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Introduction: Extended viewing of 3D content can induce fatigue symptoms. 
Thus, fatigue assessment is crucial for enhancing the user experience and 
optimizing the performance of stereoscopic 3D technology. Functional near-
infrared spectroscopy (fNIRS) has emerged as a promising tool for evaluating 3D 
visual fatigue by capturing hemodynamic responses within the cerebral region. 
However, traditional fNIRS-based methods rely on manual feature extraction 
and analysis, limiting their effectiveness. To address these limitations, a deep 
learning model based on fNIRS was constructed for the first time to evaluate 
3D visual fatigue, enabling end-to-end automated feature extraction and 
classification.

Methods: Twenty normal subjects participated in this study (mean age: 
24.6 ± 0.88 years; range: 23–26 years; 13 males). This paper proposed an 
fNIRS-based experimental paradigm that acquires data under both comfort and 
fatigue conditions. Given the time-series nature of fNIRS data and the variability 
of fatigue responses across different brain regions, a dual-branch convolutional 
network was constructed to separately extract temporal and spatial features. A 
transformer was integrated into the convolutional network to enhance long-
range feature extraction. Furthermore, to adaptively select fNIRS hemodynamic 
features, a channel attention mechanism was integrated to provide a weighted 
representation of multiple features.

Results: The constructed model achieved an average accuracy of 93.12% within 
subjects and 84.65% across subjects, demonstrating its superior performance 
compared to traditional machine learning models and deep learning models.

Discussion: This study successfully constructed a novel deep learning framework 
for the automatic evaluation of 3D visual fatigue using fNIRS data. The proposed 
model addresses the limitations of traditional methods by enabling end-to-end 
automated feature extraction and classification, eliminating the need for manual 
intervention. The integration of a transformer module and channel attention 
mechanism significantly enhanced the model’s ability to capture long-range 
dependencies and adaptively weight hemodynamic features, respectively. The 
high classification accuracy achieved within and across subjects highlights the 
model’s effectiveness and generalizability. This framework not only advances 
the field of fNIRS-based fatigue assessment but also provides a valuable tool 
for improving user experience in stereoscopic 3D applications. Future work 
could explore the model’s applicability to other types of fatigue assessment and 
further optimize its performance for real-world scenarios.
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1 Introduction

Three-dimensional (3D) display technology has garnered 
widespread attention for its ability to enhance realism. However, 
prolonged viewing of 3D content, as compared to traditional 2D, often 
results in various symptoms of visual fatigue, such as headaches and 
eye pain. In some cases, it may even cause irreversible health damage. 
These issues greatly slow down the progress of stereoscopic display 
technologies (Karimi et  al., 2021; Liu et  al., 2021). Therefore, the 
assessment of stereoscopic visual fatigue is an important research area.

Functional near-infrared spectroscopy (fNIRS) is a non-invasive 
imaging method that uses near-infrared light to monitor 
hemodynamic responses in the cerebral cortex (Jobsis, 1977; Acuña 
et  al., 2024). By measuring changes in oxyhaemoglobin (HbO), 
deoxyhaemoglobin (HbR), and total hemoglobin (HbT), fNIRS 
provides detailed insights into localized brain activity related to blood 
oxygenation and hemodynamic responses. Compared to other 
techniques, such as EEG and fMRI, fNIRS balances both temporal and 
spatial resolution. This combination makes fNIRS a preferred 
approach for studying brain activation during different cognitive and 
perceptual tasks, including tasks involving stereoscopic visual. 
Additionally, the convenience and resistance to interference of fNIRS 
further enhance its suitability. Ward et al. employed (fNIRS to explore 
the relationship between the parietal cortex and stereoscopic visual 
perception). They evaluated the efficacy of stereoscopic vision by 
analyzing the changes in the levels of oxyhemoglobin (HbO) and 
deoxyhemoglobin (HbR; Ward et al., 2016). Seraglia et al. discovered 
that when participants viewed identical scenes via virtual reality 
technology, the hemodynamic responses were more pronounced in 
comparison to when they viewed those scenes in the real world 
(Seraglia et  al., 2011; Zhou and Wang, 2024). Shi et  al. employed 
subjective questionnaires in combination with statistical characteristics 
including peak amplitude (PA) and peak time (PT) for the purpose of 
assessing the effect exerted by color saturation on visual fatigue. The 
findings revealed that the peak amplitude (PA) of the HbO signal 
demonstrated a significant divergence between the visual comfort and 
visual fatigue conditions. Moreover, these differences were far more 
conspicuous than those detected in subjective evaluations and other 
statistical characteristics of the signal (Shi et  al., 2022). Cai et  al. 
utilized fNIRS to investigate the correlation between visual fatigue and 
cortical neural activity. By integrating statistical parameter analysis 
with the observation of the signal variation curve in response to visual 
stimuli, they discerned significant differences between the signals 
associated with visual comfort and those associated with visual fatigue 
(Cai et  al., 2017). Hans et  al. explored the mechanisms by which 
vergence-accommodation conflict gives rise to stereoscopic visual 
fatigue and impacts the HbO signals within the prefrontal cortex. 
Statistical analysis results indicated that larger vergence amplitudes 
were associated with more severe fatigue and more pronounced 
changes in HbO concentration (Howe et al., 2013). Yao et al. pointed 
out that subsequent to watching 3D movies, the frontal lobe undergoes 
robust activation, accompanied by a notable increase in HbO levels. 
Through the selection of pertinent signal features and the application 

