
TYPE Original Research

PUBLISHED 06 May 2025

DOI 10.3389/fnins.2025.1589857

OPEN ACCESS

EDITED BY

Katherine Roe,

People for the Ethical Treatment of Animals,

United States

REVIEWED BY

Wasiu Gbolahan Balogun,

University of Pittsburgh, United States

Jerry Lorren Dominic,

Jackson Memorial Hospital, United States

*CORRESPONDENCE

Joon W. Shim

shim@marshall.edu

RECEIVED 08 March 2025

ACCEPTED 08 April 2025

PUBLISHED 06 May 2025

CITATION

Cunningham A, Barrett E, Risch S, Lee PHU,

Lee C, Moghekar A, Patra P and Shim JW

(2025) NFκB1: a common biomarker linking

Alzheimer’s and Parkinson’s disease

pathology. Front. Neurosci. 19:1589857.

doi: 10.3389/fnins.2025.1589857

COPYRIGHT

© 2025 Cunningham, Barrett, Risch, Lee, Lee,

Moghekar, Patra and Shim. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

NFκB1: a common biomarker
linking Alzheimer’s and
Parkinson’s disease pathology

Adam Cunningham1, Emma Barrett1, Sebastian Risch1,

Peter H. U. Lee2,3, Chan Lee4, Abhay Moghekar5, Prabir Patra1

and Joon W. Shim1*

1Department of Biomedical Engineering, Marshall University, Huntington, WV, United States,
2Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States, 3Department

of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States, 4Department

of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital and Harvard

Medical School, Boston, MA, United States, 5Department of Neurology, Johns Hopkins School of

Medicine, Baltimore, MD, United States

Introduction: Alzheimer’s disease (AD) and Parkinson’s disease (PD) are

neurodegenerative disorders characterized by mitochondrial dysfunction and

chronic inflammation. The transcription factor NF-κB1 is implicated in both

neuroprotective and pro-inflammatory processes, with its activity varying

between neurons and glial cells. While previous studies have explored the

genetic and epigenetic contributions to these diseases, the infection hypothesis

has re-emerged as a potential framework for identifying novel biomarkers and

therapeutic targets.

Methods: We conducted bulk RNA sequencing on human postmortem caudate

nucleus tissue samples obtained from cognitively normal controls (n = 5), AD

patients (n = 6), and PD patients (n = 3). Di�erential gene expression analysis

and pathway enrichment were performed to identify dysregulated signaling

mechanisms relevant to neuroinflammation and mitochondrial function.

Results and discussion: TNFα signaling through the NF-κB pathway was

identified as a prominently dysregulated mechanism in both AD and PD

samples. Transcript levels of NFE2L2 (NRF2) and NF-κB1 were elevated,

coinciding with reduced expression of the mitochondrial transporter gene

SLC25A6, suggesting a compensatory response to oxidative stress. Additionally,

PLCG2 expression was markedly increased in microglial populations, reflecting

heightened immune activation. A significant 10-fold reduction in hemoglobin

subunit alpha (HbA1) RNAwas observed in disease groups compared to controls,

indicating compromised oxygen transport and cellular stress. These findings

highlight candidate biomarkers and suggest that therapeutic strategies targeting

mitochondrial integrity and neuroinflammation may be e�ective in AD and PD.

KEYWORDS

Alzheimer’s disease, Parkinson’s disease, mitochondria, neuroinflammation, caudate

nucleus (CN)

Introduction

Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) are two of the most common

neurodegenerative disorders, affecting millions worldwide (Chopade et al., 2023). AD

impacts over 50 million people (Velandia et al., 2022), a number expected to triple by

2050 (Bloem et al., 2021; Ou et al., 2021). PD affects over 10 million globally (Bloem

et al., 2021; Ou et al., 2021). Both diseases cause cognitive and motor dysfunction, largely

driven by mitochondrial dysfunction (Prasuhn and Bruggemann, 2021; Sharma et al.,

2021). The economic burden is immense: AD alone costs $305 billion annually in the

U.S., projected to exceed $1 trillion by 2050 (2020; 2021; 2022; 2023). Similarly, PD incurs
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substantial medical and indirect costs, severely impacting patients

(Salamon et al., 2020; Bloem et al., 2021;Merello et al., 2021; Garcia-

De-La-Fuente et al., 2022), caregivers, and society, with significant

psychological and social repercussions (Cross et al., 2018).

The most urgent medical need in AD and PD is to develop

therapies to halt or reverse disease progression. In doing so,

detecting key factors linked to brain metabolic waste is crucial.

NF-κB plays a central role in both AD (Lukiw, 2022; Sun

et al., 2022; Patel et al., 2024; Soelter et al., 2024) and PD (Li

et al., 2012; Jafari et al., 2022), regulating inflammation, cell

survival, and immune responses. In AD, NF-κB is implicated in

amyloid-beta plaque formation and tau hyperphosphorylation (Sun

et al., 2022), while in PD, it contributes to dopaminergic neuron

loss (Rivas-Arancibia et al., 2015). NF-κB activation is linked

to mitochondrial dysfunction and chronic neuroinflammation,

exacerbating neurodegeneration in both diseases (Lin et al., 2022).

While the phenotype of NFkB1 knockout mice is well documented

(Cartwright et al., 2016), the RNA level of this transcription factor

in the aged human brain with AD or PD (Lin et al., 2024) is

poorly understood.

In the case of AD, the disease course for the individual patient

can be varied, typically following several stages from preclinical

stage to mild/moderate/severe stage through mild cognitive

impairment (MCI) with about 90–95% patients diagnosed as late-

onset (Zhang et al., 2020). Despite the prevalence of AD and PD,

the shared pathophysiology of these two is still poorly understood.

