
fnins-19-1591398 June 17, 2025 Time: 21:12 # 1

TYPE Original Research
PUBLISHED 20 June 2025
DOI 10.3389/fnins.2025.1591398

OPEN ACCESS

EDITED BY

June Sic Kim,
Seoul National University, Republic of Korea

REVIEWED BY

Giuseppe Varone,
Harvard Medical School, United States
Yintang Wen,
Yanshan University, China
Zikun Cai,
Yango University, China

*CORRESPONDENCE

Jialin Xu
xujialin@nimte.ac.cn

Guokun Zuo
moonstone@nimte.ac.cn

Jiyu Zhang
zhangjiyu@roboct.com

RECEIVED 11 March 2025
ACCEPTED 19 May 2025
PUBLISHED 20 June 2025

CITATION

Ying A, Lv J, Huang J, Wang T, Si P, Zhang J,
Zuo G and Xu J (2025) A feature fusion
network with spatial-temporal-enhanced
strategy for the motor imagery of force
intensity variation.
Front. Neurosci. 19:1591398.
doi: 10.3389/fnins.2025.1591398

COPYRIGHT

© 2025 Ying, Lv, Huang, Wang, Si, Zhang, Zuo
and Xu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

A feature fusion network with
spatial-temporal-enhanced
strategy for the motor imagery of
force intensity variation
Ankai Ying1,2,3, Jinwang Lv1,2,3, Junchen Huang1,2,3, Tian Wang4,
Peixin Si2,3, Jiyu Zhang4*, Guokun Zuo1,2,3,5* and Jialin Xu1,2,3,5*
1Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China, 2Ningbo
Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang,
China, 3Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China, 4Hangzhou RoboCT
Technology Development Co., Ltd., Hangzhou, China, 5Ningbo College of Materials Engineering,
University of Chinese Academy of Sciences, Beijing, China

Introduction: Motor imagery (MI)-based brain-computer interfaces (BCI)

offers promising applications in rehabilitation. Traditional force-based MI-BCI

paradigms generally require subjects to imagine constant force during static or

dynamic state. It is challenging to meet the demands of dynamic interaction with

force intensity variation in MI-BCI systems.

Methods: To address this gap, we designed a novel MI paradigm inspired by

daily life, where subjects imagined variations in force intensity during dynamic

unilateral upper-limb movements. In a single trial, the subjects were required to

complete one of three combinations of force intensity variations: large-to-small,

large-to-medium, or medium-to-small. During the execution of this paradigm,

electroencephalography (EEG) features exhibit dynamic coupling, with subtle

variations in intensity, timing, frequency coverage, and spatial distribution, as

the force intensity imagined by the subjects changed. To recognize these fine-

grained features, we propose a feature fusion network with a spatial-temporal-

enhanced strategy and an information reconstruction (FN-SSIR) algorithm.

This model combines a multi-scale spatial-temporal convolution module

with a spatial-temporal-enhanced strategy, a convolutional auto-encoder for

information reconstruction, and a long short-term memory with self-attention,

enabling the comprehensive extraction and fusion of EEG features across

fine-grained time-frequency variations and dynamic spatial-temporal patterns.

Results: The proposed FN-SSIR achieved a classification accuracy of

86.7% ± 6.6% on our force variation MI dataset, and 78.4% ± 13.0% on the BCI

Competition IV 2a dataset.

Discussion: These findings highlight the potential of this paradigm and algorithm

for advancing MI-BCI systems in rehabilitation training based on dynamic force

interactions.
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brain-computer interfaces, force intensity variation, spatial-temporal-enhanced
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1 Introduction

Motor imagery (MI) is a paradigm within the Brain-Computer
Interface (BCI) framework, where users imagine body movements
to activate specific brain regions (Brusini et al., 2021). When
subjects perform MI, movement-related electrical activity emerges
in the brain, giving rise to a range of neural responses (Yuan
et al., 2010). Neural responses associated with motor intention
generation reflect dynamic brain activity changes. Specifically, these
responses serve as key electroencephalography (EEG) features for
the analysis and interpretation of motor intentions, such as event-
related desynchronization (ERD) and movement-related cortical
potentials (MRCP) (Chaisaen et al., 2020; Savić et al., 2020). ERD is
characterized by increased activity in relevant brain regions during
motor imagery, which manifests as a decrease in EEG power within
the alpha and beta frequency bands (Meirovitch et al., 2015). MRCP
reflects the brain’s preparatory activity in the early stages before
movement execution, characterized by gradual negative shifts in
low-frequency EEG potentials (Zhang et al., 2024).