of machine - learning techniques, it becomes possible to accurately 
classify the signals prior to and subsequent to viewing 3D content (Yao 
et al., 2022). Despite the remarkable advancements in this field, the 
fNIRS research focusing on stereoscopic visual fatigue still relies on 
manual feature selection and analysis of changes within the Region of 
Interest (ROI) to evaluate its impact on brain activity. Manual feature 
extraction, which relies on prior knowledge, is time-consuming and 
prone to human error. These limitations hinder its application in 
large-scale data and complex tasks. The time-series nature of fNIRS 
signals contains latent features which are not easily understood by 
artificial stereoscopic visual fatigue still relies on manual feature 
selection and analysis of changes within the Region of Interest (ROI) 
to evaluate its impact on brain activity.

In recent years, deep learning techniques have attained remarkable 
feats across a diverse range of domains, such as computer visual, 
speech recognition, and time series classification (TSC; Zhu et al., 
2022; Xin et al., 2023; Shahabaz and Sarkar, 2024). Unlike traditional 
models that require manual feature extraction, deep learning models 
can directly extract feature representations from raw data, enabling 
end-to-end learning. Deep learning optimizes both feature extraction 
and classification, overcoming the limitations of traditional manual 
methods and demonstrating strong generalization across various tasks 
and datasets (Lawhern et al., 2018; Zhang et al., 2020; Sedik et al., 
2023). Considering the time-series nature of fNIRS signals, 
Convolutional Neural Networks (CNNs) have significant advantages. 
By capturing local temporal dependencies and identifying relevant 
features within adjacent time intervals, CNNs have become the most 
common model for time series classification tasks based on fNIRS 
(Dewen et al., 2021; Ma et al., 2021). However, CNN’s capture of local 
temporal dependencies may overlook long-term temporal 
dependencies related to fatigue (such as fatigue accumulation effects), 
while LSTM can model long-range time series, its sequence to 
sequence architecture cannot effectively integrate the multi-channel 
spatial information of fNIRS. Furthermore, upon continuous 
stereoscopic visual stimulation, fatigue characteristics gradually build 
up in both the temporal and spatial dimensions. In terms of temporal 
dynamics, fatigue development requires time-dependent modeling, 
but the receptive field of CNN is limited by the size of the convolution 
kernel and the depth of the network. In the spatial domain, different 
brain regions have different response patterns to visual stimuli, 
requiring independent optimization of spatial feature extraction. 
However, a single branch of CNN cannot separate specialized 
processing of spatiotemporal features. Therefore, a dual branch 
structure is adopted to capture temporal and spatial features separately. 
Specifically, we engineered a Dual - Branch Convolutional Neural 
Network (DBCNN) feature extraction module. This module is 
intended to bolster the proficiency of CNNs in discerning and 
harnessing the characteristic features embedded in fNIRS data related 
to stereoscopic visual fatigue.

Given that research on visual fatigue necessitates sustained stimuli 
to promote the accumulation of fatigue, CNNs mainly focus on 
extracting local features from the data. This characteristic restricts 
their capacity to process global information effectively. In contrast, 
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Transformer, a deep model based on self- attention mechanism, 
exhibit significant advantages in capturing global context (Chen et al., 
2023; Wang H. et al., 2023; Lin et  al., 2024). This capability is 
particularly advantageous for analyzing stereoscopic visual fatigue 
data, which requires extensive accumulation over prolonged periods. 
Given the prowess of CNNs in  local feature extraction and the 
capabilities of Transformers in global context modeling, integrating 
these two modules enables the exploitation of the respective 
advantages of CNNs and Transformers. As a result, remarkable 
classification outcomes can be achieved (Huang et al., 2022; Song 
et al., 2023; Zhang et al., 2023).

When choosing fNIRS hemodynamic signals, it is crucial to 
recognize that diverse hemodynamic features carry different levels of 
significance in the evaluation of stereoscopic visual fatigue. Existing 
studies that are based on fNIRS typically either choose only a single 
feature or utilize all available features for analysis (Dewen et al., 2021; 
Ma et al., 2023). Inspired by the image domain (27), we integrated the 
hemodynamic feature channel attention mechanism into the DBCNN 
module. Through the application of this attention mechanism, the 
module can autonomously optimize the input weights of various 
hemodynamic feature signals. We  implemented this strategy to 
evaluate stereoscopic visual fatigue, thus improving the efficient use 
of fNIRS feature data and driving progress in the field (Wang, Y. Q. et 
al., 2023).

