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The structural integrity of brain white matter is commonly assessed

using quantitative diffusion metric maps derived from diffusion MRI (dMRI)

data. However, in multi-site, multi-scanner studies, variability across and

within scanners presents challenges in ensuring consistent and comparable

diffusion evaluations. This study assesses the effectiveness of ComBat-based

harmonization algorithms in reducing intra- and inter-scanner variability in

diffusion metrics such as FA, MD, AD, RD, MK, AK, and RK. Utilizing the

B-Q MINDED dataset, which includes anatomical and dMRI data from 38

healthy adults scanned twice on two 3T MRI scanners (Siemens Healthineers

PrismaFit and Siemens Healthineers Skyra) on the same day, we evaluated

the NeuroCombat and LongCombat algorithms for harmonizing diffusion

metrics. These harmonization methods effectively minimized both intra- and

inter-scanner variability, highlighting their potential to improve consistency in

multi-scanner diffusion analysis. Our findings suggest that NeuroCombat and

LongCombat are recommended for harmonizing dMRI metric maps in clinical

studies. Additionally, both algorithms applied in either ROI-based or voxel-wise

configurations, significantly reduced variability, achieving levels comparable to

scan-rescan variability intra-scanner. Nonetheless, the choice of harmonization

algorithm and implementation should be tailored to the research question

at hand. Moreover, the significant intra- and inter-subject variability on non-

harmonized diffusion data demonstrated in this study reinforces the importance

of harmonization strategies that address any sources of variability. By minimizing

scanner-specific biases, the NeuroCombat and LongCombat harmonization

algorithms enhance the reliability of diffusion biomarkers, enabling large-scale

studies and more informed clinical decision-making in brain-related conditions.
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1 Introduction

Magnetic resonance imaging (MRI) is widely used in clinical
studies thanks to its excellent soft tissue contrast, imaging
flexibility, and non-ionizing acquisition. Diffusion MRI (dMRI)
is an MRI technique whose contrast is related to the diffusion
of water molecules inside tissues, being a powerful technique
to probe the human brain microstructure. Nonetheless, dMRI
is known to be majorly affected by differences in equipment
hardware, software and acquisition parameters, such as differences
in pulse sequences, signal-to-noise ratio, image intensity non-
uniformity, ghosting artifacts, geometrical distortions, all which
cause undesirable variability between dMRI metrics across scanners
(Pinto et al., 2020; Jones, 2010; Peltonen et al., 2020; Vollmar
et al., 2010). Notably, these variabilities can be in the same order
of magnitude as biological variabilities, which severely hinders
the interpretation of clinical studies, especially when evaluating
quantitative diffusion metrics (Grech-Sollars et al., 2015; Nencka
et al., 2018; Pinto et al., 2020; Vollmar et al., 2010).

Standard pre-processing steps in diffusion MRI—such
as motion correction, eddy-current correction, distortion
correction, and denoising—are essential for addressing within-
scan artifacts, but they do not resolve the substantial variability
introduced by differences across MRI scanners. This inter-scanner
variability stems from hardware-dependent factors like gradient
nonlinearities, RF coil sensitivity, and noise profiles; vendor-
specific reconstruction algorithms; inconsistencies in b-value
implementation and diffusion direction encoding; and temporal
or thermal instability affecting scanner performance. Additionally,
assumptions embedded in pre-processing tools may not generalize
well across different systems, leading to residual bias in derived
diffusion metrics such as fractional anisotropy or mean diffusivity.
As a result, even with identical acquisition protocols, data acquired
across scanners may not be directly comparable, highlighting the
need for additional methods beyond pre-processing to ensure
consistency in multi-site diffusion MRI studies.

Since the success of a joint analysis of multi-site dMRI data
requires data comparability, harmonization of such data is highly
recommended (Richter et al., 2022). Computational methods to
harmonize the dMRI data and minimize the imaging variability
are essential/critical to reliably combine datasets acquired from
different scanners and/or protocols, thus improving the statistical
power and sensitivity of multi-scanner studies. A variety of
computational approaches have been proposed to harmonize dMRI
data and remove scanner-specific effects that can affect the data
interpretation. However, harmonizing dMRI images comes with a
few drawbacks, including the need to share images across sites (data
sharing, anonymization, and data volume challenges), and a priori
requirements for study design (e.g., participants to be matched in
age and gender across sites, or protocols to be consistent across
sites) (Richter et al., 2022). While performing dMRI harmonization,
one needs to consider the harmonization factors at the acquisition
level (hardware and software settings) and the harmonization
factors at the image level (raw dMRI data or diffusion metric maps).
To reduce complexity, harmonizing 3D diffusion metric maps (e.g.,
FA, MD, and MK) compared to 4D raw dMRI data, is often more
feasible.

In recent years, a variety of statistical and machine learning
methods have been proposed to address the challenge of
multi-site and multi-scanner variability in neuroimaging data.
Traditional approaches, such as linear mixed-effects (LME) models,
enable the modeling of both fixed and random effects and
have been applied to account for site and scanner differences
while preserving biologically relevant variability. More recently,
non-linear techniques, including deep domain adaptation and
adversarial learning methods, have gained traction in medical
image harmonization. These approaches aim to learn domain-
invariant representations across imaging sites, often leveraging
convolutional neural networks (CNNs) or generative adversarial
networks (GANs) (Bashyam et al., 2021; Jeong et al., 2023).
While promising, these methods typically require large training
datasets and may lack interpretability. A widely used and
computationally efficient alternative is NeuroCombat, an extension
of the ComBat method originally developed for removing batch
effects in genomics data (Johnson et al., 2007), and later adapted
for neuroimaging applications (Fortin et al., 2017; Fortin et al.,
2018). NeuroCombat relies on regression of covariates to adjust the
values of the extracted parameters (e.g., diffusion metrics), creating
new parameter maps that are free of scanner-specific effects and
comparable across the whole cohort. The expected values are
derived using a linear model that incorporates biological variables
(e.g., age and sex) alongside additive and multiplicative scanner
effects as predictors. To improve the robustness in the estimation
of model parameters, Empirical Bayes methods are applied (Fortin
et al., 2018; Reynolds et al., 2023). NeuroCombat has shown to
increase statistical power compared to other feature-harmonization
methods in cross-sectional diffusion metric data (Fortin et al.,
2017).

NeuroCombat is a feature-based harmonization method that
can be applied to quantitative diffusion metrics obtained from
dMRI data. The NeuroCombat approach facilitates the correction
of batch effects and enables more accurate analysis of diffusion data
across diverse subjects and conditions. To account for longitudinal
studies, in which multiple acquisitions of the same subjects are
available in different timepoints, LongCombat was created as
an extension of NeuroCombat (Beer et al., 2020; Richter et al.,
2022). LongCombat aims to estimate and correct for additive and
multiplicative scanner effects while accounting for the within-
subject correlation inherent to longitudinal studies. Combat-based
harmonization methods estimate and remove the site-specific
effects using empirical Bayes, which allows borrowing statistical
power across sites for better parameter estimation, especially with
small sample sizes.

Extensions of the standard ComBat algorithm offer promising
potential to enhance the generalization of harmonization
techniques applied to diffusion metric maps. To evaluate
intra- and inter-scanner variability as well as the effectiveness
of harmonization techniques, it is suggested to use a cohort of
healthy participants who undergo repeated scans across different
scanners. This approach allows for a more reliable assessment of
harmonization effects, as well as better generalization of these
findings to broader population distributions. By utilizing the
same cohort across multiple scanner platforms, researchers can
more accurately quantify the impact of harmonization on data
consistency and robustness in diverse imaging environments.

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1591169
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1591169 May 31, 2025 Time: 8:49 # 3

Pinto et al. 10.3389/fnins.2025.1591169

The primary objective of this study is to assess the performance
of three ComBat-based harmonization methods—NeuroCombat,
NeuroCombatScanner and LongCombat—in reducing intra- and
inter-scanner variability in diffusion MRI-derived metrics, both at
the voxel and region-of-interest (ROI) level. To support this goal,
we utilized the B-Q MINDED dataset (Pinto et al., 2025), a recently
released inter-scanner test-retest dataset that includes multi-shell
diffusion MRI and anatomical T1-weighted images from 38 healthy
adult participants. This dataset was specifically designed to enable
the evaluation of the comparability of quantitative MRI metrics
across scanners and time points. Its test-retest structure, involving
acquisitions on multiple scanners, provides an ideal framework
for testing harmonization strategies aimed at improving the
consistency of MRI-derived measures in multi-site and longitudinal
studies.

