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Introduction: Self-esteem (SE) can significantly affect individual well-being 
and has been linked to various psychiatric conditions. SE involves cognitive and 
emotional regulation within a social context. Prior research focusing on young 
adults has indicated neural correlations in prefrontal cortex areas but presented 
inconsistent findings. Our study expanded this to a broader age range and 
covariates, and examined the influence of subthreshold depression, emphasizing 
the functional role of the dorsolateral (dlPFC), ventrolateral prefrontal cortices 
(vlPFC) and cerebellum in social cognition and emotional regulation of social 
exclusion.

Methods: We conducted resting-state functional magnetic resonance imaging 
analyses on 114 participants to investigate the neural correlates of self-esteem.

Results: We found that high SE correlated with robust functional connectivity 
between the left dlPFC and posterior cerebellum. Associations between the 
left dlPFC and right lingual gyrus, the right vlPFC and insula were FDR-survived, 
along with diminished connectivity between the left vlPFC, angular gyri, and 
thalamus.

Discussion: These results not only support our hypothesis regarding the dual 
role of SE—which includes its social cognitive role in avoiding social exclusion 
and its emotional resilience in enduring such exclusion—but also suggest a 
potential link with rumination.
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1 Introduction

Global self-esteem (SE), subjective appraisal of self-worth or value 
(Tafarodi and Swann, 1995) profoundly influences our patterns of 
social interactions, decision-making processes and social capabilities 
and mental well-being (Baumeister et al., 2003; Kuster et al., 2013). 
Recent meta-analysis strengthen the significance of high SE for 
adaptive social behaviors and mental health (Orth and Robins, 2022). 
In contrast, insufficient SE is implicated in a multitude of psychiatric 
conditions or symptoms, such as anxiety (Rosenberg and Owens, 
2009; Sowislo and Orth, 2013; Nguyen et al., 2019), eating disorders 
(Heatherton and Baumeister, 1991; Pelc et  al., 2023), self-stigma, 
suicide (Corrigan et  al., 2009; Oexle et  al., 2017), and depression 
(Cheng and Furnham, 2003; Orth and Robins, 2013; Huang, 2021). 
From a neuroscientific perspective, these psychological phenomena 
suggest some underlying neural frameworks that SE may modulate, 
thus warranting the importance of exploration of associated 
neural mechanisms.

The complex etiology of SE has led to the development of various 
hypotheses. One influential perspective is the social-cognitive aspect, 
which highlights how we evaluate ourselves within social contexts. 
Leary et al. proposed the sociometer theory (Leary et al., 1995a,b), in 
which SE plays as a psychological “sociometer” or gauge that monitors 
the risk of social exclusion. A decrease in SE can indicate a potential 
disruption in social relationships, promoting actions in individuals to 
avoid social pain or rejection. Conversely, people with high SE are 
resilient against negative self-related emotions arising from social 
rejection and reputational concerns. Specifically, individuals with high 
SE can effectively maintain self-worth and a positive self-image despite 
experiencing social rejection or failure (Brown and Marshall, 2001).

These contrasting characteristics of SE raised the following 
important question: “How can brain reconcile SE’s role as a guardian 
of social inclusion with its ability to mitigate the emotional impact of 
social setbacks?” From a neurobiological standpoint, social exclusion 
and inclusion signals may involve neural circuits in prefrontal area. 
Especially dorsolateral prefrontal cortex (dlPFC) and ventrolateral 
prefrontal cortex (vlPFC) could be key neural substrates in emotion 
regulation and responses to social exclusions, because studies have 
highlighted the involvement of the dlPFC with distraction strategies 
and the vlPFC in reappraisal strategies during social pain regulation 
and modulating emotional responses to social exclusion (He et al., 
2018; Zhao et al., 2021). Cerebellar regions are also candidates of SE 
neural basis associated with social cognition (crus 1) and emotional 
regulation (crus 2) (Sokolov, 2018; Van Overwalle et al., 2020a), and 
cortico-cerebellar circuit is reported to be altered in people with social 
anxiety disorder(Zhang et al., 2022), which also validate our focus on 
the cerebellum. Although regions such as the amygdala and cingulate 
cortex also contribute to emotional processing, we focused on the PFC 
regions for their direct involvement in higher-order self-evaluation 
and regulatory mechanisms central to SE. So as the neural basis of 
sociometer theory and social setback buffer of SE, we hypothesized 
dlPFC and cerebellum’s activity mediates social and 
emotional monitoring.

Neuroimaging research was conducted to clarify the 
relationship between SE and brain structure and function. 
Previous voxel-based morphometry (VBM) studies reported a 
positive correlation between SE and regional volume in areas 
linked to adaptive stress responses (McEwen and Gianaros, 2010; 

Agroskin et al., 2014). According to these studies, individuals with 
lower SE showed decreased gray matter volume in these areas, 
possibly suggesting difficulties in emotional self-regulation 
during stress.