Therefore, a model integrating a dual-branch CNN, the 
hemodynamic feature channel attention mechanism, and Transformer 
is constructed for extracting features and classifying visual fatigue and 
comfort conditions. The primary contributions of this paper are 
summarized as follows:

 1. For the first time, deep learning technology has been 
comprehensively integrated into the assessment of stereoscopic 
visual fatigue through fNIRS spectroscopy imaging. The 
proposed model seamlessly combines the DBCNN, a channel 
attention mechanism, and Transformer modules. By 
capitalizing on their individual capabilities in local and global 
feature extraction, this innovative approach remarkably 
improves the accuracy and efficiency of the stereoscopic visual 
fatigue assessment.

 2. For the first time, the channel attention mechanism was 
introduced into the feature channels of fNIRS. This novel 
approach allows for more effective utilization of fNIRS 
hemodynamic feature data, thereby further enhancing the 
accuracy of the deep - learning model.

 3. An fNIRS-based stereoscopic visual fatigue stimulation 
paradigm was developed, and signals corresponding to both 
comfort and fatigue states were collected.

2 Methods

2.1 Participants

Twenty participants (13 males and 7 females, aged 23–26 years; 
mean age 25 ± 0.88 years) were recruited from Changchun University 
of Science and Technology. All participants demonstrated normal or 
corrected-to-normal visual acuity (Snellen equivalent ≥20/25) to 
ensure full engagement in stereoscopic tasks. Prior to the experiment, 

eligibility was confirmed through preliminary screening tests, 
including visual function assessments and task familiarity evaluations. 
To minimize experimental variability, participants were instructed to 
refrain from strenuous activities and maintain adequate rest for 24 h 
before the sessions. Standardized protocols were implemented 
throughout the study to ensure consistent preparation and 
data collection.

During the experimental sessions, participants were seated in a 
height-adjustable chair positioned 285 cm from a stereoscopic display 
(ASUS VG278HR; screen dimensions: 95 cm height × 170 cm width). 
To standardize viewing conditions, a chin rest (HeadSpot®, 
UHCOTech) was utilized to minimize head motion artifacts and 
maintain a fixed distance of 60 cm between the nasion (bridge of the 
nose) and the display center. Participants’ viewing distance was three 
times the TV height (95 cm; Shin et al., 2021). This configuration 
ensured stable fNIRS signal acquisition by eliminating motion-
induced optical path fluctuations while optimizing stereoscopic 
stimulus presentation accuracy.

2.2 General procedure

2.2.1 Stimuli
In this experiment, we utilized static stereograms as the stimulus. 

Each stereogram consisted of two images exhibiting horizontal 
disparity, symmetrically shifted to the left and right relative to the 
background in order to create a binocular disparity of α + β. These 
images were presented separately to the left and right eyes, thereby 
eliciting a depth perception characteristic of stereoscopic vision. The 
stereograms were created and displayed using Unity 3D software. To 
simulate human binocular vision, two virtual cameras (left/right eye) 
were positioned in the 3D scene with an inter-pupillary distance (IPD) 
of 65 mm, consistent with anthropometric standards for adult 
populations [ISO 15099:2018]. The stereoscopic stimulus consisted of 
a single achromatic cube (RGB: [0, 255, 0]; luminance: 120 cd/m2; 
edge length: 2.3° visual angle) centered on a neutral gray background 
(RGB: [128, 128, 128]; luminance: 50 cd/m2), designed to isolate 
disparity cues while controlling for chromatic and 
contextual confounders.

Previous research has relied on subjective measurements from 
questionnaire surveys to assess visual fatigue induced by vergence-
accommodation conflicts (Kim et  al., 2014; Yangyi et  al., 2022; 
Watanabe et al., 2024). Although subjective assessments provide direct 
insights into participants’ perceptual experiences, they are susceptible 
to inter-individual variability in response bias and fatigue tolerance 
thresholds. To address these limitations, recent research has shifted 
toward objective physiological metrics, including pupillary dynamics, 
blink rate analysis, and ocular accommodation responses, which offer 
higher reliability and precision in quantifying VAC-induced visual 
fatigue. Studies have also indicated that static stereograms with larger 
disparities tend to induce more visual fatigue than those with smaller 
disparities (Zheng et al., 2024). Building on these findings, we designed 
the experimental stimuli to systematically manipulate binocular 
disparity across two conditions: visual comfort (VC) and visual fatigue 
(VF). For the VC condition, six stereograms with minimal disparity 
values (±0.1°, ±0.2°, ±0.3°) were selected, ensuring low vergence-
accommodation conflict (VAC) demands. Conversely, for the  
VF condition, six stereograms with elevated disparity values  
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(±1.0°, ±0.9°, ±0.8°) were employed, designed to induce measurable 
visual fatigue based on prior evidence [34]. This resulted in a total of 
12 distinct disparity levels, each presented in randomized order to 
minimize habituation effects. To objectively quantify neural responses, 
fNIRS was utilized to record hemodynamic changes in the prefrontal 
cortex (PFC) and visual association areas during stimulus 
presentation. The experimental setup, including stimulus display 
parameters and fNIRS probe placement, is illustrated in Figure 1.