Motor imagery-based brain–computer interface (MI-BCI)
systems translate users’ imagined movements into control signals,
enabling users to control devices for tasks such as communication,
assistance, and rehabilitation (Frisoli et al., 2012; Baniqued et al.,
2021; Saha et al., 2021; Altaheri et al., 2023a). Such systems
play a crucial role in stroke rehabilitation, with brain-controlled
rehabilitation robots being one of its key applications.

The motor intentions of patients are recognized by MI-BCI
systems in real time. MI-BCI systems control rehabilitation robots
to execute corresponding actions, thereby facilitating the recovery
of motor functions in patients. In MI-BCI systems, simple limb
movement imagery tasks are commonly used, which typically
instruct users to imagine movements with their left hand, right
hand, or feet (Neo et al., 2021; Cristancho Cuervo et al., 2022;
Rithwik et al., 2022; Ma et al., 2023). During the execution of simple
limb motor imagery tasks, EEG signals primarily reflect activation
in the sensorimotor areas, which are associated with movement
planning and execution (Yi et al., 2013). However, such tasks
typically lead only limited distinguishable features, as the recorded
EEG signals mainly exhibit spatial pattern differences, such as
stronger ERD in the right hemisphere during left-hand imagery
and in the left hemisphere during right-hand imagery. These spatial
patterns primarily reflect which limb is imagined as moving, rather
than how the movement is imagined to occur, such as with a specific
speed or force. Consequently, MI-BCI systems using such tasks can
usually perform only basic directional commands such as “left” or
“right.” However, effective rehabilitation requires more than the
control of movement direction; it also involves the interaction of
dynamic force between the robot and patient (Mohebbi, 2020).
Given the variability in the patients’ muscle strength and motor
abilities, it is essential for the robot to adapt its assistive force to
meet individual needs. It is crucial to design a brain-controlled
rehabilitation robot system based on motor imagery with dynamic
force for the recovery of motor abilities (Liang et al., 2024).
Accordingly, identifying the patients’ need for assistive force is
crucial for MI-BCI systems. This facilitated the robot’s control of
the force in the direction of movement.

In recent years, researchers have introduced force parameters
in MI tasks. MI paradigms incorporating static force with a right-
hand grip were designed, introducing multiple levels of force to
analyze the variability in EEG features (Wang K. et al., 2017;
Li et al., 2023; Yao et al., 2024). Differences in EEG features
were found across the time, frequency, and spatial domains when
subjects performed these paradigms. Traditional machine-learning
algorithms have been designed and applied to classify these features
for BCI control. Li et al. introduced two levels of force [5 and 40%
maximum voluntary contraction (MVC)] and found differences in
EEG in the frequency and spatial domains using power spectrum
analysis and coherence analysis. Using a common spatial pattern
(CSP) and support vector machine (SVM), they extracted and
classified with an average classification accuracy of 81% (Li et al.,
2023). Wang et al. used two levels of force (10 and 30% MVC).
They analyzed the differences in ERD features in the frequency
and spatial domains and the variations in MRCP in the temporal
domain. ERD features were extracted using CSP, and the combined
features of ERD and MRCP were classified by SVM, with an average
classification accuracy of 78.3% (Wang K. et al., 2017). Bo et al.
introduced four levels of force (15, 30, 45, and 60% MVC). Eight
entropy metrics were utilized to classify the frequency-domain
features, achieving an average classification accuracy of 70% (Yao
et al., 2024). Distinct from MI paradigms with static force, Sheng
et al. designed an MI paradigm with different force levels in
a unilateral upper-limb dynamic state. They proposed a multi-
scale temporal convolutional network with attention mechanism
algorithm to recognize ERD features, with an average classification
accuracy of 86.4% (Sheng et al., 2023). Nevertheless, existing
paradigms maintain constant force within a single trial, limiting
their applicability to natural interactions. In daily life scenarios,
force tends to vary during movement, aligning more closely with
natural interactions. This kind of natural interaction is crucial for
brain-controlled rehabilitation robot systems, as it facilitates more
realistic motor engagement.