Several task-based functional magnetic resonance imaging 
(fMRI) studies identified increased activity in the medial prefrontal 
cortex (mPFC), which was correlated with higher SE during self-
related social feedback (van der Meer et  al., 2010; Chavez and 
Heatherton, 2015; Yang et al., 2016). Further, two studies reported 
correlations between SE and activity in the prefrontal cortices of 
young participants using fractional amplitude of low-frequency 
fluctuations and resting-state fMRI (rsfMRI) (Pan et al., 2016; Chen 
et  al., 2021). However, the regions of interest and results were 
inconsistent across studies; one found correlations in the ventromedial 
prefrontal cortex whereas the other in the right dorsolateral prefrontal 
cortex (dlPFC).

The inconsistent findings from rsfMRI studies in the PFC and the 
unexplored influence of age and subthreshold depression on SE 
require closer attention. Therefore, the present study aimed to bridge 
these knowledge gaps and provide a clearer understanding of the 
neural substrates underlying SE.

To explore the neural basis of SE, this study incorporated two 
important perspectives. First, SE fluctuates and develops across age due 
to cumulative life events (Erol and Orth, 2011). Thus, a broader age 
range should be included and covariated to understand SE-related brain 
connectivity without specific age-range effect (like connectivity trait in 
adolescent SE). Second, subthreshold depression, which is characterized 
by mild depressive symptoms that do not meet full diagnostic criteria 
(Pincus et al., 1999), is frequently associated with lower SE and altered 
neural functioning. Global SE, measured with the Rosenberg Self-
Esteem Scale (RSES), is generally considered a relatively stable trait in 
healthy individuals (Donnellan et al., 2012). However, previous research 
reported a correlation between depressive symptoms in healthy 
participants and SE; for example, in individuals with a negative self-
image (interpreted as individuals with lower SE) exhibited depressive 
symptoms but were not diagnosed with depression (Savilahti et al., 
2018). Similarly, SE was found to correlate with depression scales even 
in healthy participants (Nguyen et al., 2019; Jafari et al., 2021). In a VBM 
study, similar changes in depression scales were found in individuals 
with subthreshold depression (Li et al., 2017), while functional changes 
in the prefrontal regions, such as the right orbitofrontal cortex (OFC) 
and left dlPFC (Ma Q. et al., 2013; Ma Z. et al., 2013; Wu et al., 2025), 
along with changes in large-scale networks (Hwang et al., 2015), were 
also reported in older individuals with subthreshold depression. Overall, 
these findings highlight the need to exclude the effects of subthreshold 
depression in a study on the neural basis of SE. However, to the best of 
our knowledge, SE fMRI studies considering subthreshold depression 
have not yet been conducted.

Given these theoretical and empirical backgrounds, the present 
study aimed to elucidate how individual differences in SE are 
associated with resting-state functional connectivity (rsFC) within 
networks including prefrontal areas, controlling for age, sex, and 
subthreshold depressive symptoms. We hypothesized that higher SE 
would correlate with increased functional connectivity between 
prefrontal regions (particularly dlPFC and vlPFC) and cerebellar 
regions involved in social cognition and emotional regulation, 
reflecting more efficient neural integration supporting positive self-
evaluation and emotional resilience.
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2 Materials and methods

2.1 Participants

Overall, 128 healthy adults(mean age = 29.07, 82 males), 
recruited through advertisements and personal contact, 
underwent mental health screening by experienced psychiatrists 
using the Structured Clinical Interview for DSM-IV Disorders 
(SCID-IV-TR). The exclusion criteria were 1. psychiatric disorders 
or severe medical or neurological illnesses, 2.claustrophobia or 
any other reason for unavailability of MRI scan, 3. Abnormal brain 
structures such as arachnoid cysts and cavum vergae, 4. 
Incomplete psychological scale, and 5. excessive head motion 
during scans (details in 2.5 image preprocessing section). After 
exclusions (see 3.1 Demographic information), 114 participants 
remained. All participants provided written informed consent. 
This study was approved by the Ethics Committee of the Faculty 
of Medicine, Kyoto University Graduate School, and was 
performed in accordance with the tenets of the Declaration 
of Helsinki.

2.2 Psychological questionnaires

The RSES (Rosenberg, 1965), which measures global SE, 
encompasses 10 items, each with a 4-point Likert scale, yielding a total 
score between 10 and 40. Higher scores indicate higher SE. The 
validated Japanese version was used for the study (Mimura and 
Griffiths, 2007; Uchida and Ueno, 2010). The internal consistency 
(Cronbach’s alpha) is = 0.81.