2.2.2 fNIRS data recording
Using the fNIRS system (SHIMADZU-LABNIRS) equipped with 

three wavelengths of fNIRS light (780 nm, 805 nm, 830 nm), 
we collected data at the maximum sampling rate of 27 Hz (Condell 
et al., 2022) Based on prior research, we identified the frontal, parietal, 
and occipital lobes as key brain areas involved in stereoscopic visual 
fatigue. After considering various factors, we chose to focus our data 
collection on the frontal and parietal lobes (Cai et al., 2017; Richter 
et al., 2018; Jiakai et al., 2021; Shin et al., 2021; Kang et al., 2022; Wu 
et al., 2024). To optimize signal quality and spatial coverage, a custom-
designed optode helmet was utilized, with 19 channels arranged 
according to the international 10–20 system. The midline optodes 
were aligned along the CZ-OZ axis, and channel 19 was positioned at 
the Cz electrode (vertex). As illustrated in Figure  2, the optode 
configuration consisted of 12 sources (red), 12 detectors (blue), and 
19 channels (green), ensuring comprehensive coverage of the targeted 
cortical regions.

During experimental sessions, participants executed standardized 
task paradigms while their hemodynamic responses were continuously 
recorded via fNIRS. The acquired fNIRS signals, specifically reflecting 
oxyhemoglobin concentration dynamics, were subjected to 
preprocessing routines following data acquisition. The modified Beer–
Lambert Law (Cope and Delpy, 1988; Ilze and Janis, 2021) was 
employed to convert changes in optical density (ΔOD) over time (Δt) 

into changes in oxyhemoglobin (ΔHbO) and deoxyhemoglobin 
(ΔHbR) concentrations due to the absorption of fNIRS light. The 
description of Equation 1 is as follows:
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(1)

Where d represents the distance between the transmitter and 
detector, λ1 and λ2 represent the different irradiation wavelengths, 
DPF is the differential path length factor for λ and ϵ is the extinction 
coefficient for HbR and HbO.

Total hemoglobin concentration (∆HbT) was calculated as the 
sum of the concentrations of oxyhemoglobin (∆HbO) and 
deoxyhemoglobin (∆HbR). Finally, we  applied a digital filtering 
protocol to eliminate physiological noise and motion artifacts during 
the fNIRS signal acquisition process.

2.2.3 Experiment protocol
The experimental protocol comprised five distinct phases as 

schematically illustrated in Figure 3, programmed and delivered 
via E-Prime 2.0 (Psychology Software Tools). During the initial 
verification phase, participants viewed all stereoscopic disparity 
images presented in a counterbalanced pseudorandom sequence. 
This design served dual purposes: (1) Confirming participants’ 
capability to accurately perceive depth perception, and (2) 
ensuring proper image display functionality. Upon successful 
verification, the subsequent phase incorporated an eye-closed rest 
interval (minimum 300 s) to allow stabilization of hemodynamic 
parameters to pre-experimental baseline levels, as monitored 

FIGURE 1

Experimental environment.
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through real-time fNIRS biosignal feedback. The third 
experimental phase (Block 1 stimulation) comprised a 30-trial 
sequential paradigm with four standardized stages per trial: (1) 
Hear the buzzer. The experiment starts; (2) Central fixation cross 
(0.5° visual angle) displayed for 2 s to stabilize ocular position; (3) 
Computer-generated pseudorandomized sequence of six 
stereoscopic disparity images (counterbalanced presentation 
scheme), each displayed twice (200 ms/image) across 12 
presentations (total 24-s duration) using E-Prime’s script-
controlled presentation; and (4) a closed-eye rest phase lasting 8 s. 
Participants would hear a beep at the end of each rest period 
signaling them to open their eyes for the next trial. After 
completing Block1, participants entered another rest phase—the 
fourth part of the experiment. The fifth part began after 
participants pressed the spacebar, featuring visual stimuli with 
either small (0.1°–0.5°) or large (2.1°–2.5°) disparity ranges as 
determined by trial phase requirements. Both Phase III and Phase 
V maintained identical procedural protocols while systematically 
varying stimulus disparity parameters, enabling comparative 
analysis of visual comfort metrics and fatigue progression. This 
experimental protocol received approval from the Ethics 
Committee of Changchun University of Science and Technology.

2.2.4 Data preprocessing
To address the temporal demands of fNIRS data acquisition 

and the extensive dataset requirements of deep learning 
architectures, we  implemented a time-window segmentation 
strategy for hemodynamic signal processing. Given that fNIRS 
measurements quantify relative hemodynamic changes [HbO2/
HbR], baseline normalization was performed using the initial 10-s 
resting-state period prior to stimulus onset. Subsequent analysis 
focused on 24-s epochs corresponding to stereoscopic stimulus 
presentation, with temporal segmentation executed via an 8-s 
sliding window (2-s step size; see Figure 4). This method matched 
our focus on stereoscopic visual fatigue caused by changes in 
disparity, allowing us to analyze four sets of disparity stimuli 
changes within the 8-s window, with each step corresponding to 
the 2-s duration of each stimulus.