By introducing force parameters into motor imagery tasks, the
number of distinguishable feature classes in MI-BCI systems can
be expanded. Different force levels within the same movement can
elicit distinguishable EEG patterns that differ subtly in spectral,
spatial, and temporal domains (Wang K. et al., 2017). However,
constant force paradigms from previous studies are not well-suited
for MI involving dynamic force in brain-controlled rehabilitation
robot systems. Moreover, most of previous studies employed
traditional machine learning approaches, with only a few exploring
deep-learning (DL)-based algorithms. Machine learning methods
require features to be selected manually with considerable expert
knowledge, thereby limiting classification performance (Rashid
et al., 2020; Altaheri et al., 2023b; Ahuja and Sethia, 2024; Khosravi
et al., 2024). Due to the nonlinear and high-dimensional nature
of EEG signals, machine learning methods may be less efficient
and face challenges in capturing subtle difference in EEG patterns.
In contrast, DL-based algorithms extract features directly from
raw EEG signals, enabling end-to-end learning from input to
classification without the need for manually extracting features
(Dose et al., 2018; Roy et al., 2019; Kim et al., 2023; Hu et al.,
2024). They are well-equipped to identify EEG patterns, but
some limitations remain. Li et al. classified motor imagery EEG
signals using a hybrid network combining a one-dimensional
Convolutional Neural Network (1D CNN) and a Long Short-Term
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Memory Network (LSTM). The algorithm achieves an average
accuracy of 87% for the test set (Li et al., 2022). However, the
one-dimensional CNN-LSTM structure focuses only on feature
extraction in a single direction, mainly along the temporal
direction, which may ignore useful information from the spatial
domain. Wang et al. designed a two-dimensional CNN-LSTM for
recognizing motor intentions, which converted the EEG signals
into time series segments, extracted the connectivity features
between the different EEG electrodes in each segment using a two-
dimensional CNN (2D CNN), and finally sent the feature vectors to
an LSTM for training; the algorithm achieved an average accuracy
of 93.3% on the test set (Wang et al., 2023). The above methods
rely on single-scale kernels or single-branch structures, which limits
their ability to capture subtle variations in EEG patterns across
spectral, spatial, and temporal domains.

To address this challenge, recent studies have introduced multi-
branch neural network architectures that are better suited for
capturing subtle EEG pattern variations. Liu et al. employed a filter-
bank structure combined with multi-scale temporal convolutions
and spatial filtering to extract diverse time-frequency and spatial
features (Liu et al., 2023). It achieved 79.17% accuracy on a
four-class classification task. Qin et al. proposed a lightweight
multi-branch network that integrates multiple attention modules
to eliminate redundant frequency information and enhance the
extraction of fine-grained spatial features (Qin et al., 2024).
This method achieved superior classification accuracy compared
to existing approaches on multiple MI datasets. Sheng et al.
proposed a model for recognizing force MI tasks, which integrates
an attention mechanism with a multi-scale CNN (Sheng et al.,
2023). The architecture extracts features from time, frequency,
and spatial domains with finer granularity. Its attention module
highlights key components, enhancing sensitivity to subtle EEG
differences. While these models improve time-frequency and
spatial feature representation, EEG signals are still represented in
a two-dimensional (2D) representation, with electrodes arranged
on one axis and time steps on the other.

However, the 2D EEG representation inevitably leads to the
loss of important spatial information, as it does not capture
the true topological relationships among neighboring electrodes.
Wang et al. proposed a multi-branch depthwise separable 2D
convolutional network specifically designed to process 3D EEG
representations (Wang X. et al., 2024). However, adapting 2D
convolutions to 3D EEG data limits the model’s ability to fully
capture spatial relationships among electrodes. Zhao et al. proposed
a three-dimensional EEG representation combined with a multi-
scale 3D convolutional neural network, achieving simultaneous
extraction of time-frequency and spatial features while enhancing
the spatial information (Zhao et al., 2019). It achieved superior
accuracy on four-class MI classification, with enhanced inter-
subject robustness. Furthermore, these methods primarily rely
on ERD-based features, which restricts the diversity of learned
representations. Beyond ERD, MRCP offer another dimension of
motor-related EEG features. Given its low-frequency, time-locked
nature, MRCP complement ERD by capturing different aspects of
brain activity during motor imagery.

Therefore, we designed an MI paradigm for force intensity
variations during dynamic movements of the unilateral upper-
limb. In a single trial, subjects imagined variations in the force

intensity of limb movements. We analyzed the time, time-
frequency, and time-frequency-space domain features of the EEG
signals induced by this paradigm. The ERD features of the EEG
signals exhibit dynamic time-based changes in spatial distribution
and frequency range, which influenced by variations in force
intensity. To address this complexity, we introduced a multi-scale
spatial-temporal convolutional network module that learns the
spatial-temporal-enhanced features of EEG signals using three-
dimensional convolutions and electrode rearrangement. The EEG
noise of specific electrodes was reduced by a convolutional auto-
encoder module, which effectively reconstructed low-frequency
information (MRCP-based features) and enriched the recognizable
features of the EEG signals. Finally, to address individual
differences among subjects during the MI tasks, an LSTM
combined with a self-attention mechanism was adopted to
adaptively fuse the extracted features. This integrated architecture
enhances the model’s capacity to capture fine-grained variations
in EEG patterns, ultimately improving single-trial classification
performance and supporting the development of MI-BCI systems
capable of dynamic force interaction.