The Beck Depression Inventory-II (BDI-II) (Beck et al., 1996) is a 
21-item scale that assesses the severity of depressive states. Scores 
range from 0 to 63, with higher scores denoting more severe depressive 
tendencies. The Japanese version has been previously validated and 
exhibits internal consistency (alpha = 0.87) (Kojima et al., 2002).

2.3 Statistical analyses

We performed statistical analyses using SPSS Statistics (version 
26.0; IBM, Armonk, NY). Bivariate correlations among key variables 
(gender, age, SE, depression symptoms, and head motion) were 
calculated. Spearman’s rank correlation was used for correlation 
analysis. The correlation was considered statistically significant at 
p < 0.05. Seed-to-voxel FC analysis were conducted to search for the 
FC correlating SE, using General Linear Model (GLM),with BDI-II 
scores, age, and gender as covariates. We  did not use framewise 
displacement (FD) as covariates because in the ART-scrubbing 
procedure FD threshold was set on 0.5 mm and identified and 
regressed out high-motion frames based on FD values (see 2.5 
preprocessing), and subjects with large movement is excluded from 
the analysis. Therefore, additional inclusion of mean FD as a covariate 
in FC analyses was considered redundant and not applied. Statistical 
significance was set as following: an initial voxel-level threshold was 
set at p < 0.001(uncorrected), followed by a cluster-level threshold 
corrected using false discovery rate (FDR) at p < 0.05. Additionally, a 
Bonferroni corrected threshold was set at p < 0.0041, for multiple 
comparisons for the 12 ROIs, so it means that results surviving 

Bonferroni correction (p < 0.0041) are considered statistically robust, 
while result significant only after FDR are exploratory.

2.4 Neuroimaging acquisition

MRI was performed using a 3-T MRI scanner (Tim-Trio; Siemens, 
Erlangen, Germany) with a 40-mT/m gradient and a receiver-only 
32-channel phased-array head coil. To acquire a 360-s (6-min) rsfMRI 
scan, a single-shot gradient-echo planar imaging (EPI) pulse sequence 
was used. The participants were instructed to look at a fixation cross 
in the center of the screen and avoid thinking about anything during 
the resting-state data acquisition. Head movement was minimized by 
placing rubber pads within the head coil. For B0 field-mapping 
distortion correction, a dual-gradient echo dataset was also acquired. 
Magnetization-prepared rapid gradient-echo (MPRAGE) sequences 
were used to acquire T1-weighted three-dimensional structural 
images. Data were excluded from the analysis if structural 
abnormalities, such as arachnoid cysts or cavum vergae, were detected.

The parameters used were as follows: MPRAGE: echo time (TE), 
3.4 ms; repetition time (TR), 2,000 ms; inversion time, 990 ms; field 
of view (FOV), 225 × 240 mm; matrix size, 240 × 256; resolution, 
0.9375 × 0.9375 × 1.0 mm3; and 208 total axial sections without 
intersection gaps; rsfMRI: TE, 30 ms; TR, 2,500 ms; flip angle, 80°; 
FOV, 212 × 212 mm; matrix size, 64 × 64; in-plane spatial resolution, 
3.3125 × 3.3125 mm2; 40 total axial slices; slice thickness, 3.2 mm with 
0.8-mm gaps in ascending order.

2.5 Image preprocessing

To rectify EPI distortions in the rsfMRI dataset, FMRIB’s Utility 
for Geometrically Unwarping EPIs was employed, a component of the 
FSL software suite (FMRIB’s software library version 5.0.9). This 
process included alignment adjustments using FMRIB’s Linear Image 
Registration Tool (FLIRT). We removed artifactual components and 
movement-related fluctuations using the FMRIB ICA-based x-noiser 
(Griffanti et al., 2014). FD was calculated to assess head motion during 
rsfMRI (Power et al., 2012), using the ART-based scrubbing procedure 
implemented in CONN toolbox. The following two exclusion criteria 
were applied based on past rsfMRI studies: (exclusion criteria 5–1) 
when the count of scans showing a head position variance of 0.5 mm 
from neighboring scans surpassed 25% and (5–2) when the peak head 
motion exceeded 3.0 mm or a 3.0° angle (Nilsonne et al., 2017; Zhang 
et al., 2015).