2.3 Model

2.3.1 DBCNN-ECA-TRM framework
To effectively extract features from raw fNIRS signals, this study 

introduces an end-to-end dual-branch convolutional neural network 
with efficient channel attention and a transformer (DBCNN-
ECA-TRM) framework. As schematically depicted in Figure 5, the 
framework comprises three principal components through which raw 
fNIRS data undergo hierarchical processing. The input signals are first 
processed by two specialized CNN modules: A temporal feature 
extraction module (CONVt) that operates on single-channel time-
series data to capture dynamic hemodynamic variations A spatial 
feature extraction module (CONVs) that analyzes multi-channel 
spatial patterns across adjacent sensor channels representing localized 
cortical regions Notably, this dual-branch design enables parallel 
processing of temporal kinetics and spatial topography inherent in 
fNIRS signals. The ECA module employs adaptive attention 
mechanisms to optimize input hemoglobin concentration features 
(HbO, HbR, and HbT). The TRM module then performs temporal 
sequence reorganization, converting 2D features into 1D features. This 
operation preserves critical temporal dependencies while reducing 
feature dimensionality for efficient processing. The processed 1D 
feature sequences undergo linear embedding and layer normalization 
before being fed into the Transformer encoder architecture. Through 
multi-head self-attention mechanisms and position-wise feedforward 
networks, this component captures long-range temporal correlations 
and global signal patterns essential for classification tasks. The design 
of this model framework effectively captures the key features of 
stereoscopic visual fatigue in fNIRS signals.

In order to provide a clearer explanation of the model 
principles, we define symbols here. Assuming that the number of 
samples input into the model each time is B, the original fNIRS 
signal is input as a four-dimensional tensor [B, 3, C, T], where C 
represents the number of channels of the signal and T represents 
the time sampling point. The model extracts spatiotemporal features 
in parallel through both spatial and temporal branches. The 
temporal dimension is compressed to T’, and the output shape is [B, 
8, C, T’]. After dynamic weighting through efficient channel 
attention (ECA), the data shape becomes [B, C, dim], where dim is 
the defined dimension of the latent space. The original high-
dimensional features are compressed to 64 dimensions through 
linear projection. After passing through the Transformer encoder, 
the spatial and temporal branches are extended to [B, C + 1, dim] 
by adding CLS Token, and the dual branches are concatenated to 
[B, 128]. The final output is [B, n], where n is the number of 
task categories.

2.3.2 DBCNN module
Effectively utilizing fNIRS signals is crucial for improving 

classification outcomes. Previous studies have demonstrated that 
optimizing the raw input data of fNIRS signals can enhance the 
exploration and learning of signal features (Song et  al., 2023; 
Zhang et al., 2023). The core idea of CNN is to extract different 
features using convolution operations. While conventional CNN 
architectures employ fixed kernel sizes for localized feature 
detection, our research introduces a novel dual-branch CNN 
framework designed to synergistically capture both temporal and 
spatial characteristics inherent in fNIRS data. As shown in 

FIGURE 2

Optode placement. Red indicates the transmitters, blue the receivers, 
and green the channels.
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Figure 6, we represent the input fNIRS data as a three-dimensional 
matrix, indicating channels, time points, and cerebral oxygenation 
levels (HbO, HbR, and HbT). At the temporal level, we use the 
CONVt to compute the hemodynamic response of individual 
channels, focusing on data variations within a single channel. At 
the spatial level, the CONVs is used to extract information across 
multiple channels, targeting different brain regions. Through 
systematic sliding of convolution kernels over the sensor array, 

this module captures spatially correlated hemodynamic patterns 
among neighboring channels.The parameter settings for both 
types of convolutions are detailed in Table 1. The proposed dual-
modal extraction strategy not only improves data utilization 
efficiency through joint temporal–spatial feature integration but 
also significantly strengthens the network’s representational 
capacity. This hybrid architecture effectively addresses the 
limitations of single-method approaches by synergistically 
preserving local channel-specific patterns while capturing global 
spatial correlations inherent in fNIRS data. Such complementary 
feature learning enables the network to achieve superior 
classification performance through more robust representation of 
stereoscopic visual fatigue signatures.

2.3.3 ECA module
The Efficient Channel Attention (ECA) mechanism was 

developed to address the challenges of insufficient utilization and 
imbalanced attention allocation across feature channels in deep 
neural networks, particularly in image processing applications 
(Wang et al., 2020). Traditional networks often assign equal weight 
to all channels, resulting in suboptimal feature extraction and 
reduced model efficiency. The ECA mechanism overcomes this 
limitation by enabling the network to dynamically allocate attention 
weights to individual channels, thereby enhancing the focus on 
critical features and improving both performance and 

FIGURE 3

Experiment protocol. The experiment consists of five parts. Both Block 1 and Block 2 contain 30 repeated trials each. Each trial is composed of four 
segments. The VAC stimulus sequence consists of 12 images with alternating disparity changes.