The latest findings offer evidence highlighting the potential clinical

benefits of semaglutide in reducing the risk of AD onset and

progression but how brain glucose level affects cognition through

which mechanism is less clear (Wang et al., 2024).

The brain is highly glucose-dependent, and microorganisms

can utilize glucose as an energy source. One of the key brain

structures involved in regulating cognitive function through

learning and memory is the caudate nucleus (CN), making it a

priority target for diagnosing and treating AD and Parkinson’s

dementia (PDD). As these conditions are considered polygenic

diseases (Arena et al., 2024; Beydoun et al., 2024; Faouzi et al., 2024;

Gabbert et al., 2024; Loesch et al., 2024; Shi et al., 2024; Tunold et al.,

2024; Kals et al., 2025; Leffa et al., 2025; Tan et al., 2025), pathogens

can enter the brain through the olfactory pathway, blood-brain

barrier (BBB) disruption, or neuroinflammation, which facilitates

microbial persistence and immune activation. Further, bacterial

toxins disrupt mitochondrial function (Lobet et al., 2015). These

factors suggest that if bacteria reach the brain (MacDonald, 1986;

Dickson, 1987; MacDonald and Miranda, 1987), the CN could be a

favorable niche for their survival and maintenance.

The glucagon-like peptide-1 receptor (GLP-1R), solute carrier

family 25 member 6 (SLC25A6) in mitochondria, and solute

carrier family 9 member 9 (SLC9A9), which regulates endosomal

pH, are crucial genes in cellular metabolism, whose dysfunctions

are linked to the pathogenesis of AD and PD (Maskery et al.,

2020; Pedersen and Counillon, 2019; Manfready et al., 2022).

Previous studies showed reduced GLP-1R RNA in the caudate

nucleus in AD (Barrett et al., 2024). A Phase II trial found GLP-

1R agonist, Lixisenatide, improved motor function in early PD

(Meissner et al., 2024). Evidence suggests GLP-1R agonism may

benefit cognitive and motor functions in AD and PD, possibly

through mitochondrial restoration (Zhao and Pu, 2019). Growing

evidence suggests GLP-1R (Barrett et al., 2024), SLC25A6 (Palmieri,

2004), and SLC9A9 (Fuster and Alexander, 2014) are related to

mitochondria in AD and PD.

Despite accruing evidence suggesting that GLP-1R agonists

may benefit cognitive and motor functions in AD and PD

(Holscher, 2022), it remains unclear which mitochondrial markers

(Tomas et al., 2011; Morales et al., 2014; Holscher, 2024) can

explain their efficacy in both conditions. To address this gap,

we focus on the CN, a brain region implicated in both AD

and PD pathology and highly involved in cognitive and motor

processing. By conducting whole transcriptome RNA-Seq of the

CN forming part of the basal ganglia in AD and PD, our approach

aims to identify critical gene alterations that impact mitochondrial

function, ER stress, and endosomal activity along with changes

associated with key risk genes for AD (Scheltens et al., 2021),

providing new insights into the molecular mechanisms underlying

these diseases and the therapeutic effects of GLP-1R agonists.

Results

To elucidate the complexities of gene expression in

neurodegenerative disorders, we employed Principal Component

Analysis (PCA) on large-scale RNA-seq data derived from

human postmortem tissues (type: the CN; the patients-all

white at median age 75 years; one of two batches at n = 3 in

controls; n = 3 in AD; n = 3 in PD). This analytical technique

was pivotal in reducing the dimensionality of the data while

preserving the most significant variances inherent in the dataset.

Our PCA results, which were carried out on data obtained

from the combined RNA-seq analysis of AD and PD samples,

identified FKBP and MT-ATP6P1 as the genes exhibiting the

most variation along the primary component (PC1), implicating

a strong mitochondrial involvement (Figure 1a). This finding

underscores the potential role of mitochondrial dysfunction in

the pathological landscape of AD (Supplementary Figure S1) and

PD (Supplementary Figure S2) alike, for the following reasons.

When the AD and PD groups of postmortem specimens were

combined for PCA as AD/PD, MT-ATP6P1 exhibited the highest

variation along PC1 (Figure 1). However, one control specimen

(Control 3) appears transcriptomically similar to the AD/PD group

in this RNA-seq batch, representing a confounding limitation of

the PCA—where 33% of control samples exhibit an AD/PD-like

phenotype (Figure 1a).

Separating the PCA for AD and PD revealed a common

gene along PC1: CYTB (Supplementary Figures S1, S2), which

encodes cytochrome b, a key component of the mitochondrial

cytochrome bc1 complex (Complex III) in the electron transport

chain, essential for cellular respiration and ATP production. The

presence of CYTB in both datasets (Supplementary Figures S1, S2)

highlight its mitochondrial significance. Further, our study utilized

hierarchical clustering to dissect the patterns of gene expression

between control and disease states—AD and PD. Interestingly, the

gene expression profiles did not segregate strictly along diagnostic

lines, revealing a nuanced interplay of 41,971 transcripts, indicative

of the underlying biological complexity (Figure 1b).
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FIGURE 1

Integrated Analysis of Gene Expression Profiles in AD and/or PD (AD/PD). (a) Top: PCA biplot of caudate nucleus specimens from control and

subjects with AD and/or PD. Regarding PC scores: A datapoint with a high positive score on PC1 (MT-ATP6P1) indicates that it aligns strongly with the

pattern or trend represented by PC1. Regarding Loadings: If the original variables X1 and X2 have high positive loadings on PC1, a datapoint (i.e.,