2 Materials and methods

2.1 Participants

The B-Q MINDED database consists of anatomical and
dMRI scans of 38 highly educated, healthy volunteers aged
between 21 and 36 years old (mean ± standard deviation:
27.1 ± 3.4 years). The study cohort was composed of 17 females
(mean ± standard deviation: 26.3 ± 3.0 years) and 21 males
(mean± standard deviation: 27.8± 3.5 years). All volunteers were
scanned between February and December 2020 at the radiology
department at the Antwerp University Hospital (UZA) in Antwerp,
Belgium. Ethical approval was obtained from the UZA Ethics
Committee (B300202042715). Written consent was obtained from
all participants.

2.2 Image acquisition

The MRI scans were obtained on a 3 Tesla MAGNETOM
Skyra and a 3 Tesla MAGNETOM PrismaFit scanner (Siemens
Healthineers, Forchheim, Germany). The Siemens Healthineers
Skyra scanner had a gradient amplitude of 45 mT/m and slew rate
200 T/m/s and the Siemens Healthineers PrismaFit scanner had a
gradient amplitude of 80 mT/m and slew rate 200 T/m/s. The MRI
sequences acquired in both scanners included volumetric (1) T1-
weighted, (2) multi-shell dMRI optimized for Diffusion Kurtosis
Imaging (DKI) and (3) b0 images with inverted phase-encoding.

Base values of the MPRAGE T1-w image (1) were: 0.9 mm
isotropic voxels, 192 slices, TR of 2,300 ms, TE of 2.29 ms and
TI of 900 ms, 1 average, sagittal orientation and anterior-posterior
phase encoding, with acquisition time of 5 min and 21 s. The
DKI acquisition (2) had the following acquisition specification:
2.5 mm isotropic voxels, 54 slices, TR of 8,100 ms, TE of 107 ms,
single-shot EPI, transversal orientation, posterior-anterior (PA)
phase encoding, and 150 diffusion volumes (6 volumes with
b-value = 0 s/mm2, 25 volumes with b-value = 700 s/mm2,
45 volumes with b-value = 1,200 s/mm2 and 75 volumes with
b-value = 2,800 s/mm2), with acquisition time of 20 min and 49 s.
Additionally, although not used in the current work, six b0 images
with inverted phase-encoding, i.e., anterior-posterior (AP), were

acquired using the same configuration as the DKI sequence, with
an acquisition time of 42 s.

The imaging protocol was acquired twice per subject on both
MRI scanners, generating intra-scanner and inter-scanner test
and retest data. The first scan for each subject was randomly
assigned to PrismaFit or Skyra scanner. The intra-scanner test-
retest acquisitions were performed consecutively in the same
scanner, with the scanner table being moved out and in of the
scanner between the test and retest acquisitions. The time between
the MRI acquisitions in the two scanners (PrismaFit and Skyra) was
around 1 h. The intra-scanner approach enables the comparison
of the scan-rescan variability in subjects who had two scans less
than 10 min apart on the same scanner (within-scanner/test-retest
cohort, 10 min between the end of the diffusion test scan and
the start of the retest scan). The inter-scanner approach allows
for the comparison of the scan-rescan variability in subjects who
had two scans less than 20 min apart in different scanners (inter-
scanner cohort, 20 min between the end of the scan session on
the first scanner and the start in the second scanner). In total, our
study included 152 diffusion MRI scans from 38 participants (each
subject scanned twice on each of the two scanners).

2.3 Data availability of the B-Q MINDED
dataset

The B-Q MINDED dataset was acquired to investigate scan-
rescan variability and inter-scanner effects on diffusion MRI
measurements and derived quantitative metrics relevant to brain
structural integrity assessment. This dataset, presented and made
publicly available for the first time in this manuscript (Zenodo;
Pinto et al., 2025),1 includes de-identified, BIDS-compliant MRI
data from 38 healthy participants, each scanned across test and
retest sessions on both Siemens Skyra and PrismaFit scanners. For
each subject, the dataset contains defaced T1-weighted anatomical
images and associated brain masks, along with pre-processed
diffusion-weighted images, including bval, bvec, NIfTI, and JSON
files for each diffusion kurtosis imaging (DKI) acquisition. The
data is organized by subject and scanner, with DKI files labeled
by session (test = 1, retest = 2) and phase-encoding direction
(PA: posterior-anterior; AP: anterior-posterior), as indicated in the
filenames.

A representative example of the B-Q MINDED dataset is
depicted in Figure 1, in which the defaced T1 image is shown next
to the DKI acquisition and the extracted fractional anisotropy (FA)
and mean kurtosis (MK) maps.

2.4 Diffusion pre-processing pipeline

The MRI data were processed using the icobrain diffusion
pipeline (Figure 2). Initial preprocessing consisted of corrections
for noise using Marchenko-Pastur principal component analysis
(MP-PCA) (Veraart et al., 2016), Gibbs ringing (Kellner et al.,
2016), head motion and eddy current-induced distortions through

1 https://zenodo.org/records/6473268
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FIGURE 1

Example of the B-Q MINDED dataset for subject 15 in the PrismaFit scanner acquisition, the extracted (A) defaced T1 image on slice 155, (B) DKI
acquisition with b0 on slice 30, (C) the extracted FA map on slice 30, and (D) the extracted MK map on slice 30.

FIGURE 2

Diagram of processing of the Diffusion Weighted Images (DWIs) from raw images to final diffusion metric maps.

affine registration of each diffusion-weighted volume to the
first acquired b0 image (Rohde et al., 2004), and scanner bias
field (Tustison et al., 2010). Subsequently, susceptibility-induced
distortions were corrected through non-linear registration between
the diffusion data and the undistorted T1 image (Bhushan et al.,
2015; Takatsu et al., 2019). Finally, a Gaussian smoothing filter with
a full-width at half-maximum (FWHM) of 2.5 mm (same as the
voxel size) was applied prior to model fitting to extract kurtosis
maps with reduced noise levels (Tax et al., 2022).

After preprocessing, the diffusion kurtosis estimation was
obtained by applying the constrained iterative reweighted linear
least squares (constrained IRLLS) fitting procedure (Collier et al.,
2015). The combination of Gaussian smoothing and constrained
estimation effectively mitigated the issue of “black voxels” in the
DKI data, i.e., implausible negative kurtosis estimates typically
caused by signal artifacts. Following tensor estimation, the
corresponding fractional anisotropy (FA), mean diffusivity (MD),
axial diffusivity (AD), radial diffusivity (RD), mean kurtosis (MK),
axial kurtosis (AK) and radial kurtosis (RK) maps were derived.
Afterward, each individual FA map was non-linearly registered
to the FA template of the John Hopkins University (JHU ICBM-
DTI-81) atlas. Finally, the transformations were used to project
corresponding MD, AD, RD, MK, AK and RK maps to the Montreal
Neurologic Institute (MNI) space, a standardized coordinate
system in common usage. All registrations (affine and non-rigid)

were performed using the open source NiftyReg package (Modat
et al., 2014).

2.5 Quality control

Although the main imaging artifacts were addressed in the
preprocessing steps of the pipeline, targeted quality assessment
is key to ensuring reliable results with low measurement errors.
Therefore, an automated quality assessment of the available scans
was performed based on predefined thresholds, derived from
datasets on which the icobrain diffusion software had been
previously applied. The following QC metrics were evaluated:

• Brain coverage was assessed to guarantee consistent whole-
brain and regional measurements. A standard brain mask
in MNI space was transformed into each subject’s native
space using an affine transformation. Distances between
the bounding box of the transformed mask and the
edges of the subject’s FA in native space were computed
in six directions (right, left, back, front, down, top).
Rejection thresholds were defined as distances less than
–10 mm (right, left, back, front), –40 mm (down), and –
4.11 mm (top).
• The signal-to-noise ratio (SNR) of the b0 images was used

as an indication of the quality of the dMRI data. The SNR
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was calculated by averaging the b0 images and dividing the
resulting signal by the noise map, as extracted from MP-
PCA. Finally, the average SNR within a WM mask was
computed, with the rejection threshold defined as an SNR
less than 10.71.
• The contrast-to-noise ratio (CNR) for each non-zero

diffusion shell was calculated using spherical harmonics
fit. The angular contrast was computed as the standard
deviation of the predicted signal, while noise was defined
as the standard deviation of the residuals between the
actual and predicted signals. The resulting CNR map was
then averaged within a WM mask, with the rejection
threshold defined as a CNR less than 5.06.
• The distribution of the diffusion gradient directions was

assessed to evaluate the uniformity of sampling using built-
in functions available in the MRtrix3 software framework
(Tournier et al., 2019).
• Motion was quantified as the average root-mean-square

(RMS) displacement introduced by the series of affine
transformations used to align each volume with the
first acquired b0 image (reference image). The rejection
threshold was set at 15 mm.
• The goodness of alignment to the structural T1 was

quantified using normalized mutual information, with a
lower bound of 0.095.
• Finally, the IRLLS estimation technique produces a binary

outlier map where data points classified as intensity
outliers are labeled as 1, and accepted data points as 0. This
output was used to provide a shell-wise overview of the
outlier distribution per slice (axial, coronal, and sagittal)
and per volume, supporting the final QC decision.