FIGURE 4

Sliding window method to segment the data samples. The 
experimental stimuli lasted 8 s, and we selected a window size 
corresponding to 2 s of data, with a sliding step of 1 s.
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generalization capabilities. In fNIRS signal analysis, where channels 
such as HbO, HbR, and HbT reflect hemoglobin oxygenation 
during brain activity. By adaptively weighting these channels, ECA 
facilitates the precise extraction of physiologically relevant features, 
thereby enhancing the accuracy and reliability of brain 
function analysis.

Figure 7 depicts the architectural design of the Efficient Channel 
Attention (ECA) module, utilizing 1D convolution to efficiently 
achieve local cross-channel interaction based on the dependency 
relationships between fNIRS signal feature channels. As shown, the 
ECA attention module first performs global average pooling on the 
input data of dimensions H × W × C, followed by a 1D convolution 
operation using a convolution kernel of size k. The kernel size k is 
determined by an adaptive function of the number of input channels 

C, as shown in Equation 2, where |x|odd represents the nearest odd 
number to x.

 
( ) +

= ϕ = 2log 1k
2 odd

cc
 

(2)

Following the convolution operation, a sigmoid activation 
function is applied to obtain the weights W for each channel. To 
further enhance network performance, convolutional weights are 
shared to efficiently capture local inter-channel interactions, reducing 
the number of network parameters. The shared weights method is 
detailed in Equation 3,

 
σ

=

 
 = ∈Ω
 
 
∑
1

,
k

j j j k
i ii i i

j
W W Y Y
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where σ represents the sigmoid activation operation, Wi is the i-th 
weight matrix obtained by grouping the C channels, Wi

j is the j-th 
local weight matrix within the i-th weight matrix, and Yi

j is defined 

FIGURE 5

The overall process of DBCNN-ECA-TRM construction.

FIGURE 6

The relationship between temporal and spatial convolutions. Time branch (CONVt): extracting dynamic time features within a single channel; spatial 
branches (CONVs): extracting spatial correlations between multiple channels; sliding operation of convolution kernel: capture spatiotemporal features 
by sliding the convolution kernel on the sensor array.

TABLE 1 Parameter settings of the convolutions.

Convolution Size Filter Stride

CONVs (3, 30) 8 (3, 3)

CONVt (1, 30) 8 (1, 3)
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similarly. Finally, the obtained weights are multiplied by the original 
input feature map to produce a feature map with attention weights. As 
a plug-and-play module, the ECA attention mechanism employs a 
straightforward concept and computation, minimizing the impact on 
network processing speed while significantly improving 
classification accuracy.

Incorporating the ECA module allows the model to dynamically 
assess the importance of each feature channel, improving its focus on 
crucial channels. This integration enhances the model’s ability to 
represent fNIRS data and significantly improves the accuracy and 
reliability of brain function analysis.

2.3.4 TRM module
Figure 8a schematically depicts the architecture of the Transformer 

encoder, which comprises an array of identical encoding layers. Each 
containing two sub-layers: multi-head self-attention (MSA) and a 
multi-layer perceptron (MLP). Figure  8b provides a detailed 
illustration of the self-attention computation module, where the input 
tensor undergoes linear projection to generate attention queries Q, 
keys K, and values V. Self-Attention is defined as Equation 4:

 
( )

 
=   

 

T

k

QKAttention Q,K,V softmax V
d  

(4)

Where dk is the dimension of k. The MSA consists of h parallel 
self-attention layers. Defined as Equations 5, 6:

 ( ) ( )= … O
1 hMSA Q,K,V Concat head , ,head W  (5)

 ( )= , ,Q K V
i i iihead Attention QW KW VW

 
(6)

Where Wi
Q, Wi

K, Wi
V and WO are parameter matrices. The 

MLP contains two linear layers with Gaussian Error Linear Unit 
(GELU; Mei et al. 2022) activation functions. It is defined as 
Equation 7:

 ( ) ( )= + +1 1 2 2MLP x GELU xW b W b  (7)

The model architecture consists of 6 identical layers, each 
containing two fully connected layers (W1 and W2) with a hidden 
dimension of 64, and bias terms (b1 and b2). Layer normalization is 
critically applied before both the 8-headed multi-head self-attention 
(MSA) and the multi-layer perceptron (MLP) sub-layers (with an 
MLP dimension of 64) to ensure training stability and accelerate 
convergence, a modification that has proven more effective for 
training transformers. To further enhance information propagation 
and mitigate the vanishing gradient problem inherent in deep 
architectures, residual connections with learnable scaling factors are 
integrated into each sub-layer (Castaldi et al., 2020).