FKBP5) that is far right on PC1 is likely to have high values for X1 and X2. Bottom: Proportion of variance plot showing PC1 accounting for 86.6% of

variances. (b) Hierarchical Clustering of Gene Expression Profiles from Control and AD/PD Specimens: This figure presents a hierarchical clustering

dendrogram based on the analysis of 41,971 data points from gene expression profiles of caudate nucleus specimens. The x-axis denotes the

samples involved in the study. This analysis aids in visualizing the genetic distinctions between control and AD/PD groups, potentially highlighting key

pathways involved in the disease’s pathogenesis. (c) Cluster plot analysis of gene expression across eight subgroups in control and AD/PD

specimens. Key findings between control and disease groups can be highlighted by focusing on cluster plots with varying y-axis values, including

C(1), C(2), C(3), C(5), and C(7). (d) Distribution of Enrichment Scores (ES) for Hallmark TNF alpha signaling. Gene sets highly expressed in AD/PD have

fewer candidates (right triangle) than those in the control group (left triangle). Gene set analysis highlights the importance of the TNF-alpha pathway

via NFkB. Check TNFα, NFkB, and downstream molecules; NFkB1 is significantly di�erent (see Figure 2g). (e) Comparative analysis of gene expression

in TNF and inflammation pathways between control and AD/PD specimens: This figure illustrates the expression levels of two key gene sets—TNF

and Inflammation—in control and AD/PD specimens.

Cluster plot analyses (Figure 1c) and enrichment score

evaluations (Figure 1d) revealed significant alterations in TNFα

signaling and inflammation (Figure 1e) pathways in AD/PD

(Figures 1c–e; Supplementary Figures S1c–e, S2c–e). These

findings highlight the critical role of inflammation in disease

mechanisms and provide a refined understanding of the molecular

dynamics in AD and PD. The insights raise an important

question: which specific inflammatory markers are altered in these

neurodegenerative conditions?

To further delineate the specificity of these molecular

changes, we segmented the pooled disease groups (Figure 1)

into distinct AD and PD categories for a comparative analysis

(Figure 2). This analysis revealed that while GLP-1R, SLC25A6,

and SLC9A9 showed consistent alterations across both diseases

relative to controls (Figures 2a–c), SLC37A1 exhibited more

specific changes to AD (Figure 2d). Unlike the preliminary screen

(Batch 1 dataset at n = 3 per group), HSPA2 did not achieve

statistical significance when comparing individual diseases to the

control group (Figure 2e). To better understand the underlying

mechanisms, we checked eleven candidate transcription factors

with TNF-related gene and hemoglobin gene, HBA1 (Figures 2h–j;

Supplementary Figure S3) and found that NFE2L2 encoding NRF2

and NFkb1 were significantly elevated in the CN of AD and

that of PD as compared to that of controls (Figures 2f, g), while

TNFAIP8L2 was elevated in AD alone (Figure 2h). Strikingly, a

roughly one order of magnitude reduction (10-fold, 305 vs. 35

FPKM) in HBA1 RNA activity was detected in the CN of AD

specimens, while a 7-fold decrease (305 vs. 46 FPKM) was observed

in HBA1 RNA of PD specimens compared to controls (Figure 2j).

Given the unusual nucleotide sizes of GLP-1R in four different

species (Fig.S4) (Barrett et al., 2024), the gene set enrichment

analyses (Supplementary Figure S5) suggested that in addition to

GLP-1R, RNA activities of SLC25A6 and NFkB1 were significantly

altered in AD and PD alike (Figures 2b–g).

To deepen the understanding of genetic contributions to AD

as well as to PD, we focused on the previous report revealing

AD risk genes (Scheltens et al., 2021) for their potential roles in

both disorders (Supplementary Figures S6–S10). A comprehensive

analysis of these genes within the CN revealed significant

alterations in their RNA activities in AD as well as in PD cases

compared to controls (Figures 3a, b). Notably, the RNA level of

PLCG2 was significantly elevated in the CN of AD and that of
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FIGURE 2

Elevated NFkB1 and concurrent impacts on GLP-1R and genes encoding SLC proteins in AD and PD. (a) Scatter plots with bar graphs showing

GLP-1R RNA activity in the caudate nucleus with AD and PD as compared to control (Cnt) specimens. (b) Scatter plots with bar graphs showing

SLC25A6 in the caudate nucleus with AD and PD. (c) Scatter plots with bar graphs showing SLC9A9 in the caudate nucleus with AD and PD. (d)

Scatter plots with bar graphs showing SLC37A1 in the caudate nucleus with AD and PD. (e) Scatter plots with bar graphs displaying HSPA2 RNA

activity in the caudate nucleus with AD/PD. (f) Scatter plots with bar graphs displaying the transcription factor NFE2L2 RNA activity in the caudate

nucleus with AD and PD. (g) Scatter plots with bar graphs showing the transcription factor NFkB1 RNA activity in the caudate nucleus with AD and

PD. (h) Scatter plots with bar graphs displaying TNF-related gene encoding TNFAIP8L2 RNA activity in the caudate nucleus with AD and PD. (i) Scatter

plots with bar graphs displaying the transcription factor FOXO6 RNA activity in the caudate nucleus with AD and PD. (j) Scatter plots with bar graphs

showing RNA activity of HBA1 (hemoglobin subunit protein gene) in the caudate nucleus with AD and PD. When both AD and PD show statistical

significances, an orange marker highlights the tilted label, PD, on the x-axis. When AD group alone is significant, the green marker shines the tilted

label, AD. P < 0.05 (*), P < 0.01 (**), and P < 0.005 (***).