The CONN-fMRI Functional Connectivity toolbox (version 22.a) 
(Whitfield-Gabrieli and Nieto-Castanon, 2012), and the statistical 
parametric mapping software package SPM12 (Wellcome Trust Centre 
for Neuroimaging) were employed for the processing of the 
preprocessed rsfMRI and structural MRI data. Using a bespoke 
preprocessing pipeline of the CONN toolbox, all functional images 
were entailed with spatial normalization into the standard Montreal 
Neurological Institute (MNI) space, resampled to 2 mm isotropic 
voxels, underwent outlier detection through ART-based scrubbing, 
and were smoothed utilizing a Gaussian kernel having a full-width-at-
half maximum of 8 mm. A standard preprocessing pipeline for volume-
based analysis was used for all preprocessing steps. The same pipeline 
was used to segment and normalize the structural data into gray matter, 
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white matter (WM), and cerebrospinal fluid (CSF). The principal 
components of the WM and CSF signals, along with translational and 
rotational motion parameters (including six additional parameters 
signifying their first-order temporal derivatives) obtained from 
realignment using FLIRT, were eliminated using the CONN covariate 
regression analysis. Standard denoising pipeline was used to minimize 
the impact of confounding covariates, including the CompCor strategy 
(Behzadi et  al., 2007), which extracted fluctuations in the rsfMRI 
signals originating from the WM and CSF, along with their derivatives, 
and noise stemming from realignment parameters. Additionally, 
bandpass filtering was executed. The frequency window was 0.008–
0.09 Hz. This processing step resulted in an increase in retest reliability.

2.6 FC analysis

Seed-to-voxel rsFC analyses were conducted to examine FCs 
correlating with SE. The regions of interest (ROIs) were the dlPFC and 
vlPFC. We used the Brodmann area (BA) atlas to define these areas 
anatomically. Employing the BA atlas in CONN (path: util/otherrois/
BA.img), which was transformed into the MNI space via a Lancaster 

transformation from the Talairach atlas, we established seeds on bilateral 
BA 8 (frontal eye fields), 9 (dorsolateral and medial prefrontal cortex), 
and 46(anterior middle frontal gyrus and middle frontal area) for the 
dlPFC (Sallet et al., 2013) and 44 (opercular part of inferior frontal gyrus: 
IFG), 45 (triangular part of IFG), and 47 (orbital part of IFG) for the 
vlPFC (Levy and Wagner, 2011), totaling 12 seeds for analysis (Figure 1). 
Based on the initial FC analysis results, we conducted a post-hoc seed-
to-voxel analysis using cerebellar seeds (bilateral crus 1, 2, and lobule 6, 
which were included in the Bonferroni-survived cluster, and were 
reported regions to be involved in social or emotional recognition: Van 
Overwalle et al., 2020b) from the the Automated Anatomical Labeling 
atlas provided in CONN toolbox. This post-hoc analysis is to specify the 
functional meaning and region of the results of the main analysis.

3 Results

3.1 Demographic information

After completing all psychological tests and MRI examinations, 14 
participants were excluded from the analysis. No participants were 

FIGURE 1

Regions of interest that are targeted. The DLPFC (BA 8, 9, 46) and VLPFC (BA 44, 45, 47) are colored in the glass brain. DLPFC, dorsolateral prefrontal 
cortex; VLPFC, ventrolateral prefrontal cortex; BA, Brodmann area.
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excluded by the psychiatric diseases (criteria 1) and claustrophobia 
(criteria 2), but six participants had minor organic brain abnormalities 
(arachnoid cysts and cavum vergae: criteria 3), four of them did not 
fully answer the psychological tests(criteria 4), and MRI images of four 
participants had a maximum motion of more than 3 mm or 3°(criteria 
5). Consequently, 114 participants’ data were included in the analysis.

Their demographic data are summarized in Table 1. The RSES 
seems low in average, but the score is not so different from the past 
research (e.g., Schmitt and Allik, 2005). Regarding the BDI-II scores, 
16 participants had a score of 14 or more, which is the threshold for 
mild depression, as defined by Beck and the Japanese version of the 
BDI-II (Hiroe et al., 2005), indicating that these participants were 
considered healthy on the SCID-IV-TR but had  values above the 
threshold for mild depression on the BDI-II. Their average of FD was 
0.12 mm(SD = 0.05), which is in a normal range(Power et al., 2012).

3.2 Analysis of psychological data

We conducted Spearman’s correlations among age, gender, RSES 
scores, BDI-II scores, and mean FD. Significant correlations were 
observed between age and FD (ρ = 0.24, p = 0.01), indicating that 
older participants had more head motion. Additionally, BDI-II score 
was negatively correlated with the RSES score (ρ = −0.45, p < 0.001), 
suggesting that the participants with higher SE scores have lower 
depressive symptoms. There were no significant correlations between 
gender and other variables, nor between FD and psychological 
measures(all p > 0.05). The whole result is shown in 
Supplementary Table 1.