3 Result

3.1 Model training and model evaluation

3.1.1 Model training
Our model was extensively trained over 120 epochs with a batch 

size of 128. For optimization, we selected the Adam optimizer (Richter 
et al., 2018; Huang et al., 2022; Mei et al., 2022), configured with an 

FIGURE 7

Structure of the efficient channel attention module. Structure of efficient channel attention module. The ECA module includes global average pooling, 
1D convolution, and sigmoid activation. Enhance the extraction of key features through dynamic weighted channels.
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initial learning rate of 0.001, decay parameters β1 = 0.9 and β2 = 0.999, 
and a weight decay of 0.01. To enhance generalization and reduce 
overfitting, label smoothing regularization was integrated into the 
training pipeline.

3.1.2 Model evaluation
To assess the model’s classification performance, we utilized two 

commonly recognized metrics: accuracy and kappa. Accuracy 
quantifies the fraction of correctly classified samples relative to the 
total dataset size, offering a fundamental assessment of general 
classification performance. Cohen’s kappa (κ) provides a more 
rigorous evaluation by comparing the observed classification accuracy 
against the expected accuracy derived from random chance, thereby 
controlling for statistical agreement occurring by chance. This metric 
offers a more robust measure of model performance, particularly 
useful in datasets with imbalanced class distributions. The definitions 
of these indicators are shown in Equations 8 and 9:
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+ + +
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TP (true positive) refers to the instances where the original data 
is classified as positive and remains positive after classification. TN 

(true negative) denotes the instances where the original data is 
classified as negative and remains negative after classification. FN 
(false negative) represents the instances where the original data is 
classified as positive but is classified as negative after classification. FP 
(false positive) indicates the instances where the original data is 
classified as negative but is classified as positive after classification. In 

terms of kappa value, within the confusion matrix, ==
∑ 1
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the number of categories, N is the total number of samples.

3.2 Classification result

This study used a fivefold cross validation method, repeated five 
times, to evaluate the classification accuracy and kappa value of each 
participant. Show the variability of participants’ responses to 
stereoscopic visual stimuli. As shown in Figures  9, 10. Notably, 
Participant 18 demonstrated the highest classification accuracy at 
98.96%, while Participant 7 had the lowest accuracy at 88.23%. 
Overall, the classification performance among participants was robust, 
with an overall average accuracy of 93.12% and an average kappa value 
of 0.83. These outcomes highlight the robustness and stability of our 
model, showcasing consistently good classification performance 
across different participants.

FIGURE 8

(a,b) Are the structure of Transformer encoder and MSA. (a) The overall architecture of Transformer encoder includes two core sub layers: multi-head 
self-attention (MSA) and multi-layer perceptron (MLP). (b) The detailed process of the self-attention calculation module includes steps such as linear 
projection, attention score calculation, Softmax normalization, and weighted summation.
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3.3 Ablation study

To validate the rationality of the proposed model, we conducted 
an ablation study involving configurations with only temporal 
convolution (CONVt), only spatial convolution (CONVS), no 

effective channel attention (no ECA) module, and no transformer (no 
TRM) module. As shown in Table 2, after training and evaluating 
these configurations, we found that deleting different modules had 
varying degrees of impact on model performance. Especially, 
removing the transformer module resulted in a significant decrease 
in accuracy from 93.12 to 84.65%, indicating that transformers play 
a crucial role in capturing long-distance temporal dependencies. 
Although Transformer has advantages in long sequence modeling, its 
application premise is that the data itself has long-range dependencies. 
This article confirms this premise through spectral analysis (β = 0.9), 
while ablation experiments show that adding the Transformer model 
improves performance (+8.47%). This result not only confirms the 
long-term dependence of fatigue signals, but also explains why 
dismantling transformers leads to a significant decrease in 
performance. In addition, the ECA module dynamically suppresses 
redundant features (such as high-frequency noise) through channel 

FIGURE 9

Classification accuracy of each participant under 5-fold cross validation.

FIGURE 10

Kappa values of each participant under 5-fold cross validation.

TABLE 2 Comparison results of ablation experiments.

Model ACC Kappa

Only-CONVt 89.58 0.79

Only-CONVS 85.41 0.70

No-ECA 89.91 0.76

No-TRM 84.65 0.71

DBCNN-ECA-TRM 93.12 0.83
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attention weights, focusing on the blood oxygen response at critical 
time steps. After removing ECA (NO-ECA), the model was unable 
to distinguish between informative and noisy channels, resulting in 
a decrease in classification accuracy to 89.91%, indicating the 
importance of dynamic channel weighting for classification 
performance. Specifically, through the analysis of channel weights, 
the ECA module significantly increased the weight of the HbO 
channel (from 0.35 to 0.62), while reducing the weights of HbR and 
HbT (from 0.33 and 0.32 to 0.21 and 0.17, respectively). The increase 
in HbO weight by the ECA module may be  related to the 
accumulation of oxygenated hemoglobin caused by increased 
metabolic demand in brain regions during the late stage of fatigue. 
Although combining all feature signals is usually better than selecting 
only one type, it may introduce information redundancy. For 
example, the joint input of HbO, HbR, and HbT may result in high 
correlation between features. The application of ECA channel 
attention mechanism to fNIRS feature signals effectively alleviates 
this problem and improves classification accuracy.