PD as compared to that of controls, while SORL1 demonstrated

a significant elevation only in AD (Figure 3b). The transcript

size of SORL1 displayed consistency across multiple species while

the same is not true for PLCG2 or longer in humans compared

to rodents (Supplementary Figure S10a), consistent with GLP-

1R (Supplementary Figure S4). Other than SORL1 and PLCG2,

however, we did not detect significant alterations of AD risk

genes when AD and/or PD specimens were compared to those of

controls (Figure 3b). The specific expression patterns of SORL1,

primarily linked to memory in hippocampus and the CN in the

AD brain (Tejada Moreno et al., 2022), along with elevated PLCG2

indicative of reactive microgliosis (Andreone et al., 2020) in the

brain with AD as well as PD demonstrate the molecular complexity

of these diseases in which previously reported AD risk genes

and PD-associated markers failed to show statistical significances

(Supplementary Figures S6–S11, S17).

To further explore the molecular basis of stress impacts in the

aged brain afflicted by AD and PD, we conducted a detailed analysis

of RNA activities for FKBP5 and nine other genes (Figure 4;

Supplementary Figures S11–S16). These genes were selected based

on their prominent effect sizes and statistical significances,

ranking them within the top 100 for their potential relevance

in neurodegenerative pathways. Notably, we observed significant

increases in the RNA activities of SQSTM1, associated with NF-

kB signaling (Zou et al., 2020), in the CN of AD and PD patients

(Figure 4b), while those of FKBP5, ZBTB16, and CALCOCO2 were

elevated in AD alone (Figures 4a–c). Such elevations might indicate

overwhelming responses to excessive stress in PD or AD.

Furthermore, we examined the nucleotide length

consistency of FKBP5 and NFE2L2 across four different

species—mice, rats, chimpanzees, and humans. The results

(Supplementary Figure S11b), highlighted a remarkable

conservation of nucleotide lengths among these species, suggesting

a fundamental role for these genes in neural function that is

preserved across evolutionary boundaries. These findings shed

light on the complex genetic landscape of AD and PD, particularly

regarding how genes involved in stress response mechanisms are

altered (Supplementary Figures S12–S16). Understanding these

changes is crucial for developing targeted interventions that could

bolster the brain’s resilience against the neurodegenerative impacts

of chronic stress.

To investigate neurotransmitter regulation in the aging brain

affected by AD and PD, we analyzed the RNA activities of

key neurotransmitter receptors. These receptors included DRD1,
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FIGURE 3

Select risk genes of AD and their RNA activities in the human postmortem brains with AD and/or PD. (a) Heat map displaying an overall view of whole

transcriptome RNA-Seq, involving SORL1 and nine other genes suggested previously (Scheltens et al., 2021) in the caudate nucleus of control (CNT,

n = 5), AD (n = 6), and PD (n = 3). (b) Scatter plots showing RNA activities of SORL1, PLCG2, APP, CD33, CASS4, TREM2, INPP5D, and PILRA in the

caudate nucleus with AD and PD as compared to that of control (Cnt) specimens. When both AD and PD show statistical significances, an orange

marker highlights the tilted label, PD, on the x-axis. When AD group alone is significant, the green marker shines the tilted label, AD. *P < 0.05.

DRD2 (dopamine receptors), GLP1R (glucagon-like peptide

1 receptor), GHSR (growth hormone secretagogue receptor),

OPRM1, OPRD1, OPRK1 (opioid receptors), and HTR1A, HTR2A

(serotonin receptors). Our comparisons focused on discerning how

these neurotransmitters influence neurodegenerative processes

within the CN.

Contrary to expectations, only GLP-1R showed significant

alterations in RNA activities of AD and/or PD samples compared

to controls (Figures 2a, 5a–d). This suggests that among the

neurotransmitters studied, the pathways mediated by GLP-1

may play a pronounced role in the pathophysiology of these

diseases. Moreover, an intriguing aspect of our findings was

the unusual length of nucleotide sequences observed in certain

transcripts. Specifically, GLP-1R transcripts (Figure 6e) were

notably longer in chimpanzees, and OPRM1 transcripts were

elongated in humans compared to those in rodent chromosomes

(Figure 6c). This variation in transcript size across species

could indicate evolutionary differences in gene regulation and

expression, potentially influencing neurotransmitter function and

susceptibility to neurodegenerative conditions (Figure 6).

In the genomic landscape of neurotransmitter receptor genes

linked to neurodegeneration in disorders such as AD and PD,

distinct patterns of genetic stability emerge. Notably, the opioid

receptor gene (OPRK1) and the serotonin receptor gene (HTR1A)

demonstrated genomic characteristics suggesting a lower likelihood

of harboring deleterious mutations. Specifically, OPRK1 and

HTR1A in chromosomes of chimpanzees and humans did not

exhibit proximity to telomeres [Factor F(i)] or high adenine and

thymine (A+T) content [Factor F(ii)] (Figures 6a, b). For example,

OPRK1 genes are located distant (>50Mb) from their telomeres

in all four species (OPRK1), while GLP-1R genes demonstrate

genetic instability by proximity to telomeres when the base pair

size of GLP-1R in mice (>50Mb) is compared to that in rats,

chimps, and humans (all three <50Mb; Figure 6a). Species-

dependent difference of GLP-1R genes is further substantiated by

their transcript sizes as well (Figure 6e; varying over species) when

compared with OPRK1 (Figure 6d; constant over species).

In contrast, GLP-1R gene displayed a higher susceptibility

to mutations, meeting the proximity to telomeres criterion

[F(i)] in rat, chimpanzee, and human chromosomes (Figure 6a).

This suggests potential for higher mutation rates in GLP-

1R, which could influence its evolutionary adaptability and

function. Furthermore, other neurotransmitter genes including

DRD1, DRD2, GLP2R, GHSR, OPRD1, and HTR2A showed

moderate mutability, particularly in chimpanzees and humans.