3.3 Main result of functional connectivity 
related to SE

We performed a correlation analysis of the functional connectivity 
(FC) strength to explore the neural correlates of SE. We found four 
seeds (BA 8 left, BA 9 left, BA 44 left, and BA 45 right) that had 
statistically significant FC values correlating with RSES scores in seed-
to-voxel analyses; however, significant correlations were observed only 
in the left BA 9 after correcting for multiple comparisons (Table 2).

The left BA 8 seed yielded a significant positive correlation with 
the RSES score in the rsFC with the right lingual gyrus (BA 18, 19) and 
right cerebellar lobule 6 (p = 0.0061) (Figure 2).

The FC strength between the left BA 9 and bilateral cerebellum was 
significantly positively correlated with the RSES scores (left: p = 0.0008, 
right: p = 0.0209) (Figure 3). Both clusters primarily covered crus 1 
and 2 and lobule 6 of each cerebellar hemisphere. Cluster 1 on the left 

cerebellum was the largest and was the only cluster that was 
significantly correlated after multiple corrections were applied. 
Notably, the right side of dlPFC showed no significant FC (Table 2).

The left BA 44 yielded four clusters (Figure 4). Three of them 
were located on the thalamus, brainstem, and both sides of the 
angular gyrus, which were negatively correlated with the RSES score, 
while the other one was located on the right frontal pole (BA 10) and 
was positively correlated with the RSES. The right BA 45 seed yielded 
a positive correlation with the RSES, including the right frontal 
orbital cortex (BA 47) and right insular cortex (BA 13) (Figure 5).

3.4 Post-hoc analysis to understand the 
part of significant FC, seeding on the 
cerebellum

We got the result on BA8 and 9 on the main analysis, but that seed 
is spatially widely spread from medial to lateral (see Figure  1).To 
understand which side of (medial or lateral) BA 8 and 9 had connectivity 
with the cerebellum and to consider the functional significance, 
we performed a post-hoc seed-to-voxel analysis with the cerebellar seeds 
(according to the result in BA8 and 9, we set the ROI in both side of Crus 
1, 2, and lobule 6). Both sides of the cerebellum crus 1 had a significant 
connection with the lateral prefrontal area. The left cerebellum crus 1 
yielded a cluster correlating with the RSES, including the frontal pole 
cortex (BA 10) and dlPFC (BA 9) (Supplementary Figure S1). The right 
side of crus 1 showed significant connectivity with both sides of the 
lateral anterior prefrontal area. The two clusters were both mainly 
included BA 9 and 10 (Supplementary Figure S2). The detailed results 
of clusters are shown in Supplementary Table 2.

4 Discussion

4.1 Summary of main findings

This pioneering rsfMRI study probed the neural underpinnings 
of SE in 114 healthy adults, meticulously considering and covarying 
out the potential influence of age, sex, and depressive symptoms. 
These factors can subtly vary within a healthy population and could 
confound the interpretation of the FC between brain regions related 
to social cognition and emotional regulation.

Before discussing the main FC findings, our bivariate analyses 
revealed a negative correlation between the RSES and BDI-II scores, 
which underscores the close link between SE and depressive 
symptoms, even among non-clinical populations. This correlation 
aligns with previous research demonstrating that individuals with 
higher BDI-II scores harbor a more potent negative self-image, even 
without major depression (Vaccaro et al., 2017). Importantly, this 
result substantiates the validity of our decision to statistically control 
for depressive symptoms. Additionally, a negative correlation between 
age and mean FD was observed, consistent with the previous reports 
(Hausman et al., 2022; Kato et al., 2021), further supporting covarying 
age in our rsfMRI analyses.

SE is postulated to relate closely to the sociometer theory, 
implicating brain regions responsible for social cognition and 
emotional regulation. Our findings support this hypothesis, 
particularly emphasizing the robust increase in FC between the left 

TABLE 1 Demographic and clinical characteristics.

Baseline characteristics Mean ± SD

Mean age (in years) 29.66 ± 12.56

Sex (female/male) 42/72

Rosenberg’s self-esteem scale (mean) 26.9 ± 4.7

Beck depression inventory - II (mean) 7.0 ± 6.7

Framewise displacement (mean) 0.12 ± 0.05

https://doi.org/10.3389/fnins.2025.1588567
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Aki et al. 10.3389/fnins.2025.1588567

Frontiers in Neuroscience 06 frontiersin.org

dlPFC and the posterior cerebellum. This result survived strict 
multiple comparison corrections, and suggests a significant neural 
link potentially involved in the integration of social cognitive inputs 

and emotional processing with the cerebellum. In addition to this 
central finding, exploratory results indicated that enhanced FC 
between the left dlPFC and the lingual gyrus might reflect integrated 

TABLE 2 Summary of seed-to-voxel analyses.