All available scans successfully passed the automated quality
assessment. In addition, manual QC was performed by the primary
and secondary authors to assess the quality of the original diffusion
and anatomical data, as well as the registration to MNI space. No
issues were identified.

2.6 White matter masks

To analyze the diffusion maps, specific regions of interest
(ROIs) were identified, according to the brain microstructure.
Image masks were created to contain the white matter brain
region. The white matter masks were created based on the average
of the subjects’ diffusion FA maps registered to MNI space,
considering the FA threshold to identify the WM of the brain.
Three (3) thresholds were used to create the following WM
masks: WMmask01 with FA threshold of 0.1, WMmask02 with FA
threshold of 0.2 and WMmask03 with FA threshold of 0.3 (depicted
in green on Figure 3).

2.7 Harmonization approaches:
NeuroCombat and LongCombat

Harmonization was performed using the R (version 4.3.2)
packages: neuroCombat version 1.0.13 (Fortin et al., 2017,

2018)2 and longCombat version 0.0.0.90000 (Beer et al., 2020).3

Harmonization was performed separately for each of the diffusion
metric maps (FA, MD, AD, RD, MK, AK, and RK) on a
voxel-wise level and on a ROI-wise level using NeuroCombat
and LongCombat. For the voxel-wise harmonization, the voxel
intensities of the diffusion metric maps within WMmask01
(total of 64,667 voxels) were used as the input values in the
harmonization algorithms. For the ROI-wise harmonization, the
average of the voxel intensities of the diffusion metric maps
within the specific ROIs were used as the input values in
the harmonization algorithms. The 51 specific ROIs used were
WMmask01, WMmask02, WMmask03 (see Figure 3) and the 48
JHU regions (see Figure 4). In this study, age and sex served as
biological covariates while fitting the harmonization models.

The diffusion metric maps were harmonized in six manners:
(1) NeuroCombat voxel: NeuroCombat voxel-wise with 4
scanners/batches to be corrected for: PrismaFit test, PrismaFit
retest, Skyra test and Skyra retest, (2) NeuroCombat ROI:
NeuroCombat ROI-wise with 4 scanners to be corrected for:
PrismaFit test, PrismaFit retest, Skyra test and Skyra retest, (3)
NeuroCombatScanner voxel: NeuroCombat voxel-wise with 2
scanners to be corrected for: PrismaFit and Skyra, all test/retest data
was used while implementing subject ID as an additional biological
covariates, which we will call NeuroCombatScanner voxel-wise,
(4) NeuroCombatScanner ROI: NeuroCombat ROI-wise with 2
scanners to be corrected for: PrismaFit and Skyra, all test/retest data
was used while implementing subject ID as an additional biological
covariates, which we will call NeuroCombatScanner ROI-wise, (5)
LongCombat voxel: LongCombat voxel-wise with 2 scanners to be
corrected for: PrismaFit and Skyra, 2 timepoints to be corrected
for: test and retest and a subject-specific random intercept, and (6)
LongCombat ROI: LongCombat ROI-wise with 2 scanners to be
corrected for: PrismaFit and Skyra, 2 timepoints to be corrected
for: test and retest and a subject-specific random intercept.

ComBat-based harmonization methods are designed to adjust
for site-specific variability in multi-site neuroimaging data by
estimating and removing scanner-related effects through an
empirical Bayes framework. These methods model the unwanted
variation as a combination of additive and multiplicative site
effects, which are then statistically adjusted to align the data across
scanners or sites. The empirical Bayes approach enables the method
to “borrow statistical power” across all participating sites, effectively
pooling information to improve the estimation of these site-specific
parameters—particularly beneficial when some sites have small
sample sizes (Fortin et al., 2017, 2018). This approach helps ensure
that the harmonized data retain biologically meaningful signals,
such as effects of age, sex, or clinical diagnosis, while reducing
spurious differences that are solely due to acquisition conditions.

2.8 Statistical analysis

All statistical analysis was performed in R (version 4.3.2) (R
Core Team, 2021). The statistical analysis was performed in the 51
chosen ROIs (WMmask01, WMmask02, WMmask03 and the 48

2 https://github.com/Jfortin1/neuroCombat_Rpackage

3 https://github.com/jcbeer/longCombat
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FIGURE 3

White Matter masks created based on the average over the subject’s diffusion FA maps registered to MNI space: WMmask01 with FA threshold of 0.1
(depicted in red), WMmask02 with FA threshold 0.2 (in blue) and WMmask03 with FA threshold 0.3 (in green).

FIGURE 4

Overlap between MNI brain template and the JHU WM atlas regions. GCC, genu corpus callosum; BCC, body corpus callosum; SCC, splenium
corpus callosum; FX, fornix; MCP, middle cerebellar peduncle; [R/L], right and left; CP, cerebral peduncle; ICP, inferior cerebellar peduncle; SCP,
superior cerebellar peduncle; CST, corticospinal tract; ACR, anterior corona radiate; PCR, posterior corona radiate; SLF, superior longitudinal
fasciculus; EC, external capsule; PLIC, posterior limb of internal capsule; CCG, cingulate gyrus part of the cingulum; HCG, hippocampus part of the
cingulum; PTR, posterior thalamic radiation; TP, tapetum. Figure adapted from Siqueira Pinto et al. (2023).

JHU regions) for the original diffusion MRI maps (FA, MD, AD,
RD, MK, AK, and RK), and on the maps harmonized according to
the six methods mentioned above.

The original non-harmonized diffusion data metric maps (FA,
MD, AD, RD, MK, AK, and RK) were tested for normality
considering the mean intensity value within the WMmask01 of
all 38 subjects of the B-Q MINDED subdatasets (PrismaFit test,
PrismaFit retest, Skyra test and Skyra retest). Each time, the
normality of the 38-sized dataset was checked by visual inspection
via Q-Q plot (Dodge, 2008) and the Shapiro-Wilk test (Shapiro and
Wilk, 1965), which rejects the hypothesis of normality when the
p-value is less than or equal to 0.05.

Next, paired t-tests were used to compare two population
means and standard deviations (of diffusion metric intensities
within ROIs) for two samples that are correlated, to determine
if there is a significant difference between the two groups (intra-
or inter-scanner populations). The t-test result was considered
statistically significant if p < 0.05.

To further evaluate the effects of harmonization on
measurement reproducibility and biological variability, we
computed three complementary metrics: the within-subject
coefficient of variation (CVws) (Quan and Shih, 1996), the
between-subject coefficient of variation (CVbs), and the intraclass
correlation coefficient (ICC) (McGraw and Wong, 1996). These
metrics were calculated for each diffusion metric in the WM
regions of interest, separately for intra-scanner and inter-scanner
comparisons, both before and after harmonization.

CVws was calculated as the standard deviation of the test-
retest differences within each subject, divided by the subject’s
mean across sessions, and then averaged across subjects. CVbs
was computed as the standard deviation of the subject-level
means across the cohort, divided by the overall mean, to estimate
biological variability. The ICC was used to assess the reliability
of individual differences by quantifying the proportion of total
variance attributable to between-subject variability. Specifically,
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we employed the ICC(A,1) model—based on a two-way mixed-
effects framework with absolute agreement of single measurements
(McGraw and Wong, 1996). All calculations were implemented
in R, using the psych package for ICC estimation and custom
scripts for CVws and CVbs computations. These analyses quantify
how harmonization affected measurement error, biological signal
preservation, and subject-level reliability across scanners and
sessions.

Lastly, an analysis of variance (ANOVA) was performed to
compare the groups (PrismaFit test, PrismaFit retest, Skyra test
and Skyra retest). For the dMRI measures, two-way ANOVA
was performed to evaluate the effect of scanner, test-retest, the
interaction between scanner and test-retest and subject ID. The
comparison was performed for all masks and JHU regions. Test
results with p < 0.05 were considered statistically significant.
As this was an exploratory analysis, no corrections for multiple
comparisons were performed.