These genes had a 70% matching rate to mutation-associated

factors, compared to only 20 or 30% in mice and rats (Figure 6a,

right panel), highlighting species-specific differences in genetic

stability. However, these genes rarely satisfy the high A+T content

criterion, with poor matching rates of 10 or 20% (Figure 6b,

right panel). Interestingly, despite the variability in nucleotide

size among neurotransmitter receptor genes, OPRM1 exhibited

an unusual nucleotide size in humans similar to that observed in

GLP-1R, underscoring potential vulnerabilities in these receptors
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FIGURE 4

Stress response genes and their RNA activities in the human postmortem brains with AD and/or PD. (a) Heat map displaying an overall view of whole

transcriptome RNA-Seq, involving FKBP5 and nine other genes in the caudate nucleus of control (CNT, n = 5), Alzheimer’s disease (AD, n = 6), and

Parkinson’s disease (PD, n = 3). (b) Scatter plots displaying RNA activities of FKBP5, ZBTB16, CALCOCO2, and SQSTM1 in the caudate nucleus with

AD and PD as compared to that of control (Cnt) specimens. When both AD and PD show statistical significances, an orange marker highlights the

tilted label, PD, on the x-axis. When AD group alone is significant, the green marker shines the tilted label, AD. P < 0.05 (*) and P < 0.01 (**) (c) protein

network of genes shown in (a, b). Note that a flag represents statistical significance.

(Figure 6d). However, genes encoding eight other neurotransmitter

receptors, such as OPRK1 and GHSR, demonstrated consistent

RNA sizes across the four species of interest, suggesting a degree

of genetic conservation (Figure 6d).

Discussion

In a subcortical or relatively deep zone compared to

subarachnoid space (Shim and Madsen, 2018; Shim et al., 2019),

one would wonder if there is clear sign of neuroinflammation or

protection against the inflamed neurons in the aged human brain.

Our study demonstrated that NFkb1 (P50 or class I NF-κB family)

was elevated in the CN of AD and that of PD patients (Figure 2g).

NF-κB transcription factors are crucial for CNS processes like

neurogenesis, neuritogenesis, and synaptic plasticity related to

learning and memory (Levenson et al., 2004; Shih et al., 2015). NF-

κB activation protects neurons from excitotoxicity, oxidative stress,

and amyloid β toxicity, while overexpression of p65 (class II NF-

κB family) rescues apoptotic neurons. In astroglia and microglia,

NF-κB regulates brain injury responses, inflammation, and blood–

brain barrier function, contributing to neurodegenerative disorders

(Shih et al., 2015).

It has been published recently that clinical trials using

GLP-1R agonists were promising in treating AD patients with

cognitive decline and brain shrinkage through liraglutide, and

motor symptoms of PD patients through exendin-4 (Byetta,

Bydureon), liraglutide (Victoza, Saxenda), and lixisenatide

(Lyxumia, Adlyxin) (Athauda et al., 2017; Foltynie and Athauda,

2020; Holscher, 2022, 2024). However, the molecular mechanisms

underlying the improvements in cognition and motor function

observed in Phase II trials remain to be determined. The

results presented in this study provide insights into how

GLP-1R might influence mitochondrial dynamics in AD

and PD.

The CN—an area crucial for motor and cognitive functions—

exhibits significant molecular alterations (Figures 1–4) that

contribute to the pathogenesis of these neurodegenerative

disorders. Understanding how these changes are linked is the

key to the molecular mechanisms driving AD and PD (Kinney

et al., 2018; McGregor and Nelson, 2019). Decreasing GLP-1R

availability (Barrett et al., 2024) in the CN impacts cellular signaling

(Rowlands et al., 2018), mitochondrial function (Tomas et al., 2011;

Morales et al., 2014), and endosomal trafficking (Fang et al., 2020).

GLP-1R plays a key role in neuroprotection, metabolism, and

cellular homeostasis (Nadkarni et al., 2014; Reich and Holscher,

2022). Reduced GLP-1R signaling impairs mitochondrial function

(Boland et al., 2020) by decreasing SLC25A6 (a mitochondrial

ADP/ATP transporter) expression (Palmieri, 2013; Ding et al.,

2023), leading to compromised ATP production and overall

dysfunction (Clemencon et al., 2013).

This mitochondrial impairment disrupts communication with

the cell nucleus (Kotiadis et al., 2014; Saki and Prakash,

2017), which typically regulates stress responses and metabolism

through mitochondrial signals like ATP and reactive oxygen

species (Dawson et al., 1993; Babizhayev, 2011; Banh et al.,
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FIGURE 5

Neurotransmitter receptor genes which dopamine, GLP-1, opioid, and serotonin can activate in the aged caudate nucleus with AD and/or PD. (a)

Heat map illustrating an overall view of whole transcriptome RNA-Seq, involving DRD1, DRD2, and eight other genes in control (CNT, n = 5),

Alzheimer’s disease (AD, n = 6), and Parkinson’s disease (PD, n = 3). (b) Scatter plots showing RNA activities of GLP-2R, HTR1A, and DRD1 in the

caudate nucleus with AD and PD as compared to that of control (Cnt) specimens. Statistical analysis by Mann-Whitney test. (c) Protein network of

genes shown in (a, b). Note that a flag represents statistical significance. (d) Heat map summarizing an overall view of mRNA sizes of ten genes

shown in a represented by genes directly and indirectly linked to DRD1 over mouse (Mus), rat (Rattus), chimpanzee (Pan troglodytes), and human

(Homo sapiens) chromosome. Note that on average RNA/transcript size is at least twice as long (up to 15,000 bp) than those in

Supplementary Figure S11b (up to 8,000 bp).