2 Materials

2.1 Dataset 1

2.2.1 Subjects
An advertisement seeking participants was posted at the

Ningbo Institute of Material Technology and Engineering,
outlining the basic details of the study, including the purpose,
experimental procedures involving motor imagery tasks, and
participation requirements. Participants were informed that they
would receive a compensation of 50 CNY per hour as a
reimbursement for their time and effort, with a minimum
participation duration of 3 h.

Twenty subjects participated in the experiment. None of the
participants had a history of neurological or movement disorders.
None of them had prior experience with EEG or BCI. During the
preprocessing, data from three participants were excluded due to
poor EEG data quality (e.g., severe drift and numerous muscle
artifacts). Therefore, EEG data from 15 participants (8 males and 7
females, right-handed, mean age 23.87 ± 1.85 years) were retained
for analysis. Before the experiment, all subjects were informed of
the experimental procedures and signed an informed consent form
for the experimental study. In addition, a 1-week training session
was arranged to familiarize the participants with the experimental
procedures (Zhang et al., 2011). All experiments were conducted
in line with the principles of the Declaration of Helsinki, and the
study was approved by the Ethic Committee of Ningbo Institute
of Material Technology and Engineering, Chinese Academy of
Sciences (protocol number:2024021800005).

2.2.2 Experimental procedure
The entire experiment was conducted in an electromagnetically

shielded room to block electromagnetic signals and background
noise interference, ensuring the accuracy of the experimental
results. The subjects sat in a comfortable armchair in front of a
computer screen, with their hands resting naturally on the armrests.
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Before EEG recording, all subjects completed a brief training
session to become familiar with the experimental procedure and
motor imagery tasks. They were instructed on how to perform
MI and practiced several trials using the same visual cues as in
the formal experiment. Real-time guidance was provided by the
experimenter to ensure that all subjects accurately understood
the task. Training continued until subjects reported confidence in
performing the tasks as instructed.

Based on the action of pouring water in human daily life, we
designed an MI paradigm in which subjects imagined variations
in force intensity during dynamic movements of the unilateral
upper-limb in a single trial. In this experiment, we selected the
right upper-limb as the unilateral limb. Three combinations of
force intensity variations were introduced: large-to-medium force,
large-to-small force, and medium-to-small force. This enhanced the
variety of categories of MI thinking. The MI scenarios correspond
to pouring water from a thermal pitcher into a glass teapot and then
from the glass teapot into a cup (large-to-medium force, LMF),
pouring water from a thermal pitcher into a cup, lifting the cup
(large-to-small force, LSF), and pouring water from a glass teapot
into a cup and then lifting the cup (medium-to-small force, MSF).
The levels of force intensity in this paradigm were designed based
on the amount of water in the lifted container, making it easier for
the subjects to imagine.

Each subject was required to complete nine rounds of the
experiments, with each round consisting of 14 individual trials.
Hence, there were a total of 126 trials (42 trials each for the LMF,
LSF, and MSF, respectively). The label organization consists of three
class labels corresponding to the three MI tasks: LMF (class 0),
LSF (class 1), and MSF (class 2). Each trial consisted of two task
types: motor execution (ME) and MI. The purpose of this design
involving ME followed by MI in the same trial was to enhance
participants’ recall of muscle activation sensations after the ME task
(Fukumoto et al., 2024). This helps them to perform accurate force
imagery. The subjects were given a 5–10 min rest after each round
of the experiment. The experimental flow is shown in Figure 1.
The MI task was divided into six periods with a total time of 20
s. The first period was the preparation period, where a fixed cross
appeared in the center of the computer screen for 2 s, with the
subjects remaining relaxed. The second and fourth time periods
were the force cue periods, in which the textual cue appeared for 2
s and the subjects remained relaxed without movement. The third
and fifth periods were the MI periods, in which the textual cues
disappeared from the screen, and the black screen lasted for 5 s. The
subject then executed the MI. The sixth period was the rest period,
in which the text “rest” appeared on the screen and lasted for 4 s,
and the subjects remained relaxed. The ME process is similar to
that of the MI process. The difference is that during the ME phase,
the corresponding animations are presented on the screen as cues
(Wang L. et al., 2017).

2.2.3 Data acquisition and preprocessing
EEG data were recorded using a Neuroscan digital EEG system

with a 64-channel Ag/AgCl electrode cap (Neuroscan Quik-Cap),
following the international 10–20 system. Additional monopolar
electrodes were placed at the left and right mastoids (M1, M2),
while two bipolar electrode pairs recorded vertical and horizontal
EOG (VEOG/HEOG) to detect eye movements and blinks. The
reference electrode (REF) was positioned at the top of the head,

and the ground electrode (GND) at the forehead (AFz). Signals
were amplified using a SynAmps2 amplifier with a gain setting of
2010, a 0.05–200 Hz bandpass filter, and a 50 Hz notch filter to
remove industrial frequency interference. The sampling rate was
1,000 Hz, and electrode impedance was maintained below 10 k� to
ensure signal quality.