Diffusion Map ∼ TestRetest ∗ Scanner + Subject ID (1)

The diffusion maps (FA, MD, AD, RD, MK, AK, and RK)
were evaluated by the two-way ANOVA test following the R
implementation based on equation 1, in which Diffusion Map is
the mean intensity of the diffusion metric over the ROI voxels,
for each of the diffusion maps separately, TestRetest is the intra-
scanner factor, Scanner is the inter-scanner factor and Subject ID
is the individual’s identification as each subject obtained 4 sets
of diffusion maps (PrismaFit test, PrismaFit retest, Skyra test and
Skyra retest). Thus, the individual’s ID, the intra-scanner effect,
the inter-scanner effect and the interaction between both can be
evaluated by the two-way ANOVA test.

Linear mixed-effects (lme) models extend simple linear models
by incorporating both fixed effects (effects that are consistent and
repeatable across different groups) and random effects (effects that
vary intra- and inter-scanner). In R, the lme4 package was used
to provide robust functions to fit lme models. In this study, age
and sex were considered fixed effects, while scanner was considered
random effects. The lme model was implemented on the diffusion
data before and after harmonization to evaluate how the biological
information (age and sex) was maintained after harmonization.

Diffusion Map ∼ Age ∗ Sex + Scanner (2)

The diffusion maps (FA, MD, AD, RD, MK, AK, and RK) were used
in the linear mixed-effect model as described by equation 2. The
lme model considers the effect of Scanner, Age and Sex and the
interaction of the last two, and how it relates to the mean intensity
of each Diffusion Map.

3 Results

The diffusion data was tested for normality, both visually via
the QQ plot, and statistically, via the Shapiro-Wilk’s test. Based on
the results of these normality tests, the non-harmonized diffusion
metrics averaged within the WMmask01 (FA, MD, AD, RD, MK,
AK, and RK) were found to exhibit a normal distribution within
the B-Q MINDED dataset.

A paired t-test was performed on the original non-harmonized
data to evaluate the presence of intra-scanner differences in the

diffusion metric maps (FA, MD, AD, RD, MK, AK, and RK) for
each of the Siemens Healthineers scanners (PrismaFit and Skyra).
The results are shown in Figure 5. The results show that for the
PrismaFit scanner, there are a few significant (p < 0.05) intra-
scanner differences in specific WM regions for multiple diffusion
metric maps. Indeed in 16 out of the 51 regions, at least one
diffusion map presents a significant intra-scanner variation. For the
Skyra scanner, significant (p < 0.05) intra-scanner differences are
observed: in 21 out of the 51 WM regions, at least one diffusion
map presented a significant variation.

In addition, the paired t-test was also performed to evaluate the
inter-scanner differences in the non-harmonized diffusion metrics
for the specific WM regions. The results are shown in Figure 6. It
can be observed in Figure 6A, which shows the paired t-test results,
that for all original (non-harmonized) diffusion metrics there are
multiple WM regions in which the scanner effect is significant
(p < 0.05), while 7/51 WM regions have significant scanner
effects for all diffusion metrics. Additionally, as can be observed
in Figure 6B, in which the percentage inter-scanner difference is
depicted, the larger WM ROIs show only small differences (< 1%)
and there is not a clear pattern in the inter-scanner variation of the
diffusion values.

Additionally, the two-way ANOVA test was performed to also
evaluate the intra- and inter-scanner variability of the 2 scanners
used in the study on the non-harmonized diffusion metrics (FA,
MD, AD, RD, MK, AK, and RK), Figure 7 displays the results for
FA.

The results shown in Figure 7 demonstrate that for the
original non-harmonized FA maps, 8/51 of the WM regions
considered display significant intra-scanner (TestRetest factor in
Equation 1) effects, namely WMmask02, WMmask03, ACR-R,
ALIC-R, PLIC-L, PLIC-R, SCR-R and SLF-R. Moreover, 44/51 WM
regions indicate significant inter-scanner effects (Scanner factor in
Equation 1). For the interaction between intra- and inter-scanner
effect, 4/51 regions showed significant effects, namely BCC, PCR-R,
PLIC-R and UF-R. Additionally, it was not added in the table, but
subject ID was always significant for this analysis for all diffusion
maps, for all WM regions.

When evaluating the other diffusion maps, similar patterns
were identified. For MD, 34/51 WM regions showed significant
inter-scanner effects, while 5/51 regions are significant for intra-
scanner effects, namely PLIC-R, SCC, CCG-R, TP-L, and SFOF-R,
and 1/51 WM regions showed a significant intra-inter-scanner
effect, namely ALIC-R. AD demonstrated significant intra-scanner
effects for 3/51 WM regions, namely for SCC, TP-L, and FX, and
significant inter-scanner and interaction between intra- and inter-
scanner for ALIC-R. RD displayed significant intra-scanner effects
for 9/51 WM regions, namely ALIC-R, PLIC-R, SCC, TP-L, PCR-L,
ACR-R, SCR-R, SLF-R, and SFOF-R, and significant inter-scanner
and interaction between intra- and inter-scanner for ALIC-R.

For the kurtosis parameters, a similar pattern is observed. For
the non-harmonized MK maps, 38/51 WM regions are significant
for inter-scanner effect, 3/51 are significant for intra-scanner
effects, as PTR-R, EC-L, and CCG-R, while CCG-R and PLIC-R
displays significant interaction between intra- and inter-scanner
effect. For AK, the FX is the only WM region with significant
intra-scanner effect, while TP-R, SCP-R, and ALIC-L are identified
to have significant interaction between intra- and inter-scanner
effects. For RK maps, CCG-R is the only WM region with
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FIGURE 5

Heatmaps for the p-values obtained from the paired t-test on the non-harmonized diffusion metric maps on the evaluation intra-scanner for the
test and retest data obtained on the PrismaFit (A) and Skyra (B) scanners: FA, MD, AD, RD, MK, AK, and RK.

significant intra-scanner effect, and significant interaction between
intra- and inter-scanner effects were found for PLIC-R and CCG-R.

Moreover, to investigate if the biological (age and sex) effects
are maintained while intra- and inter-scanner factors are removed
during the data harmonization, we first check if the biological
effects are statistically significant in the non-harmonized diffusion
metric maps via lme (Equation 2). The results for the FA maps are
shown in Figure 8. It follows from Figure 8 that for the FA maps
age and sex are not statistically significant for none of the WM
regions, however, the interaction between age and sex is significant
for the SFOF-L. Additionally, most WM regions have statistically
significant scanner effects. The scanner effects were found to be
similar for all diffusion metric maps evaluated.

However, for MD, age is significant statistically for EC-R and
PLIC-R, while sex is significant for EC-R and SCR-L. For AD, only
PLIC-R has significant relation to age. RD shows significant relation
to age for EC-R and CCG-L. Looking at the relations for MK, age
is significant for PCT. For AK, age is significantly correlated for
PLIC-R, sex is significantly correlated to PLIC-R, SSL, and CCG-R,
and the age-sex interaction is also significantly correlated to PLIC-
R, SSL, and CCG-R. And for RK, no WM regions are significantly
related to the biological effects.

Based on the results presented thus far, which pertain to non-
harmonized intra- and inter-scanner data, it is evident that data
harmonization is necessary to mitigate scanner- and acquisition-
specific effects. This is crucial for accurately assessing the biological
parameters associated with the diffusion metrics. Thus, below
we describe the results obtained with the six harmonization
approaches described in the methods section: (1) NeuroCombat
voxel, (2) NeuroCombat ROI, (3) NeuroCombatScanner voxel,
(4) NeuroCombatScanner ROI, (5) LongCombat voxel, and
(6) LongCombat ROI.

The six harmonization algorithms were implemented for the
diffusion metric maps (FA, MD, AD, RD, MK, AK, and RK)
and the impact of the harmonization on the intra- and inter-
scanner differences was evaluated. Figure 9 shows the results
of the comparison of intra-scanner differences before and after
harmonization for the FA map within the WMmask03. Similar
patterns were identified for the other diffusion metric maps and for
the additional WM regions.