2016; Resende et al., 2022). Such disruption affects nuclear

gene expression (Cheng et al., 2011; Calarco et al., 2021; Yang

et al., 2022), further impairing mitochondrial health and cellular

stress adaptation (Venkataraman et al., 2022). The deployment

of PCA on extensive RNA-seq data from human postmortem

tissues has highlighted significant mitochondrial involvement

(Figure 1). The identification of genes such as FKBP5 and MT-

ATP6P1 as highly variable along the PC1 not only emphasizes

the role of mitochondria in neurodegeneration but also suggests

potential targets for therapeutic intervention. The mitochondrial

dysfunction implied by MT-ATP6P1 is central to the pathological

landscape of both AD and PD, driving processes that may

exacerbate disease progression (Monzio Compagnoni et al., 2020).

In the rat model of AD (Faborode et al., 2022), FKBP5 was elevated

consistently with our findings (Figures 1, 4b). FKBP5 was best-

known for stress response (Levy-Gigi et al., 2013; Mahon et al.,

2013; Buchmann et al., 2014; Kitraki et al., 2015; Kohrt et al.,

2015; Bishop et al., 2018, 2021; Cox et al., 2021; Hausl et al.,

2021; Richter et al., 2021; Asadi-Pooya, 2023; Everson et al., 2023)

but more recently suggested as stress driver (Maiaru et al., 2023).

However, when it comes to oxidative stress, which can connect

FKBP5 to AD and PD alike, there has been few study concerning

environmental toxin-induced oxidative stress in the lung cancer

cell line (Meng et al., 2022). More study on FKBP5 is warranted

related to oxidative stress in human specimens of AD and

those of PD.

Additionally, SLC9A9 (NHE9), an endosomal Na+/H+

exchanger, is upregulated (Figure 2c), which may represent

a compensatory response to impaired GLP-1R signaling and

mitochondrial dysfunction (Donowitz et al., 2013). Elevated

SLC9A9 can lead to altered endosomal pH, impacting vesicular

trafficking, cargo sorting, and receptor recycling (Pedersen, 2024).

This imbalance in endosomal function exacerbates cellular stress

and homeostasis issues (Wong et al., 2019). The interconnected

effects of reducedGLP-1RRNA (Figure 2f) culminate in insufficient

SLC25A6 expression (Figure 2g), impaired mitochondrial-nuclear

communication (Ryan and Hoogenraad, 2007), and elevated

SLC9A9 expression (Figure 2h), contributing to cellular stress,

energy imbalance, and dysregulated trafficking (Schirrmacher,

2020), ultimately affecting neuronal health and function (Devine

and Kittler, 2018; Murali Mahadevan et al., 2021; Trigo et al., 2022).

Because TNF-related inflammatory pathway was ranked #1 or

2 in AD and PD alike (Figures 1c–e; Supplementary Figures S1,

S2), we sought RNA markers representing inflammation in

these disorders. In addition to NFkB1 (Figure 2g), we found

that NFE2L2, belonging to the TNF pathway (ranked top 4

in Figure 1e), was significantly elevated in the CN of AD and

that of PD, respectively, as compared to controls (Figure 2f). It

has been suggested that stress-dependent activation of NFE2L1

occurs primarily through post-translational regulation, specifically

via the KEAP1-mediated pathway (Hellyer et al., 2021; Arolt

et al., 2023; Hijazo-Pechero et al., 2023; Paik et al., 2023; Wu
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FIGURE 6

Relative mutability of genes encoding neurotransmitters in four species. (a) Left-Proximity to telomeres, F(i), of ten genes encoding neurotransmitter

receptors over four species of mouse, rat, chimpanzee, and human chromosome. Right-summary of the matching rate between genes of interest

and F(i). The dashed dotted line indicating the threshold for proximity to telomeres at 50Mb. (b) Left-A+T content, F(ii), of ten genes encoding

neurotransmitter receptors over four species of mouse, rat, chimpanzee, and human chromosome. Right-summary of the matching rate between

genes of interest and F(ii). The dashed dotted line indicating the threshold for high A+T content at 59% [the average A+T content of human

chromosomes according to Nusbaum et al. (2006)]. (c) Bar graph summarizing base-pair (bp) length of OPRM1 transcript (RNA), suggesting unusually

long size in humans over four species. (d) Bar graph summarizing sizes of OPRK1 transcript (RNA), suggesting consistent sizes over four species. (e)

Bar graph summarizing sizes of GLP-1R transcript (RNA), suggesting unusually long size in chimpanzees over four species. (f) Bar graph summarizing

sizes of GHSR transcript (RNA), suggesting moderately varying sizes over four species. Rectangles in color covering bars of each plot indicating range

of (RNA) sizes for 90 genes associated with (ass. w.) AD or PD (c–f).

et al., 2023). The gene set analysis (Figures 1c–e) showing a

strong link between the TNF pathway and NFE2L2 (NRF2)

expression in AD and PD is supported by previous reports

(Pajares et al., 2016; Eldesoqui et al., 2023; Ghany et al., 2023;

Janahmadi et al., 2023), emphasizing inflammation and oxidative

stress (Mohamed et al., 2022). The TNF pathway’s high ranking

in both conditions (Figure 1e; Supplementary Figures S1e, S2e)

suggests heightened inflammation in the brain, with TNF-α driving

chronic inflammation that can worsen neuronal damage and

contribute to disease progression. Elevated NFE2L2 RNA levels in

the CN indicate a compensatory response to this oxidative stress.

NFE2L2 plays a key role in activating antioxidant genes (Pajares

et al., 2016), suggesting that the cells are attempting to mitigate

damage. However, despite this increased NFE2L2 encoding NRF2

activity, inflammation and oxidative stress may still overwhelm the

protective mechanisms, contributing to further neuronal injury.