EEG data preprocessing was performed using the EEGLAB
toolbox (v2023.0) (Delorme and Makeig, 2004). First, a 0.1–30 Hz
Finite impulse response (FIR) bandpass filter was applied to remove
low-frequency drift and high-frequency noise. Then, Common
Average Reference (CAR) rereferencing was performed to reduce
common noise interference. Horizontal (HEOG) and vertical
(VEOG) electrooculographic artifacts were removed to minimize
the impact of eye movements. The data were then downsampled to
100 Hz. Finally, a 12-second EEG segment was extracted from each
trial, encompassing the first MI phase (5 s), the second preparation
phase (2 s), and the second MI phase (5 s). Baseline correction was
applied using 1 second of data preceding the first MI phase.

2.2 Dataset 2

The BCI Competition IV 2a dataset is used in this paper,
a publicly available EEG dataset designed for MI classification
(Tangermann et al., 2012). It contains EEG recordings from nine
healthy subjects performing four MI tasks: imagining movements
of the left hand, right hand, both feet, and tongue. EEG signals
were recorded using 22 Ag/AgCl electrodes positioned according
to the 10-20 system, with three additional electrooculogram (EOG)
channels for eye movement monitoring. The signals were sampled
at 250 Hz, bandpass-filtered between 0.5 and 100 Hz, and notch-
filtered at 50 Hz. Each subject completed two sessions on different
days, with each session consisting of six runs and each run
containing 48 trials (in each session, each class had 72 trials). The
label organization consists of four class labels corresponding to the
four MI tasks: left hand (label 0), right hand (label 1), feet (label
2), and tongue (label 3). The first session serves as training data,
while the second is used for testing, making this dataset a standard
benchmark for MI-BCI research.

3 Methods

3.1 Event-related spectral perturbation

The Event-Related Spectral Perturbation (ERSP) is commonly
used to observe the event-related power variations of the EEG
signals in time and frequency domain (Yi et al., 2013). These power
variations correspond to the ERD/ERS phenomena generated in the
brain when subjects execute motor imagery (Wang Z. et al., 2024).
The formula is as follows:

ERSP
(
f , t
)
=

1
n
∑n

k = 1

(
Fk(f , t)2

)
Where n is the number of trails, and Fk(f , t) is the power spectral
density of kth trial at frequency f and time t. And in order to
quantify the ERD patterns, we take the start moment of MI task
(at the 4th second in Figure 1) as the time 0 s and –2 to 0 s
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FIGURE 1

The experimental procedure diagram indicates that, in a single trial, each participant needs to complete MI after ME. Three combinations of force
intensity variations (large to small force, large to medium force, medium to small force) corresponds to three scenarios of pouring water.

as the baseline period. Average ERSP values were calculated with
frequency ranging from 8 to 30 Hz and time ranging from –2 to
12 s. The contralateral motor control principle indicates that right-
hand activity corresponds to activation in the left motor cortex
(Pfurtscheller and Neuper, 2001). As our MI tasks focused on the
right hand, we selected the C3 electrode positioned over the left
motor cortex for analysis. Time-frequency maps from this electrode
were subsequently examined.

To further analyze ERD/ERS phenomena in the spatial domain
when performing LMF, LSF, and MSF tasks, the brain topographic
map was drawn based on the average ERSP values from 0 to 12 s
in alpha frequency band (8-13 Hz) and beta frequency band (13-
30 Hz). In order to reveal the patterns of power changes with time
and frequency in specific cortical regions during different tasks,
ERSP wave maps is drawn based on average ERSP values from 0
to12 s in the electrode C3.

Through the above time-frequency and spatial analysis
methods, the features of the EEG signals collected in this
experiment can effectively substantiate the validity of our paradigm.
This approach ensures that our paradigm accurately induces
brain activity and provides solid signal support for subsequent
algorithm design.

3.2 MI-EEG feature recognition algorithm

We proposed an algorithm to recognize the features of MI-
EEG signals, which is a feature fusion network with spatial-
temporal-enhanced strategy and information reconstruction (FN-
SSIR). The network structure diagram is shown in Figure 2, and the
network structure parameters are shown in Table 1. A multi-scale
spatial-temporal convolutional module (MSSTCN) with spatial-
temporal-enhanced strategy is employed to dynamically capture
local details and global trends of EEG features across time,
frequency, and spatial dimensions. Compact and meaningful low-
frequency information is effectively extracted and reconstructed by
a convolutional auto-encoder module (CAE). Then these features
are weighted and fused through an LSTM with self-attention

module (LSTM-SA), and classification was completed by a fully
connected layer.