Next to the distribution of the mean FA within the WMmask03
before and after harmonization, Figure 9 also shows the p-values
of the paired t-test that was implemented to test intra-scanner
differences before and after harmonization. Results are shown
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FIGURE 6

Inter-scanner heatmaps between Skyra test vs. PrismaFit test for the (A) p-values obtained from the paired t-test on the non-harmonized diffusion
metrics obtained on the PrismaFit and Skyra scanners: FA, MD, AD, RD, MK, AK, and RK; and (B) percentage difference map between the PrismaFit
and Skyra scanners.

for all six harmonization approaches listed above. The non-
harmonized data demonstrated a significant (p < 0.05) intra-
scanner relation for PrismaFit with a p-value of 0.017 and non-
significant p-value of 0.08 for Skyra. After the harmonization
via NeuroCombat ROI- and voxel-wise, the test-retest effects are
removed and the intra-scanner relations turn non-significant, both
for PrismaFit (p-value of 0.42 and 0.55, respectively), and Skyra
(p-value of 0.76 and 0.47, respectively). For the other methods,
NeuroCombatScanner and LongComBat ROI- and voxel-wise, the
level of intra-scanner significance remained the same as for the
original data.

Additionally, the two-way ANOVA test was performed pre- and
post-harmonization of the diffusion metric maps; the results for
the WM regions for the FA maps are shown in Figure 10. The
results demonstrate the same pattern as identified in the paired
t-test, as expected. While NeuroCombat voxel and ROI were able
to correct for the significant (p < 0.05) intra-scanner effects in
specific WM regions (WMmask02, WMmask03, ACR-R, ALIC-
R, PLIC-R, PLIC-L, SCR-R and SLF-R), the other harmonization
methods (NeuroCombat Scanner and LongCombat) did not
remove the significant intra-scanner differences. Similar patterns
were identified for the other diffusion metric maps.

Furthermore, we evaluated if the harmonization approaches
were able to remove the scanner effect, which for non-harmonized
data was observed to be very significant for multiple WM regions
(Figure 6). The six harmonization algorithms were implemented
for the diffusion metric maps (FA, MD, AD, RD, MK, AK,
and RK) and the impact of the harmonization on the inter-
scanner differences was evaluated. Figure 11 shows the results
of the comparison of inter-scanner differences before and after
harmonization for the FA map within the WMmask03.

The results of the paired t-test for inter-scanner evaluation
are displayed for the FA map of the WMmask03 in Figure 11.
Similar patterns were observed across the other diffusion metrics
and WMmask regions, where all harmonization methods effectively
eliminated scanner-specific effects while preserving the underlying
data distribution.

However, when looking at the smaller WM regions from the
JHU atlas, it was possible to identify that for various regions
there was an optimal harmonization approach that more effectively
removed the scanner effects than other approaches. Indeed, the
LongCombat voxel and ROI were the harmonization approaches
that increased the p-value for the paired t-test and two-way
ANOVA consistently for all evaluated regions, removing all
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FIGURE 7

Heatmaps for the p-values obtained from the two-way ANOVA test on the original FA maps for both PrismaFit and Skyra scanners including test and
retest data.

significant scanner effects on the diffusion data. The results on
Figure 12 for the two-way ANOVA evaluation for the MK data
demonstrate that clearly. A very similar pattern was identified

for the other diffusion metric maps, in which LongCombat
again performed best when it comes to the removal of scanner
effects.
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FIGURE 8

Heatmaps for the p-values obtained from the lme model on the original non-harmonized FA maps.

To evaluate the impact of harmonization on measurement
consistency and biological variability, we calculated the within-
subject coefficient of variation (CVws), between-subject
coefficient of variation (CVbs), and intraclass correlation
coefficient (ICC) for each diffusion metric across all WM

regions, both before and after harmonization. Results for FA
are presented in Figures 13–15. Similar trends were observed
across other diffusion metrics (MD, AD, RD, MK, AK, and
RK), and we describe the main findings below based on the FA
results.
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FIGURE 9

Data distribution of mean FA values within the WMmask03 for intra-scanner comparisons before and after harmonization for the PrismaFit and Skyra
scanners: (A) Non-harmonized - Original, (B) NeuroCombat ROI, (C) NeuroCombat voxel, (D) NeuroCombatScanner ROI, (E) NeuroCombatScanner
voxel, (F) LongCombat ROI, and (G) LongCombat voxel. The paired t-test p-value for each of the intra-scanner comparisons is shown in the graphs.

In the intra-scanner CVws assessment for FA (Figures 13a,b),
both NeuroCombat and NeuroCombatScanner, applied ROI- and
voxel-wise, showed either reduced or minimally altered CVws
compared to the original data for both Skyra and PrismaFit
scans. In contrast, LongCombat implementations, surprisingly,
demonstrated positive differences from the original CVws values.
Across all harmonization methods, the largest increases in CVws
from the original data were observed in the fornix (FX), which
may reflect the region’s heightened sensitivity to partial volume
effects, motion artifacts, or its small size and anatomical proximity
to cerebrospinal fluid spaces.

For the inter-scanner CVws comparison (Skyra test vs.
PrismaFit test; Figures 13C,D), all harmonization methods
resulted in relatively minor changes from the original CVws
values. NeuroCombat tended to decrease CVws slightly,
NeuroCombatScanner remained closest to the original
measurements, and LongCombat showed an overall increase
in CVws, suggesting a potential overcorrection in the inter-scanner
context.

In the intra-scanner assessment of between-subject variability
(CVbs) for FA (Figure 14), all harmonization methods—
NeuroCombat, NeuroCombatScanner, and LongCombat—applied
both ROI- and voxel-wise, resulted in only minimal changes
compared to the original data for both the Skyra and PrismaFit
scans. The CVbs patterns were highly consistent across the
two scanners, suggesting that the harmonization procedures
preserved overall biological variability between subjects in
a reproducible manner. However, among the voxel-wise
harmonization approaches, the largest deviations from the
original CVbs values were observed in the fornix (FX), with smaller
deviations noted in the left tapetum (TP-L) and the left cingulum
hippocampus (CH-L), indicating some regional sensitivity to
harmonization effects.

In the intra-scanner assessment of intraclass correlation
coefficients (ICC) for FA (Figures 15a,b), both NeuroCombat
and NeuroCombatScanner—applied at the ROI and voxel levels—
resulted in ICC values that were either slightly reduced or largely
unchanged compared to the original data for both the Skyra
and PrismaFit scans. In contrast, LongCombat (both ROI- and
voxel-wise) led to more pronounced decreases in ICC, indicating
reduced test-retest reliability following harmonization. The largest
deviations in ICC were observed in the fornix (FX) for both
NeuroCombat and LongCombat when applied voxel-wise, with
smaller differences appearing in other white matter regions.

A similar pattern was observed in the inter-scanner ICC
comparison (Skyra test vs. PrismaFit test; Figures 15C,D). Again,
NeuroCombat and NeuroCombatScanner produced minimal
changes in ICC values, while LongCombat consistently resulted
in greater reductions. The fornix (FX) remained the region with
the largest ICC decrease, particularly in voxel-wise analyses,
underscoring its heightened sensitivity to harmonization effects.

Lastly, Figure 16 shows the lme results for the LongCombat
ROI harmonized FA maps. It is observed that age and sex are
not statistically significant for any of the WM regions, however,
the interaction between age and sex is significant for SFOF-L,
as similarly demonstrated in the non-harmonized original data
(Figure 8). Additionally, all scanner effects are removed. The
corrections of the scanner effects are similar for all diffusion metric
maps evaluated while keeping the interactions with age, sex and the
interaction between age and sex.

The biological (age and sex) effects on the diffusion data
were evaluated via a lme after data harmonization (Equation 2).
Unfortunately, for this dataset the biological effects considered
do not have a significant relation to the diffusion metric maps,
before nor after harmonization. The lme evaluation demonstrates
the same pattern identified previously, in which LongCombat voxel
and ROI were the best approaches to remove significant scanner
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FIGURE 10

Heatmap for the p-values obtained from the two-way ANOVA test for the intra-scanner (TestRetest) variable on the original non-harmonized FA
maps and in the harmonized maps via NeuroCombat voxel, NeuroCombat ROI, NeuroCombatScanner voxel, NeuroCombatScanner ROI,
LongCombat voxel, and LongCombat ROI.

effects while seemingly preserving the overall underlying relation

with the biological features.

A visual representation of the significant age:sex relation in the

SFOF-L FA LongCombat ROI data is shown in Figure 17. In the

figure it is possible to identify different trends for the FA data with

age for the two biological sexes, with a positive trend with age for

males and a negative trend for females. The individual evaluations

for age and sex separately is not significant, however, the interaction

between both biological effects provides a significant relation on the

non-harmonized data and such is maintained after LongCombat
harmonization, for both ROI and voxel implementations.