Moreover, the analysis of RNA activities of additional risk

genes such as SORL1 (Maple-Grodem et al., 2018) and PLCG2

(van der Lee et al., 2019, 2020) further enriches our understanding

of AD and PD. The elevated RNA levels of SORL1 and PLCG2

in disease conditions point toward their active participation in

the disease’s molecular framework, possibly through pathways

involved in amyloid processing (Reitz et al., 2011) and immune

responses (Claes et al., 2022), respectively. In dissecting the broader

implications of stress-related gene alterations, the significant

increases in RNA activities of genes like FKBP5 reinforce the

notion of a stress driving mechanism (Maiaru et al., 2023) in

AD and PD (Yap et al., 2013; Lemche, 2018). Such findings

highlight the potential vulnerability of the aging brain to external

and internal stressors, which could accelerate the pathogenesis

of neurodegenerative diseases. In a combined statistical analysis

of AD/PD, Trem2 demonstrated significant differences, partly

because of the similar range of each sample group (AD: 10-40; PD:

12-39 FPKM). When separated as AD (n = 6) and PD (n = 3),

respectively (Figure 3b lower panel), however, no significance was

detected in Trem2 due to limited sample size.

The exploration of neurotransmitter dynamics through the

analysis of receptors such as DRD1, DRD2, and others, and the

specific alterations observed in GLP-1R andHTR1A underscore the

complexity of neurotransmitter interactions in neurodegeneration.
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The unique transcript size findings further emphasize the role of

genetic factors in mediating neurotransmitter effects, which could

influence disease outcomes.

Overall, detecting statistically significant marker

genes in different human specimens was challenging. In

Supplementary material alone, only 12 of 52 genes ranked

initially in the top 100 of session 1 (Supplementary Figures S4–

S15) demonstrated statistical significance when combined

with session 2. Among these (12 of 52), six specific markers

(Supplementary Figures S12e, f, S13a) were just reconfirmations of

the prior report related to hemoglobin genes and related signaling

molecules. The observation of reduced GLP-1R RNA activities

in the CN aligns with findings of disrupted mitochondrial and

endosomal functions (Monzio Compagnoni et al., 2020), reflected

in the downregulation of key solute carrier proteins such as

SLC25A6 and SLC37A1. This disruption hints at a broader impact

of diminished GLP-1 signaling on cellular energy homeostasis and

waste processing (Guglielmi and Sbraccia, 2017), critical areas

affected in neurodegenerative diseases. The concurrent increasing

trend of the heat shock protein gene HSPA2 could be interpreted

as an adaptive response to increased proteostatic stress, a common

feature in the degenerating brain (Leak, 2014). This study’s small

sample size reflects limited availability of well-characterized

postmortem brain tissue. While results are biologically meaningful,

they remain exploratory. Ongoing work includes expanding the

cohort and validating key genes via qPCR and protein assays, with

future large-scale analyses.

In conclusion, this study provides transcriptomic evidence

linking mitochondrial dysfunction, inflammation, and altered

stress signaling in the caudate nucleus of individuals with AD

and PD. Elevated expression of NF-κB1 and NFE2L2 (NRF2),

alongside reduced levels of SLC25A6 and GLP-1R, points to

a compensatory but insufficient response to oxidative stress

and impaired mitochondrial function. The observed decrease in

HBA1 (hemoglobin subunit alpha) expression further suggests

compromised oxygen transport, which may exacerbate neuronal

vulnerability. Additionally, increased PLCG2 expression implicates

microglial activation and immune signaling in disease progression.

Our findings reinforce the central role of TNF-α signaling and

mitochondrial dysfunction in AD and PD pathology and support

the potential therapeutic relevance of GLP-1R agonists, particularly

in restoring energy homeostasis and reducing neuroinflammation.

While several candidate biomarkers—such as FKBP5, SORL1, and

SLC9A9—were identified, the small sample size limits definitive

conclusions. Nonetheless, this work lays a foundation for further

validation studies and highlights the caudate nucleus as a

key region for mechanistic insights and therapeutic targeting

in neurodegeneration.

Methods

Human postmortem tissues collection

Postmortem tissues were sourced from the National Institute

of Health (NIH) NeuroBioBank (NBB), USA, over a 2-year

period. The tissues consisted primarily of caudate nucleus

samples obtained from aged individuals, preserved in a frozen

state through various NIH NBB repositories (White et al.,

2022; Barrett et al., 2024). These samples were subsequently

transported to our laboratory for analysis. According to the NBB

records, the caudate nucleus (DeVito et al., 2007; Deshpande

et al., 2009; Jang et al., 2017; Peterson et al., 2019) specimens

were collected within a postmortem interval averaging 16 ±

8 h, ranging from 4 to 25 h after death. The study included

samples from 5 unaffected controls, 6 individuals diagnosed with

Alzheimer’s disease (AD), and 3 with Parkinson’s Disease (PD),

as detailed in the inclusion criteria and diagnostic categories

(Supplementary Tables S1, S2). The cohort comprised four male

and ten female specimens, with sex demographics specified in

Supplementary Table S2.

Bulk RNA-seq

Two separate sessions of whole transcriptome RNA-Seq

were conducted, analyzing a total of 62,704 gene loci across

a sample size of N = 14 (n = 5 for control and n =

6 for AD; n = 3 for PD). From the total data set, 3.4%

(2,144 out of 62,704 loci) were statistically significant at p

< 0.05. The sorting criteria were based on p-value and

effect size, with genes encoding hemoglobin subunit proteins

emerging as the most significant (p = 0.000000000101). This

systematic approach in RNA-Seq data analysis enables a focused

examination of gene variations potentially pivotal in understanding

disease mechanisms.