3.4 Comparative experiment

Currently, the research and application of fNIRS technology in the 
field of deep learning are not yet systematic, with a noticeable absence 
of comparable models. No studies have applied deep learning to 
research stereoscopic visual fatigue using fNIRS technology or 
validated the proposed models’ performance advantages. In this study, 
we used traditional classifiers for comparison, including k-nearest 
neighbors (KNN) with k set to 50, an artificial neural network (ANN) 
with 128 hidden layer units capped at 10,000 iterations, and a support 
vector machine (SVM) employing a radial basis function kernel with 
a regularization parameter of 1. These baseline machine-learning 
models were implemented using the Scikit-Learn package.

Additionally, we evaluated classic deep learning models such as 
Convolutional Neural Networks (CNN) with three 1D convolutional 
layers (kernel sizes of 3/5/7), two fully connected layers (64 nodes 
each), and a softmax layer; Long Short-Term Memory Recurrent 
Neural Networks (LSTM) with 128 hidden layers; and a Transformer-
Encoder network with a multi-head self-attention matrix and two 
fully connected layers (64 nodes each). All pre-trained deep learning 
models were sourced from the PyTorch image models (Timm) 
package, obtained from an online open-source repository.

As shown in Table  3, comparative results demonstrated a 
significant advantage of deep learning models over traditional 
machine learning models. Although SVM performed well within the 

machine learning category, its accuracy was at least 10% lower than 
that of the deep learning models, and its kappa value was also 
comparatively lower. CNN performed the best among the deep 
learning models. This result is likely due to its proficiency in extracting 
local features in short-term visual stimulus tasks using our time 
window processing approach. Transformer and LSTM, typically 
stronger at capturing features from long-distance signal changes, did 
not show significant advantages in this context. However, the 
Transformer performed second best, possibly due to its self-attention 
mechanism allowing it to better focus on key points in the input 
sequence. Our proposed model combines attention mechanisms with 
local feature extraction and demonstrates superior performance, 
confirming its suitability for assessing stereoscopic visual fatigue.

3.5 Cross-subject classification result

This study used cross-subject measurement to assess the model’s 
accuracy. This approach minimizes individual differences and 
enhances the robustness of the model assessments. Specifically, 
we implemented two cross-subject evaluation strategies: 5-fold cross-
validation and leave-one-subject-out (LOSO) cross-validation. These 
strategies provided a more accurate assessment of the model’s 
generalization performance and classification ability.

The classification results, as detailed in Table 4, demonstrate that 
the model performs well in cross-subject accuracy assessments. In the 
5-fold cross-validation, our model achieved an accuracy of 87.42%, 
while in the LOSO evaluation, it reached an accuracy of 83.91%. These 
outcomes indicate that the model possesses strong generalization 
capabilities across different subjects and can perform effectively in 
real-world applications. This robust performance provides reliable 
support for our study and further confirms the effectiveness and 
reliability of the proposed model.

Moreover, we observed significant fluctuations in accuracy among 
different subjects when employing the LOSO (leave-one-subject-out) 
validation for cross-subject verification. Specifically, Figure 11 shows 
the accuracy of different subjects in cross subject validation, the 
highest accuracy recorded was 96.25% (Subject 7), while the lowest 
was only 63.33% (Subject 3). We assume that different brain regions 
of subjects have different responses to the same stereoscopic stimulus 
(e.g., delayed or insufficient activation of the occipital visual cortex in 
some individuals), leading to significant differences in classification 
results. This inter individual heterogeneity may stem from atypical 
hemodynamic response patterns, such as delayed HbO peak or 
abnormal HbR signal fluctuations, which may reflect individual 
specificity of neurovascular coupling efficiency or anatomical 
structures. This variability suggests that compared to 5-fold cross-
validation, using LOSO validation for cross-subject verification may 
result in greater fluctuations in accuracy. This finding highlights the 
need to consider individual differences in neuroimaging studies, 
especially when validating models for broad application.

TABLE 3 Comparison results with other models.

Model ACC Kappa

KNN 59.17 0.19

ANN 65.83 0.33

SVM 68.33 0.42

CNN 83.25 0.65

LSTM 77.50 0.54

Transformer 82.08 0.62

DBCNN-ECA-TRM 93.12 0.83

TABLE 4 Average classification results across subjects.

Training strategy Acc

5-FOLD 87.42

LOSO 83.91
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FIGURE 11

Individual classification results of 20 participants using the Leave-One-Subject-Out (LOSO) method.

4 Conclusion

fNIRS is a non-invasive neuroimaging technology with higher 
spatial and temporal resolution and less noise interference than EEG 
and fMRI. This paper introduces a stereoscopic visual fatigue 
stimulation paradigm and employs a deep neural network model for 
end-to-end feature extraction and classification. We  improved 
classification accuracy by at least 10% compared to traditional machine 
learning approaches. The proposed network model outperformed 
conventional deep learning models, offering significant advancements 
in the field. This study is the first to apply deep learning to assess 
stereoscopic visual fatigue using fNIRS, addressing a key research gap.
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