Seed Anatomical location (BA) of cluster L/R Cluster MNI 
space, x,y,z

Cluster size Size ρ (FDR-
corrected)

BA8 left Lingual gyrus (BA18,19) and cerebellum lobule 6 Right +12, −62, −24 471 0.00605

BA9 left Cerebellum crus I, II and lobule 6 Left −22, −70, −30 634 0.000834*

Cerebellum crus I, II, and lobule 6 Right +18, −70, −26 322 0.0209

BA44 left Thalamus and brain stem Left +12, −32, −04 365 0.0344

Angular gyrus (BA40) Left −32, −74, +34 235 0.05

Angular gyrus (BA40) Right +32, −54. +34 228 0.05

Frontal pole (BA10) Right +26, +54, −14 305 0.0358

BA45 right Frontal orbital cortex (BA47) and insular cortex (BA13) Right +40, +20. −10 396 0.0165

* Survived Bonferroni multiple comparison (ρ < 0.0041): the other clusters are only FDR-survived and exploratory results. BA, Brodmann area; FDR, false discovery rate, MNI, Montreal 
Neurological Institution.

FIGURE 2

Results of the seed-to-voxel analysis on the left BA 8. The upper image is a glass brain view, and the lower image is a slice view. In the slice view, the 
positively correlated clusters are circled red, and the negative clusters are blue. The color bar shows the t-value, and the degree of freedom is 109 
(same as in Figures 1–5). BA, Brodmann area.
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self-referential emotional and cognitive processing, whereas 
increased FC within the right vlPFC could relate to emotional 
regulation. Among these, the robust FC between the dlPFC and 
posterior cerebellum merits particular attention regarding the neural 
basis of SE.

4.2 FC between dlPFC and cerebellum 
positively correlated with SE: implications 
for social cognition and emotional 
regulation

Enhanced FC was observed primarily between the dlPFC 
regions (BA8 and 9) and posterior cerebellum (crus 1and 2, lobule 
6). Post-hoc analyses further supported increased FC between 
cerebellar crus 1 and lateral, not medial, part of prefrontal cortexes 
including dlPFC and anterior prefrontal cortes (aPFC). Here 
we review the role of each region and interpret this FC correlation 
with SE.

4.2.1 dlPFC
The dlPFC is critically involved in higher-level cognition functions 

(O’Reilly, 2006), coordination of responses to environmental stimuli 
(O’Reilly, 2010), attention control (Lai, 2021), emotional evaluation 
(Hutcherson et al., 2005), cost-sensitive decision-making (Botvinick 
and Braver, 2015), social cognitive processing (Weissman et al., 2008), 
and volition (Nitschke and Mackiewicz, 2005). This region exhibits 
hemispheric imbalance in depression (Mayberg, 2003; Phillips et al., 
2003), with decreased left-side activity associated with depressive 
symptoms (Dutta et  al., 2014) and increased ruminative thought 
process (Cooney et al., 2010; Wang et al., 2015; Lefaucheur et al., 2020; 
Baeken et al., 2021).

4.2.2 aPFC
The aPFC (BA 10), or frontal pole, contributes to introspection, self-

related processes and social relationships, recording actions, 
distinguishing real from imaginary events (Tsujimoto et  al., 2011), 
confidence in judgments (Miyamoto et al., 2018), metacognition (Baird 
et al., 2013), emotional action control (Koch et al., 2018) and executing 

FIGURE 3

Results of the seed-to-voxel analysis on the left BA 9. The left cluster remains even after Bonferroni multiple correction is considered. BA, Brodmann 
area.
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control beyond automatic behaviors (Volman et al., 2011; Bramson et al., 
2020). One study showed that a higher aPFC baseline activity correlated 
with lower post-traumatic stress disorder symptoms (Kaldewaij et al., 
2021), highlighting its role in adaptive emotional and cognitive control.

4.2.3 Cerebellum
Anatomical tracing studies have demonstrated closed-loop 

circuits between the lateral prefrontal cortex and cerebellar Crus 
1 and 2. These circuits are segregated from motor loops, 
indicating that a substantial portion of the cerebellum is 
dedicated to cognitive-affective networks rather than 
sensorimotor control (Habas et al., 2009; Buckner et al., 2011; 
Habas, 2021). Crus 1 predominantly supports social cognitive 
processes such as mentalizing and predicting social sequences, 
whereas Crus 2 is more strongly involved in emotional regulation 
processes (Guell et al., 2018; Van Overwalle et al., 2020b). These 
cerebellar regions activate in conjunction with medial prefrontal 
and temporoparietal areas during theory-of-mind tasks, 
reflecting their role in internal models of social dynamics and 

predictive coding of social behaviors (Van Overwalle et al., 2014; 
Olivito et al., 2023).