4 Discussion

This study presented a comprehensive evaluation of inter-
and intra-scanner ComBat-based harmonization methods using
neuroimaging data from the B-Q MINDED dataset, in which
the same subjects were scanned multiple times across multiple
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FIGURE 11

Distribution of the mean FA values within the WMmask03 for inter-scanner comparisons before and after harmonization:
(A) Non-harmonized—Original, (B) NeuroCombat ROI, (C) NeuroCombat voxel, (D) NeuroCombatScanner ROI, (E) NeuroCombatScanner voxel,
(F) LongCombat ROI, and (G) LongCombat voxel. The paired t-test p-value for each of the intra-scanner comparisons is shown in the graphs.

scanners. We demonstrated an overall robust performance of
NeuroCombat and LongCombat in harmonizing cross-sectional
and longitudinal diffusion metrics, both at the voxel and region-of-
interest (ROI) levels. However, we note that multiple comparisons
were performed across a large number of ROIs and diffusion
metrics without formal correction procedures (e.g., FDR or
Bonferroni). While this approach is appropriate in the context
of exploratory analysis, we advise caution in interpreting isolated
significant findings, as they may be susceptible to false positives.
Future studies with larger samples and more targeted hypotheses
would benefit from applying statistical corrections to more
rigorously assess robustness.

Starting with the original non-harmonized diffusion metric
maps (FA, MD, AD, RD, MK, AK, and RK), this study demonstrated
that even for scanners of the same brand, located in the same
hospital and being operated by the same personnel, there is
significant intra- and inter-scanner variability when evaluating the
extracted metric maps (see Figures 5, 6).

Interestingly, notable variations were observed in the intra-
scanner evaluations for the two Siemens Healthineers scanners that
were assessed (3T PrismaFit and 3T Skyra). These discrepancies
suggest that each scanner may exhibit unique characteristics
or performance profiles, which could influence the consistency
and reliability of the data obtained. Such differences may be
attributed to factors such as hardware specifications, calibration
procedures, or even the specific scanning protocols employed by
each device. Understanding and accounting for these intra-scanner
variations is essential for ensuring accurate data interpretation and
minimizing potential sources of error in scientific studies that rely
on scanning technology.

In more detail, for the PrismaFit scanner, the number of WM
regions in which statistically significant (p < 0.05) intra-scanner
differences for at least one diffusion map were found was 16 out
of 51, while for the Skyra scanner this number increased to 21

out of 51 (Figure 5). For the PrismaFit scanner, the following WM
regions showed significant intra-scanner variation in at least three
diffusion maps: Anterior Corona Radiata - Left (ACR-L), Superior
Longitudinal Fasciculus - Right (SLF-R) and Tapetum - Left (TP-
L). For the Skyra scanner, the following WM regions showed
significant intra-scanner variation in at least five diffusion maps:
Posterior Limb Internal Capsule - Right (PLIC-R), Anterior Limb
Internal Capsule - Right (ALIC-R) and Body of Corpus Callosum
(BCC). The inter-scanner differences between the PrismaFit and
Skyra could be caused by differences in gradient performance and
different bore size, which could cause (minor) differences in field
homogeneity and can be considered a factor in the inter-scanner
evaluations.

Additionally, the results of the paired t-test that was applied
to the original, non-harmonized diffusion metric maps obtained
from the PrismaFit test data and Skyra test data demonstrate that
for several WM regions the scanner effect is significant (p < 0.05).
In fact, 7 out of 51 WM regions present significant scanner
effects for all diffusion metric maps, namely GCC, PCR-L, PTR-R,
SCP-L, SCP-R, SCR-R, and TP-R. When looking at the inter-
scanner percentage difference map shown in Figure 6B, larger WM
structures demonstrate smaller deviations across the scanners. It
may be that the bigger differences (< 1%) rather reflect registration
errors and issues with partial volumes than scanner effects.

Moreover, when evaluating intra- and inter-scanner effects
jointly in the two-way ANOVA test, a similar pattern was
identified. The results in Figure 7 for FA, as well as those for the
additional diffusion metric maps (MD, AD, RD, MK, AK, and RK),
demonstrated statistically significant inter-scanner effects for most
of the evaluated WM regions, while the intra-scanner effects are
significant for less WM regions. When looking at the regions that
demonstrated significant intra-scanner effects, there is a consistent
identification of ALIC and the PLIC WM regions in all diffusion
metric maps and the identification of PCR, ACR, TP, SLF, SRC,
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FIGURE 12

Heatmap for the p-values obtained from the two-way ANOVA test for the inter-scanner (Scanner) variable on the original non-harmonized MK maps
and in the harmonized maps via NeuroCombat voxel, NeuroCombat ROI, NeuroCombatScanner voxel, NeuroCombatScanner ROI, LongCombat
voxel, and LongCombat ROI.

and SFOF WM regions for most of the diffusion metric maps.
The identification of these specific WM regions for intra-scanner
differences might be related to the size and location of those

brain tracts, compared to the field homogeneity for the scanners,
making the inter- and intra-scanner effects more apparent in such
regions.
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FIGURE 13

Within-subject coefficient of variation (CVws) for FA maps before and after harmonization. (A) CVws intensity values across the original and
harmonized data (NeuroCombat, NeuroCombatScanner, and LongCombat), computed both ROI- and voxel-wise, for the Skyra intra-scanner
comparison (Skyra test vs. Skyra retest); (B) for the PrismaFit intra-scanner comparison (PrismaFit test vs. PrismaFit retest); (C) for the Skyra-PrismaFit
inter-scanner comparison (Skyra test vs. PrismaFit test) and (D) change in CVws for the inter-scanner comparison (Skyra test vs. PrismaFit test).

FIGURE 14

Between-subject coefficient of variation (CVbs) for FA maps before and after harmonization. (A) CVbs intensity values across the original and
harmonized data (NeuroCombat, NeuroCombatScanner, and LongCombat), computed both ROI- and voxel-wise, for the Skyra intra-scanner
comparison (Skyra test vs. Skyra retest); (B) change in CVbs (harmonized—original) for the Skyra intra-scanner comparison; (C) CVbs intensity values
across the original and harmonized data for the PrismaFit intra-scanner comparison (PrismaFit test vs. PrismaFit retest) and (D) change in CVbs
(harmonized—original) for the PrismaFit intra-scanner comparison.

The scan-rescan variability observed in our study, both within
and across scanners, compares well with observations previously
reported for diffusion metrics in healthy volunteers (Acheson et al.,
2017; Grech-Sollars et al., 2015; Kamagata et al., 2015; Prohl
et al., 2019; Shahim et al., 2017; Zhou et al., 2018). Literature
on harmonization multi-site dMRI datasets has demonstrated a
non-uniform variability across the structure of the brain white

matter, with changes up to 5% in diffusion metric maps of
major pathways in the brain (Nencka et al., 2018; Pinto et al.,
2020; Vollmar et al., 2010). Moreover, multi-scanner multi-shell
diffusion data has been investigated in studies using traveling
subjects (Kurokawa et al., 2021). In those studies, it was identified
that inter-scanner systematic differences represent a risk of bias
in directly comparing datasets obtained from different scanners.
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FIGURE 15

Intraclass Correlation Coefficient (ICC) for FA maps before and after harmonization. (A) ICC intensity values across the original and harmonized data
(NeuroCombat, NeuroCombatScanner, and LongCombat), computed both ROI- and voxel-wise, for the Skyra intra-scanner comparison (Skyra test
vs. Skyra retest); (B) for the PrismaFit intra-scanner comparison (PrismaFit test vs. PrismaFit retest); (C) for the Skyra-PrismaFit inter-scanner
comparison (Skyra test vs. PrismaFit test) and (D) Change in ICC for the inter-scanner comparison (Skyra test vs. PrismaFit test).

When evaluating the coefficient of variation between subjects, an
inter-scanner variation of 7.7% was obtained in the WM, which is
similar to the results presented on Figure 6B, in which significant
inter-scanner variation of < 5% were identified. Such inter-scanner
variabilities in diffusion metrics maps are in the same order as
biological changes due to pathologies.