3.2.1 MSSTCN module
Through the time-frequency analysis based on ERSP, we

discovered that with the reduction of force intensity in MI tasks, the
ERD phenomenon was gradually weakened, especially in duration
and frequency range. Additionally, brain topographic maps for
alpha frequency band showed that contralateral sensorimotor areas
of the brain were activated when the subjects performed MI tasks.
As it was a motor imagery of the right upper-limb, the activated
areas were concentrated around the C3 electrode. The degree
and extent of activation were also positively correlated with the
variations of force intensity. The features of EEG signals reflected
by the ERD were dynamic time-based change and interrelated in
multiple dimensions. Although these features can be extracted by
the single scale 2D CNN (Fu et al., 2024), it ignores the spatial
relationship between electrodes. As a result, the ability to extract
high-dimensional features is limited.

Consequently, we use the MSSTCN module with spatial-
temporal-enhanced strategy as the first part of the FN-SSIR
model. The module consists of two multi-scale spatial-temporal
convolution units. The parameters of the module structure are
shown in Table 1. The MSSTCN module can capture both
local details and global trends of EEG signals by combining
small and large convolutional kernels. Subtle differences in time-
frequency features near local electrodes can be detected by small
convolutional kernels. Whereas global dynamic change features
based on ERD across a broader range can be captured by
large convolutional kernels. As illustrated in Figure 3, the 2D
convolutional kernel slides along only two directions (time series
direction, one-dimensional electrode direction). Referring to the
electrode distribution of the brain topographic maps, the one-
dimensional time series on N electrodes were arranged to form
the electrode plane, according to the two-dimensional arrangement
of electrodes. We used the distance-based interpolation method to
fill vacant electrode in this plane (Courellis et al., 2016). The 3D
convolution (3D Conv) can slide in three directions (time series
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FIGURE 2

Network structure diagram. The feature fusion network with spatial-temporal-enhanced strategy and information reconstruction (FN-SSIR) consists
of three major modules: the MSSTCN module, the CAE module, and the LSTM-SA module.

direction, height direction and width direction of the plane), which
enhances the ability of capturing spatial-temporal information.
Define the input of this module to be X ∈ R1 × H × W × T with the
following formula:

X1
i = Convi (X) , i = 1 · · · 3

Xhide = H
(
Cat

(
X1

1,X
1
2,X

1
3
))

X2
i = Convi (Xhide) , i = 1 · · · 3

Xout = H
(
Cat

(
X2

1,X
2
2,X

2
3
))

where H is the height of the electrode plane, W is the width of the
electrode plane, T is the number of time points of the EEG data,
and H(·) is a composite layer consisting of four continuous units
as we defined. The four continuous processing units are the batch
normalization (BN) layer, the rectified linear unit (Relu) (Ioffe and
Szegedy, 2015), the average pooling layer, and the dropout layer.

3.2.2 CAE module
We found that there was a significant difference beginning

at 0.5–1.5 s after the onset of MI tasks, through analysis of
the temporal waveform. The corresponding waveform gets more
negative as the force intensity gets larger. Because MRCP is a low
frequency neural oscillations with a low signal-to-noise ratio, the
waveform features in a single trial are difficult to be effectively
extracted (Xu et al., 2014). Therefore, we used a convolutional auto-
encoder module to reconstruct information for noise reduction
of EEG signals in specific electrodes (FC3, FCZ, FC3, C3, CZ,

C4). In the encoder, key temporal information, including onset
time and duration related to motor imagery is gradually extracted
by multiple convolutional layers. The pooling layer reduces the
dimensionality to further extract information. This information is
reconstructed through transposed convolution (ConvTranspose)
in the decoder. We define the input as Xm ∈ RC × T . The formula is
as follows:

Xencoder = K (Conv2 (K (Conv1 (Xm))))

Xdecoder = ConvT2 (ReLU (ConvT1 (Xencoder)))

where C is the electrode, T is the number of time points of the EEG
data, and K is a composite layer consisting of two continuous units
as we defined. The two continuous units are the rectified linear unit
(Relu), and the max pooling layer.

3.2.3 LSTM-SA module
In the brain topographic maps of alpha frequency band across

segmented time periods, there are significant disparities in the
activation of contralateral sensorimotor areas among different
subjects when they imagined the variations in the force intensity
of limb movements. This variation may be attributed to individual
differences in the onset time and duration of motor imagery.
Therefore, an LSTM module combined with a self-attention
mechanism is adopted (Vennerød et al., 2021; Vaswani et al.,
2023). The module dynamically focuses on various segments of
the input sequence at each time step and adjust its attention
adaptively. The output features of the MSSTCN module and the
CAE module are weighted according to their importance along the
temporal dimension. Combining the memory capability of LSTM
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TABLE 1 The network structure parameters.