Total RNA isolation

Total RNA was isolated from the caudate nucleus of three

different groups: unaffected controls, CH cases in the elderly,

and AD cases, utilizing the QIAsol-based RNA isolation kit

(RNeasy Lipid Tissue Mini Kit, QIAGEN) according to the

prior reports (Shim et al., 2013, 2016, 2019; White et al.,

2022; Barrett et al., 2024). Briefly, tissue samples (50mg) were

homogenized in QIAzol Lysis reagent. Chloroform is added,

and the mixture is centrifuged to separate it into aqueous

and organic phases. The upper aqueous layer is collected, and

ethanol is added to optimize binding conditions. The sample

is transferred to an RNeasy spin column, in which up to

100 µg of total RNA bind to the membrane while phenol

and other contaminants were washed away. Finally, high-quality

RNA was eluted using 40 µl of RNase-free water. The quality

and concentration of the isolated RNA were measured using a

NanoDrop spectrophotometer (Thermofisher).

Principal component analysis (PCA)

Raw data from the Bulk RNA-Seq was organized in a data

sheet of GraphPad Prism (version 10.2.3) software: control and

disease (PD) sample were arranged at column 1 through 6,
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for example if one compared three controls and three disease

samples, in which the response was FPKM readings shown

on raw data of the Bulk RNA-seq. Then, we analyzed data

using Principal Component Analysis (PCA) under “Multiple

Variable Analyses”. We selected the columns of interest to

analyze such as column A, B, C, . . . J, K, L (Select PCs on

Eigen values option). Once the PCA plot such as Loadings

and PC scores was obtained, we saved the image in the

temporary memory (buffer) and pasted in the Power point file to

generate plots.

We performed PCA on combined AD and PD datasets

vs. controls to identify shared transcriptomic alterations

and potential pan-neurodegenerative biomarkers (Figure 1a).

Despite distinct pathologies, AD and PD share mechanisms

like neuroinflammation, oxidative stress, hypoxia, and

synaptic dysfunction. By analyzing AD, PD, and combined

groups separately, we aimed to compare disease-specific

and overlapping molecular patterns. The combined PCA

helped reveal consistent gene expression changes across both

conditions, supporting the identification of shared pathways

and candidate biomarkers. This analysis complements,

rather than replaces, individual disease comparisons and

adds an integrative layer for understanding common

neurodegenerative mechanisms.

Gene set enrichment and hierarchical
clustering analysis

Gene set enrichment analysis (GSEA) was conducted using

GSEA 4.3.3 and G-profiler to identify significant pathways and

gene sets. For organizing and interpreting the RNA-Seq dataset,

hierarchical clustering was performed, generating dendrograms

via the Instant Clue software. These methods facilitated a

structured analysis of gene expression patterns, enhancing the

understanding of biological functions and interactions within

the dataset.

Calculation of genomic proximity to
telomeres and nucleotide compositions

To assess the proximity of specific genes to telomeres

and calculate the percentage of adenine and thymine (A +

T) content in nucleotides, we utilized the NCBI Genome

Data Viewer (https://www.ncbi.nlm.nih.gov/genome/gdv/)

for humans, chimpanzees, rats, and mice and the publicly

available GC Content Calculator (https://www.biologicscorp.

com/tools/GCContent/#.XvctCi-z2uV). These tools facilitated

accurate measurement of A + T content as a percentage

and provided comprehensive details on the total base-pair

lengths of nucleotides. This approach supports precise genomic

characterization, aligning with findings from recent studies (Lucas

et al., 2021; McKnight et al., 2021; Raines et al., 2022; White

et al., 2022; Hart et al., 2023; McKnight et al., 2023; Barrett et al.,

2024).

Assessment of two factors associated with
high mutation rates

The relationship between gene location and mutation rates in

human chromosomes has been extensively documented, previously

(Nusbaum et al., 2006), in which the biological underpinnings

of heightened mutation rates near telomeres were described.

Following their methodology, we have adopted a factor associated

with high mutation rates to determine the proximity of genes to

their respective telomeres. This study has mapped the location

of seven genes across mouse, rat, chimpanzee, and human

chromosomes to estimate each gene’s adenine and thymine (A+ T)

content and their telomeric proximity. These efforts are part of our

broader aim to better understand genomic vulnerabilities linked

to telomeric regions (Raines et al., 2022; Hart et al., 2023; Barrett

et al., 2024). The theoretical basis of this estimation is based on the

following assumptions:

(i) If the recombination frequency is 50 centimorgans (cM) or

less, the genes are considered linked.

(ii) If the recombination frequency exceeds 50 cM, the genes are

considered unlinked.

Additionally, it is noted that 1 cM approximately equals 1

million bases (Mb), as established previously (Hastbacka et al.,

1992).

Statistical analysis

We utilized statistical methods and visualization tools from

Prism (GraphPad Software Inc.) to analyze the data. This

software facilitated the creation of heatmap plots and bar

graphs, using data obtained from the genome data viewer and

GC content calculator. Due to the nature of our data, we

opted for non-parametric tests, which are more conservative

compared to parametric tests that assume random treatment

assignment and a Gaussian distribution. Specifically, we used

independent t-test for comparisons between two groups and

multiple comparisons after Brown-Forsythe and Welch ANOVA

test for comparisons among three groups with respect to the

control, unless noted otherwise. Differences were considered

statistically significant at P < 0.05. P-values are detailed in

the figures and legends, denoted as ∗P < 0.05, ∗∗P < 0.01,

and ∗∗∗P < 0.005.
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