
duration and sleep quality in insomnia patients. Subsequently, 
we  combined the Brain Area Scale and Sleep Scale with the SVR 
model and performed hundreds of data entry simulations, obtaining 
a p-value of less than 0.05, which demonstrated that the constructed 
SVR model can be used to predict the scale differences before and 
after TMS treatment. In the future, we hope that more data and more 
detailed classification of brain regions will be applied to the training 
of this model to provide the possibility of prediction for clinical work.

Among the sleep-related artificial intelligence models, the most 
common is automatic sleep staging, which performs sleep staging 
individually or jointly through sleep EEG, EMG, ECG respiratory 
rhythm data, etc. Currently, the research of related algorithms for 
classification mainly adopts methods such as machine learning and 
artificial intelligence. The current common sleep staging algorithms 
are (1) Gradient-weighted Class Activation Mapping (Grad-CAM), 
an explainable artificial intelligence (XAI) algorithm, obtained a 
correlation coefficient of 0.772, and an accuracy of 86.9% 
(Vaquerizo-Villar et  al., 2023). (2) Several research teams have 
analyzed PSG data by Consumer Sleep Technologies (CST) 
methodology, with the highest accuracy of 89.65%, and five studies 
exceeded 90% accuracy in wake/sleep classification, with the highest 
being 96%; for the classification of five stages of sleep (wakefulness, 
N1, N2, N3, and R) without sacrificing the other sleep stages, the 
highest N1% was achieved using the CST method based on the 
CNN framework, with an accuracy of 80.2% (Shao et al., 2024). (3) 
When the multiple intelligent models of random forests, decision 
trees, and linear discriminant analysis were used for staging, the 
sensitivity, specificity, and accuracy detection performance were 
96.0, 94.0, and 96.0% (Tripathi et al., 2022), respectively. Many of 
the methods and models mentioned above are gradually being 
applied in finished software to help clinicians with sleep staging. 
There are also AI models dedicated to sleep disorder disease 

differentiation. Recognizing and classifying respiratory events, 
constructing hypnograms of patients thus differentiating OSA 
patients with an accuracy of 92.31% (Cabrero-Canosa et al., 2003). 
A Meta-analysis article on intelligent algorithms for insomnia 
summarizes nearly 10 years of literature and summarizes about 15 
algorithms, from the CNN model with the highest accuracy rate of 
98.91% to the Support Vector Machine model with an accuracy rate 
of 76%, and the Random Forest model with an accuracy rate of 74% 
(Ingle et  al., 2024), which is a multi-dimensional summary of 
common models for insomnia classification. Regardless of the 
model, it has advanced the progress of insomnia classification 
models. Meanwhile, intelligent algorithms are applied to daily life. 
A company statistically classified night sleep, sleep habits, and daily 
habits of insomnia patients through CAE and cluster analysis of 
continuous data, and identified five new clusters of participants in 
insomnia activities that could not be  identified by traditional 
methods, and there were significant differences in sleep and 
behavioral characteristics between the groups, which put forward a 
new idea for the individualized treatment of insomnia (Park et al., 
2019). Regardless of the model, which focuses on diagnosis, there is 
a lack of predictive models for the prognosis of insomnia treatment. 
In this study, based on the sleep scale score as a treatment outcome, 
an SVR treatment prediction model with a p-value < 0.05 was 
obtained by constructing the SVR model and hundreds of data input 
simulations. The results of the study illustrate that the constructed 
SVR model can be used to predict the scale difference before and 
after TMS treatment, i.e., it can predict the treatment prognosis of 
insomnia. In the future, we hope that more data and more detailed 
brain area classification can be applied to the training of this model, 
which can provide a prediction of treatment outcomes for 
clinical work.

4.3 Shortcomings and future work

In this study, we proposed a prognostic prediction model for TMS 
treatment, and also briefly studied the brain regions that respond to 
TMS treatment. However, there are still some shortcomings: (1) Only 
15 subjects were included in this study. (2) The 16-lead EEG used in 
this study could not break down the brain regions in detail. We hope 
that in the future we can: (1) Expand sample size (n ≥ 50) and include 
a control group. (2) Upgrade EEG resolution (64+ channels) to better 
localize neural activity. (3) Validate the model prospectively in real-
world settings. (4) Explore advanced algorithms (e.g., deep learning) 
to improve predictive accuracy.

5 Conclusion

In conclusion, this study found that after 1 week of transcranial 
magnetic stimulation treatment, insomnia patients showed a decrease 
in fast waves in the prefrontal region and an increase in slow waves in 
the hippocampus-amygdala region, which may be  related to the 
improvement of insomnia. The study also constructed a prognostic 
prediction model for TMS treatment of insomnia, which is expected 
to be applied in clinical work.
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