Module Type Layer Parameter Activation

Input Input

Reshape Reshape1

Reshape Reshape2

MSSTCN Convolution Conv3d1 (3,3,3) ReLU

Batch normalization BN1

Convolution Conv3d2 (5,5,5) ReLU

Batch normalization BN2

Convolution Conv3d3 (7,9,7) ReLU

Batch normalization BN3

Average pooling Apool1 (3,3,5)

Convolution Conv3d4 (3,3,3) ReLU

Batch normalization BN4

Convolution Conv3d5 (5,5,5) ReLU

Batch normalization BN5

Convolution Conv3d6 (7,9,7) ReLU

Batch normalization BN6

Average pooling Apool2 (3,3,10)

Droput Drop p= 0.5

CAE Convolution Conv2d1 (1,3) ReLU

Max pooling Mpool1 (1,2)

Convolution Conv2d2 (1,3) ReLU

Max pooling Mpool2 (1,2)

Transposed convolution ConvTranspose1 (1,4) ReLU

Transposed convolution ConvTranspose2 (1,4) Sigmoid

LSTM-SA LSTM LSTMA 40

LSTM LSTMB 80

Self-attention Self-attention 120

Flatten Flatten

Parameter p is the dropout rate.

and the global information processing capacity of self-attention, it
can capture and utilize long-range dependency information more
effectively. The formula is as follows:

Xout = Flatten
(
Selfatt (LSTM (Xi))

)
, i = 1, 2

where X1 and X2 are the outputs of the multi-scale spatial-
temporal convolutional module and the convolutional auto-
encoder module, respectively.

The self-attention mechanism (Vaswani et al., 2023) consists
of three key components: Query, Key, and Value. We take the
long-term dependence of the EEG features captured by LSTM
as the input matrix. Query matrix Qi, Key matrix Ki, and Value
matrix Vi are generated by different linear transformations of
the input matrix. The pairwise similarity across each Query
matrix and all Key matrices is computed by the dot product
between the Qi and Ki. Then the pairwise similarity deflated
by the scaling factor d. The weight scores of the values are
obtained by using the Softmax function. The formula is as follows:

Attention (Q, K, V) = Softmax
(

QiKT
i√
d

)
Vi

3.3 Experiments

3.3.1 Baseline methods
To validate the advantages of the FN-SSIR, we select several

excellent algorithms from current EEG features recognition
researches. These selected algorithms serve as baseline algorithms
for comparison with the FN-SSIR. These baseline algorithms are
described as follows:

OVR-CSP+SVM (Cortes and Vapnik, 1995; Mu et al., 2023):
CSP distinguishes different EEG activity patterns in motor imagery
tasks by extracting the spatial features of EEG signals, and
combined with SVM classifiers, which is widely used in BCI
applications.

MSTCN-AM (Sheng et al., 2023): It is a model for the
forceful motion imagery recognition that combines an attention
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FIGURE 3

According to the electrode distribution of the brain topographic maps, the one-dimensional time series on N electrodes were arranged to form the
electrode plane, (distance-based interpolation, DBI).

mechanism and a multi-scale convolutional network to extract the
time-frequency-space domain features and the attention module
focuses the information of the time-frequency-space domain
features.

EEGNet (Lawhern et al., 2018): A lightweight convolutional
neural network, designed for processing EEG data, is able
to efficiently extract spatial-temporal features of EEG signals.
It achieves efficient recognition of different EEG patterns by
combining deep and separable convolutional structures.

2D CNN-LSTM (Wang et al., 2023): Combining 2D CNN
and LSTM, the original EEG data is segmented into time series
segments, 2D CNN extracts the EEG signal channel connectivity
features of each segment from two dimensions, and LSTM is
utilized to effectively capture the long-term dependencies in the
time-series data.

FBMSNet (Liu et al., 2023): an end-to-end filter-bank multi-
scale convolutional neural network for MI classification. It
extracts multi-scale spectral-temporal features and reduces volume
conduction through spatial filtering.

BrainGirdNet (Wang X. et al., 2024): a CNN framework
that integrates two intersecting depthwise CNN branches with
3D EEG data to decode multi-class MI task. The dual-branch
structure enables complementary learning of spatial-temporal
and spectral-temporal features, enhancing decoding performance
across multiple domains.

3.3.2 Training procedure

All experiments were conducted in a high-performance
computing environment with an Intel Core i9-12900KF @3.20GHz

CPU, NVIDIA GeForce RTX 3090 GPU, and 80GB RAM. The
models were implemented using the PyTorch deep learning
framework and trained in a supervised setting.