Schmahmann (1998) observed psychiatric symptoms in 
patients with cerebellar damage, proposing the “dysmetria of 
thought” hypothesis, linking cerebellar impairments in emotional 
and social cognitive control to psychiatric symptoms such as 
anxiety, depression, aggression, and passivity (Schmahmann et al., 
2007; Hoche et al., 2016). Subsequent research supports cerebellar 
involvement in emotional processing, predictive coding, and 
internal modeling of cognitive-affective processes (Alalade et al., 
2011; Liu et  al., 2012; Guo et  al., 2013; Ma Q. et  al., 2013; Ma 
Z. et al., 2013; Baetens et al., 2014; Van Overwalle et al., 2014; Van 
Overwalle et al., 2015; Depping et al., 2018; Guell et al., 2018; Guell 
and Schmahmann, 2020).

4.2.4 Interpretation of the positive correlation of 
FC with SE

Our results showed that higher SE is associated with stronger FC 
between the dlPFC-aPFC and cerebellar regions. This connectivity 

FIGURE 4

Results of the seed-to-voxel analysis on the left BA 44. The blue clusters are negatively correlated with SE, and the red clusters are positively correlated 
with SE. BA, Brodmann area; SE, self-esteem.
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likely underpins effective predictive coding and emotional regulation 
through fronto-cerebellar loops. The dlPFC conveys contextual social 
information to the cerebellum, which generates prediction regarding 
cognitive and emotional outcomes. Any mismatch between predicted 
and actual outcomes results in feedback signals that update and 
optimize prefrontal processing (Ito, 2008; Sokolov et  al., 2017). 
Weakened connectivity between gradualてdlPFC-aPFC and cerebellar 
areas could decrease the ability to predict and regulate emotional and 
social outcomes effectively, thus increasing vulnerability to 
maladaptive emotional reactions and ruminations (Cooney et  al., 
2010; Wang et al., 2015).

Conversely, individuals with higher SE may have increased 
dlPFC-cerebellar interactions that enables efficient monitoring of 
social feedback, prediction of emotional states, and rapid error 
correction when social outcomes deviate from expectations. Such 
adaptive fronto-cerebellar coupling, potentially mediated by 
interactions with large-scale networks such as the DMN, supports 
resilience against negative self-evaluations and facilitates stable self-
esteem by continuously adjusting social-cognitive strategies and 

emotional responses (Brown and Mankowski, 1993; Campbell et al., 
1991). Thus, this dlPFC-cerebellar network is important not merely 
for cognitive and affective adjustment but also for sustaining 
psychological well-being through predictive control in social and 
emotional dynamics.

4.3 Other FC changes which could not 
survive multiple comparisons (exploratory 
results)

4.3.1 FC increase between the left BA 8 and right 
lingual gyrus

We observed a positive correlation between the SE and FC 
involving the left BA 8 and the right lingual gyrus. The lingual gyrus 
plays a pivotal role in visual perception, visual agnosia (Hirayama, 
2017), facial emotion recognition (Kitada et al., 2010), and self-
referential processes (Kircher et  al., 2000; Makino and Ikoma, 
2022). A reduction in the surface area of the right lingual gyrus has 

FIGURE 5

Results of the seed-to-voxel analysis on the right BA 45. BA, Brodmann area.
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been associated with anxiety, depression (Couvy-Duchesne et al., 
2018), and adolescent major depressive disorder (Schmaal et al., 
2016), which may influence adult psychiatric outcomes. Based on 
sociometer theory, cooperation between the lingual gyrus and 
dlPFC may facilitate integrated processing of self-referential 
emotional and cognitive information, essential for maintaining 
positive self-evaluation.

4.3.2 FC increase between the left BA 44 and 
right frontal pole as well as between the right BA 
45, BA 47, and insula

Our analysis identified positive correlations between the left BA 
44 and the right frontal pole (right BA 10), as well as between the right 
BA 45 and a cluster including the right OFC (right BA 47 right) and 
insular cortex (BA 13).

BA 44, 45, and 47 collectively form the inferior frontal gyrus 
(IFG), crucial for verbal motor function, working memory (Osaka, 
2007), and behavioral regulation (Forstmann et  al., 2008; Sundby 
et al., 2021). The right vlPFC is linked to social exclusion (Riva et al., 
2012) and the cognitive reappraisal and suppression of amygdalar 
activity associated with fear and anger (Lieberman et  al., 2007). 
Previous research detected diminished right IFG activity in depressed 
individuals experiencing pronounced rumination (Kühn et al., 2012) 
and increased vlPFC-amygdala FC in individuals with high SE during 
mortality threat tasks (Yanagisawa et  al., 2016), highlighting its 
importance in emotional and cognitive regulation relevant to SE. One 
study (Kim G. W. et al., 2022; Kim H. et al., 2022) revealed reduced 
FC between the bilateral IFG regions in young adults with pronounced 
suicidality, which is consistent with our findings. The insular cortex is 
also instrumental in emotional judgment (Zaki et al., 2012). Given the 
amplified FC among vlPFC, frontal pole, and insula, individuals with 
high SE may exhibit superior skills in effectively monitoring and 
regulating emotional states, using the frontal pole as a protective 
buffer against intense negative emotions.