In previous studies, intra-scanner variations have been
demonstrated to exhibit a degree of variability comparable
to the differences observed between patients with mild and
moderate traumatic brain injuries, specifically in the diffusion
metric maps of the corpus callosum (Kumar et al., 2009).
This suggests that the inherent fluctuations within a single
scanner can mirror the degree of variability typically seen when
comparing clinical populations with differing levels of brain
injury severity. Such similarities highlight the potential challenges
in distinguishing between physiological or pathological changes
and technical artifacts in neuroimaging studies. Consequently,
it is critical to carefully consider intra-scanner variations when
interpreting diffusion metrics, particularly in clinical populations
where subtle differences in brain structure may be present.
Moreover, for dementia patients compared to controls, there
has been evidence that longitudinal disease-related changes are
similar to site variabilities (Mahoney et al., 2015). Based on
consistent findings, inter-scanner diffusion MRI measurement
presents variability challenges in large, multi-center studies (Tax
et al., 2019).

The intra- and inter-scanner variations in the non-harmonized
diffusion metric maps that were found in the current study
align with these findings and demonstrate the need for data
harmonization to remove the “TestRetest” and “Scanner”
effects, so as to improve data comparability and foster the
detection of true biological effects. The evaluated diffusion
metrics (FA, MD, AD, RD, MK, AK, and RK) demonstrated

a reduction of scanner effect after harmonization. This agrees
with results of previous studies applying NeuroCombat to a
cross-sectional dataset (Fortin et al., 2017) and LongCombat
to both cross-sectional and longitudinal diffusion data (Beer
et al., 2020; Richter et al., 2022). We extended the evaluations
from previous studies by implementing NeuroCombat
and LongCombat harmonization methods ROI-based and
voxel-wise in the test-retest cross-scanner B-Q MINDED
dataset.

When evaluating the intra-scanner effects after harmonization
(Figures 9, 10), it is noticeable that the ROI- and voxel-wise
implementations of NeuroCombat were effective in removing the
TestRetest significant factor on the diffusion metric maps, while
NeuroCombatScanner and LongCombat implementations failed
to remove the significance in the intra-scanner differences for
all WM regions. NeuroCombatScanner and LongCombat offer
different strategies for harmonizing diffusion MRI data across
scanners and sessions, but their handling of intrascanner variation,
particularly in test-retest scenarios, can lead to unfulfilling intra-
scanner harmonizing outcomes. NeuroCombatScanner combines
test and retest data from the same scanner while including subject
ID as a biological covariate. However, if the model treats test and
retest scans from the same individual as independent—essentially
as different subjects—then it may fail to account for within-subject
variation, potentially misattributing intrascanner effects to inter-
subject differences. As a result, true test-retest variability that arises
from non-biological factors (e.g., subject motion, fatigue, scanner
drift) might not be effectively removed. In contrast, LongCombat
is explicitly designed to model repeated measurements on the
same subject across time points. It assumes that intra-scanner
differences reflect biological changes occurring between sessions
rather than technical noise or behavioral variability. Consequently,
LongCombat does not correct for such intra-subject differences,
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FIGURE 16

Heatmap for the p-values obtained from the lme model on the LongCombat ROI FA maps.

under the assumption that they are biologically meaningful—an
assumption that may not always hold in short-term or test-
retest studies where behavioral or scanner-related factors may
dominate.

Moreover, the results of our evaluation of the inter-scanner
effects after the implementation of the harmonization algorithms
(Figures 11, 12), demonstrate that the ROI- and voxel-wise
implementation of LongCombat were optimal in the removal of the
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FIGURE 17

Graphical visualization of all LongCombat ROI FA intensities for Superior Fronto Occipital Fasciculus - Left (SFOF) across the subjects ages, color
coded by sex (male in red and female in blue).

significant scanner effects. In comparison, the NeuroCombat and
NeuroCombatScanner approaches removed the scanner factor for
some WM regions, but not all, demonstrating to be sub-optimal in
comparison to LongCombat for the diffusion dataset under study.
Both NeuroCombat methods yielded almost identical results on all
diffusion metric maps.

The evaluation of within-subject variability using CVws
(Figure 13) provided insight into how harmonization impacts
measurement consistency in diffusion MRI. Our results
demonstrated that both NeuroCombat and NeuroCombatScanner
generally reduced or maintained CVws in intra-scanner
comparisons, particularly when applied ROI-wise. This suggests
that these harmonization approaches are effective at preserving
within-subject consistency across repeated measures—a critical
requirement for robust diffusion studies (Fortin et al., 2017;
Pinto et al., 2020). In contrast, LongCombat appeared to
increase variability, particularly at the voxel level - a somewhat
counterintuitive and concerning outcome for a harmonization
method. This effect may stem from LongCombat’s more aggressive
modeling of longitudinal variance, which, while designed to
account for within-subject changes over time, could inadvertently
amplify noise when applied to datasets where minimal biological
change is expected between sessions. These findings underscore
the importance of aligning harmonization strategies with the
underlying characteristics of the data, especially in studies where
stability across timepoints is anticipated. Moreover, these findings
are consistent with prior studies noting that overly aggressive
harmonization can inadvertently amplify local noise or suppress
meaningful signal variation (Beer et al., 2020). Notably, the fornix
(FX) emerged as a region with high sensitivity to harmonization
effects, likely reflecting its small size and higher susceptibility to
registration and partial volume errors.

Maintaining between-subject biological variability is crucial
when applying harmonization to datasets used in group-level
comparisons or machine learning applications. Our CVbs analysis
(Figure 14) showed that all harmonization methods preserved

between-subject variance across scanners, with only minor
deviations from the original data, especially in the voxel-wise
results. This outcome supports the intended goal of methods
like ComBat—to remove unwanted scanner-related variance while
preserving biologically meaningful differences (Fortin et al.,
2018). The subtle changes in regions like the fornix (FX), left
tapetum (TP-L), and left cingulum hippocampus (CH-L) suggest
some regional susceptibility to harmonization-induced distortions,
potentially due to anatomical variability or low SNR in these tracts.
However, the minimal impact across most regions supports the
use of ComBat-based harmonization for studies requiring reliable
inter-individual comparisons in healthy populations with limited
biological variance.

The intraclass correlation coefficient (ICC) provides a
composite measure of both within- and between-subject variability,
and is widely used to assess test-retest reliability in neuroimaging
(Luque Laguna et al., 2020). In our study (Figure 15), ICC values
remained stable or slightly decreased following harmonization with
NeuroCombat and NeuroCombatScanner, suggesting that these
methods effectively retained the reliability of individual differences
across sessions and scanners. However, LongCombat consistently
reduced ICCs, particularly in inter-scanner comparisons, which
may reflect its stronger assumptions about biological change over
time—assumptions less applicable in short-interval test-retest
designs. The pronounced drop in ICC within the fornix (FX)
under LongCombat further highlights this region’s vulnerability
and aligns with prior reports that some deep white matter tracts
are more prone to measurement instability (Bastiani et al.,
2019). Overall, these results suggest that while ComBat-based
harmonization improves data comparability, careful consideration
of region-specific effects and harmonization model assumptions is
essential, especially in multi-site and longitudinal designs.

The six evaluated Combat-based harmonization algorithms
(NeuroCombat, NeuroCombatScanner, and LongCombat, ROI-
based and voxel-wise) demonstrated comparable performance
across different research contexts, with their effectiveness largely
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dependent on the specific research question at hand. From a
practical standpoint, their implementation can be considered
straightforward, particularly from a workflow perspective, as these
algorithms are associated with a relatively low risk of technical
errors. Based on our comprehensive evaluation, we recommend
the use of NeuroCombat for cross-sectional studies that involve
multi-site and/or multi-scanner data, as well as for intra-scanner
test-retest evaluations, where harmonization of scanner variability
is crucial. In contrast, LongCombat is more suited for longitudinal
studies involving data collected across different sites and/or
scanners, where temporal consistency and the alignment of
longitudinal data are key priorities.

The strengths of our study include evaluating the same
subjects for intra- and inter-scanner effects, allowing for a direct
comparison of harmonization impacts. The reference point is the
data collected from each subject imaged twice on the same scanner,
while the comparison involves the harmonized data from the
same subject scanned on two different machines. Additionally,
in our study, we systematically assessed performance across a
range of diffusion metrics, using both voxel- and ROI-level
harmonization techniques to provide a comprehensive evaluation.
Our findings indicate that the outcomes of ROI-based and voxel-
wise harmonization approaches were strikingly similar, suggesting
that either method can be employed effectively depending on
the specific objectives of the research. However, there are key
considerations that differentiate the two approaches. The voxel-
wise approach, while capable of harmonizing at a finer level of
detail, carries a higher risk of registration errors, particularly when
applying the harmonization directly to the diffusion map. This can
introduce variability that may affect the accuracy of the results.
On the other hand, the ROI-based approach is generally easier
to implement, as a single value can represent an entire region,
which simplifies the process. However, this method does not
harmonize the diffusion map at a voxel level, limiting the ability
to make comparisons across different white matter (WM) regions.
Given these trade-offs, we recommend that researchers choose
the harmonization approach that aligns best with the specific
requirements of their study. Factors such as the desired spatial
resolution, the particular regions of interest, and the sensitivity
to inter-subject variability should all be carefully considered when
making this decision. Researchers should also weigh the potential
for registration errors in the voxel-wise approach vs. the simplified
implementation but reduced comparison capabilities of the ROI-
based method.

Furthermore, since repeated scans of the same subject were
conducted on the same day, it can be reasonably assumed that
no significant biological changes occurred between the scans. As
a result, any observed intra-subject variability can be attributed
solely to inter-scanner effects, minimizing the potential for
confounding factors related to biological fluctuations. In addition,
the application of two complementary analytical methods to the
diffusion data yielded consistent findings, further strengthening
the reliability and validity of our conclusions. This convergence
of results across different methodological approaches underscores
the robustness of our analysis and supports the interpretation of
the observed effects as reflective of true scanner-related variability
rather than underlying biological changes. Moreover, subject-
related factors can significantly influence the dMRI measurements,
potentially confounding results, especially in multi-scanner studies.

One key factor is subject motion, which can distort diffusion
metrics by introducing artifacts that obscure the true underlying
signal. First-time participants may experience heightened anxiety
or nervousness during their initial scan, leading to increased
motion or physiological changes that affect image quality. In
contrast, during a second scan—whether on the same day or
at a different time—subjects may feel more comfortable and
relaxed, resulting in improved compliance and reduced motion.
Conversely, the timing and duration of scanning sessions can
also lead to fatigue, restlessness, or impatience, particularly if the
second scan occurs later in the session or in a different scanner,
potentially increasing motion or decreasing attention. These
behavioral and psychological factors underscore the importance of
considering subject state and scan order when designing studies
and interpreting dMRI extracted data.

Our analysis has two key limitations. First, the relatively small
sample size may reduce statistical power, limiting our ability to
detect subtle effects of harmonization. Second, the evaluation
was restricted to two MRI scanners from the same manufacturer
(Siemens Healthineers), which may have constrained the range
of scanner-related variability and limited the generalizability of
our findings to more heterogeneous multi-site datasets. While
harmonization methods aim to correct scanner-related differences,
the magnitude and nature of these differences can vary substantially
depending on the source. In particular, inter-scanner variability
is often more pronounced when comparing scanners from
different manufacturers, due to underlying differences in hardware
components, such as gradient systems and RF coils, as well as
proprietary image reconstruction pipelines (Lee et al., 2019). As
our study did not include scanners from other vendors, the
generalizability of our findings to more heterogeneous, multi-
manufacturer datasets remain uncertain, and future work should
explore the performance of harmonization approaches under these
more challenging conditions.

The limited sample size may also have reduced the statistical
power needed to identify small but meaningful effects, while
the inter-scanner variability (despite using scanners of the same
manufacturer) could have introduced additional differences in field
homogeneity, complicating the detection of finer improvements in
harmonization. These constraints underscore the need for future
studies to incorporate larger, more diverse datasets and ensure
greater standardization in scanner performance. Such efforts would
help enhance the sensitivity and precision of results in structural
data harmonization, particularly when dealing with subtle or
complex neuroimaging features.

Furthermore, potential technical confounders may have
influenced the measurement of diffusion metrics. One such
confounder is the possibility of a mismatch between the diffusion
images and the co-registered structural template, which could
introduce spatial inaccuracies, thereby affecting the reliability of
the diffusion measurements. Additionally, scanner drift, referring
to gradual changes in scanner performance over time, was not
accounted for in the data analysis across subjects. This omission
may have influenced both within-scanner and across-scanner
follow-up measurements in various ways, potentially leading to
inconsistencies or distortions in the data. However, it is important
to note that no significant scanner updates occurred during
the study period, and previous research by Vos et al. (2017)
and Jalnefjord et al. (2024) have suggested that the impact of
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scanner drift is generally minimal (2–5%) but comparable to
the intra- and inter-scanner variations observed in this study.
Nevertheless, future analyses would benefit from incorporating
strategies to correct for scanner drift and ensure more precise
alignment between diffusion images and structural templates.
By addressing these factors, potential sources of error could be
minimized, thereby enhancing the accuracy and robustness of the
findings.

Additionally, it is essential to interpret the performance
of LongCombat within the appropriate context. Most cross-
sectional studies involve only a single scan per subject, making
the application of LongCombat unfeasible in such cases. While
many longitudinal studies provide either across-scanner or within-
scanner data for each participant, it is relatively rare to find
datasets that include both types of data, which could potentially
limit the effectiveness of LongCombat in those contexts. In
contrast, the other ComBat-based algorithms tested do not rely on
repeated measures per subject, suggesting that their performance
estimates may be more broadly applicable to a wider range
of study designs.

It is important to note that the B-Q MINDED dataset
comprises healthy adult participants with a narrow age range
and balanced sex distribution. While this controlled design
is well-suited for assessing scanner-related variability, it
inherently limits natural biological variation. Consequently,
the biological covariate preservation analysis revealed mostly
non-significant effects, with only one age-by-sex interaction
persisting after harmonization. This result is expected given
the cohort’s demographic homogeneity and underscores a
key limitation: the dataset is not optimal for evaluating the
preservation of complex biological signals, such as disease effects,
in harmonization workflows.

5 Conclusion

In conclusion, the structural integrity of brain white matter
can be effectively assessed using quantitative diffusion metric
maps derived from both intra- and inter-scanner datasets. Given
the inherent variability across scanners and imaging protocols,
it is critical to explore whether harmonization of diffusion
metrics can improve the accuracy and consistency of evaluations
across different scanners. This study provides a comprehensive
assessment of ComBat-based harmonization algorithms designed
to minimize intra- and inter-scanner variability in diffusion
metric maps (including FA, MD, AD, RD, MK, AK, and
RK). To this end, we evaluated the following harmonization
strategies: (1) NeuroCombat voxel, (2) NeuroCombat ROI, (3)
NeuroCombatScanner voxel, (4) NeuroCombatScanner ROI, (5)
LongCombat voxel, and (6) LongCombat ROI. These methods
were assessed using the B-Q MINDED dataset, a benchmark
MRI resource comprising diffusion data from 38 age- and sex-
matched healthy participants. However, given the complexity of
scanner-related variability and the diversity of harmonization
approaches, we refrain from drawing a definitive conclusion
regarding the superiority of any single method. This is primarily
due to the absence of a ground truth and the sensitivity of
performance metrics to specific preprocessing choices and

evaluation frameworks. Instead, we emphasize the value of
this dataset in facilitating further research and benchmarking,
acknowledging that harmonization performance may depend
on specific use cases and analytical goals. Our assessment
utilized the B-Q MINDED dataset, a benchmark MRI database
comprising diffusion data from 38 healthy subjects, matched
by age and sex, providing a robust foundation for examining
harmonization methods.

The results of this study demonstrated that both NeuroCombat
and LongCombat algorithms, when applied in either ROI-based
or voxel-wise configurations, significantly reduce variability in
the diffusion metrics, bringing them to levels comparable to the
inter-subject scan-rescan variability observed in repeated scans
using the same scanner and protocol. Furthermore, our analysis
highlighted the considerable impact of inter-subject variability as
a major contributor to overall variability in the diffusion maps,
underscoring the need for harmonization techniques that account
for both technical and biological variability.

The broad evaluation of these harmonization approaches
provides valuable insights for researchers seeking to harmonize
diffusion data across multiple sites and scanners. In particular, the
findings will aid in selecting the most appropriate harmonization
methods for future multi-site studies, including those involving
traveling subjects. This is of particular importance for clinical
research, where the application of these algorithms can play
a critical role in assessing brain structural changes associated
with various neurological pathologies, such as traumatic
brain injury, dementia, and neurodegenerative disorders.
By minimizing the confounding effects of scanner-specific
biases, harmonization techniques like those evaluated in this
study promise to enhance the reliability and reproducibility of
diffusion-based biomarkers.

Ultimately, the implementation of these harmonization
algorithms will not only improve the accuracy of cross-site
comparisons but also facilitate the pooling of data from multiple
sites, enabling large-scale studies that could significantly advance
our understanding of brain health and disease. Moreover, these
improvements in data consistency are expected to contribute to
more robust clinical decision-making and better patient outcomes
in the context of brain-related disorders.
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