4.3.3 FC decrease between the BA 44, angular 
gyri, and thalamus

Seeding on the BA 44 left, a negative correlation with SE was 
observed in FC involving clusters within bilateral the angular gyri and 
the thalamus. The left BA 44 (Broca’s area) contributes to the 
production of language, grammar, fluency, and processing of sentences 
(Grewe et  al., 2005; Ardila, 2012). These are known to work as 
networks with Wernicke’s area and extended area, including the 
thalamus (Bohsali et al., 2015; Kim G. W. et al., 2022; Kim H. et al., 
2022; Junker et  al., 2023). Previous studies have suggested that 
rumination is negatively associated with SE and is often experienced 
as inner speech (Moffatt et  al., 2020; Bugay-Sökmez et  al., 2023), 
indicating that people with low SE tend to engage in excessive internal 
verbalization and cognitive rumination during the resting state.

4.3.4 Null findings in right dlPFC seeds
Interestingly, we did not find significant FC correlations with SE 

involving the right dlPFC(BA8,9,46). The null significant results in the 
right dlPFC might indicate a left-lateralized neural substrate for SE 
processing. Prior neuroimaging studies showed greater left-
hemispheric prefrontal activation during positive emotional 
experiences and self-referential cognition (Weissman et  al., 2008) 
Future research should explicitly examine lateralization patterns in 

neural mechanisms underpinning SE to further validate this 
hemispheric distinction.

4.4 Neural correlates of SE

With multiple comparisons corrections, only FC between the 
dlPFC and cerebellum remained significant. This robust result 
suggests the dlPFC’s coordinating role in cognitive process and 
reciprocal interactions with the cerebellum during SE establishment. 
Additionally, observed the FC with the lingual gyrus is associated 
with self-perception and social interaction, while FC among the 
vlPFC, frontal pole, and insula contributes to emotion regulation. 
Consequently, our findings suggest the potential for the language 
network (BA44-angular gyrus-thalamus) to become less active, 
achieving a state close to true resting conditions without 
inner speech.

The relationship between SE and FC could serve as a surrogate 
marker for predicting the risk of mental illnesses onset. 
Considering that established psychiatric interventions like 
cognitive-behavioral therapy impact SE (Mann et  al., 2004; 
Roberts, 2006; Niveau et al., 2021), the FC-SE relationship may 
offer valuable insights for evaluating the effectiveness of 
these interventions.

4.5 Limitations and future prospects

This study has some limitations. First, we only used data from the 
Japanese population. Previous research indicates that SE varies across 
countries (Schmitt and Allik, 2005). Despite this, we  believe our 
findings reflect universal aspects of SE. Future research involving 
international participants for studying SE and brain function is 
necessary for generalizing present results.

Second, we identified associations between SE and FC in regions 
involved in social cognition and emotional regulation, but this does 
not confirm that social cognition or emotional regulation directly 
mediate or causally influence the neural relationship with SE. Although 
interpretations were provided regarding these processes, we did not 
empirically test their direct functional roles. Future studies should 
explicitly examine the mediating or moderating effects of social 
cognitive and emotional regulation factors using task-based fMRI 
paradigms and mediation or moderation analyses (e.g., see Zhang 
et al., 2023).

Third, this was a cross-sectional study. While SE is relatively 
stable, it is also known to change gradually over the course of a 
person’s life. Future studies should observe the correlation between 
intra-individual changes in SE and changes in FC.

Lastly, we  focused on specific seeds to identify SE neural 
correlates. Although we found some FCs potentially related to large-
scale networks like default-mode, these networks were not directly 
analyzed. Further research should explore the relationship between 
intra-network and inter-network FC and SE, which might have 
implications for psychological traits and brain changes.

In conclusion, our study examined the neural correlates of SE, 
excluding associations with subthreshold depressive symptoms. As 
hypothesized, FC in social cognition and emotional regulation 
areas, especially the dlPFC and the posterior cerebellum, was 
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associated with SE. Based on these findings, we  propose the 
possibility of SE as a surrogate marker of mental health 
management, and the viability of FC as a neurobiological index for 
evaluating mental health interventions.
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