For Dataset 1, the training of deep learning models was
performed for 200 epochs using the Adam optimizer (learning
rate = 0.001, batch size = 7), with the cross-entropy loss function
guiding parameter updates. For Dataset 2, all deep learning models
were trained for 400 epochs with a learning rate of 0.001 and
a batch size of 36. The models were optimized using the Adam
optimizer with cross-entropy loss. For the OVRCSP-SVM, we set
the CSP component number (n_components) to 4, and the SVM
was configured with a Gaussian radial basis function (RBF) kernel.

Regarding dataset partitioning, we adopted two different
strategies according to dataset types. For Dataset1 (our private
dataset), we performed four-fold cross-validation repeated five
times. The final performance was reported as the highest average
accuracy across the five runs. For Dataset2 (BCI Competition
IV 2a), the first session of each subject was used for training,
and the second session for testing, in accordance with the official
competition protocol.

4 Results

4.1 MI-EEG feature analysis results

To investigate the time-frequency characteristics of MI-EEG
when subjects imagined the variations in the force intensity of
limb movements, we performed time-frequency analysis using
ERSP. A 1-second pre-stimulus interval was used as the baseline
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for correction. Figure 4a shows the average time-frequency maps
at electrode C3 across all subjects when they performed three
types of motor imagery tasks: large-to-medium, large-to-small, and
medium-to-small. Clear ERD responses were observed in both the
alpha (8–13 Hz) and beta (13–30 Hz) bands after the onset of the
MI period. Notably, during the MI tasks, as the force intensity
imagined by the subjects decreased, the ERD became shorter in
duration, particularly in the 8–13 Hz and 22–27 Hz bands. To
further quantify the ERD differences, we computed the average
ERSP power at the C3 electrode within two frequency bands:
8–13 Hz (alpha) and 22–27 Hz (beta). The corresponding time-
resolved power curves are shown in Figure 4c. The results indicate
that, the ERD magnitude in both bands progressively decreased
with the reduction in force intensity during the execution of MI
tasks.

To further examine the spatial distribution, we averaged
the ERSP values in the alpha band (8–13 Hz) and plotted
the corresponding scalp topographies. These maps revealed
contralateral activation patterns in the sensorimotor cortex, with
the extent of activation decreasing as force intensity imagined by
the subjects declined. These results further confirm that different
force levels can modulate cortical activation strength during MI, as
previously reported (Wang K. et al., 2017).

To further illustrate inter-subject variability, we plotted the
alpha-band (8–13 Hz) topographic maps of two representative
subjects (S4 and S6) across four time windows: 0–5s, 1–5 s, 2–5 s,
and 3–5 s, as shown in Figure 4b. Clear differences in the onset and
persistence of ERD can be observed between subjects. For example,
in the 0–5 s window, subject S6 exhibits a pronounced ERD over
the contralateral sensorimotor cortex, while subject S4 shows only
a weak response. In contrast, during the 1–5 s and 2–5 s windows,
both subjects display clear ERD patterns. However, in the 3–5 s
window, ERD in S6 diminishes, whereas S4 maintains a strong ERD
response. These results suggest that the temporal profile of ERD
varies across individuals, which is reflected in the variability of the
onset and duration of cortical activation.

Since MRCP are low-frequency and low-amplitude signals that
are easily contaminated by noise, we performed trial averaging
to improve the signal quality. Based on the averaged signals,
we plotted the MRCP waveforms of the FC3 electrode for all
subjects during the early stage of MI tasks. As shown in Figure 5,
a noticeable negative shift began approximately 0.5 s after the
initiation of the MI task and peaked around 1 second. This negative
deflection reflects the activation of the motor cortex associated
with motor preparation. Notably, imagery tasks with larger force
consistently induced larger negative amplitudes compared to those
with smaller force. This pattern suggests that MRCP not only reflect
the initiation of motor intentions but are also modulated by the
intensity of motor effort imagined by the subjects.

4.2 Recognition results

We designed and optimized the model based on the
characteristics of Dataset1 (a force-varying MI-EEG dataset
collected through our own experiments). On this dataset,
we conducted comprehensive evaluations, including baseline

comparisons, feature visualization, ablation studies, and cross-
subject generalization analysis, to thoroughly assess the model’s
performance, interpretability, and robustness.

A 4-fold cross-validation strategy was adopted to assess
model performance. We calculated the classification accuracy and
standard deviation for each model in Table 2, and summarized the
results using box plots (Figure 6). FN-SSIR achieves the highest
average accuracy of 86.7% and the lowest standard deviation of
6.6%, outperforming other baseline algorithms.

A paired-sample t-test was performed to evaluate whether
the differences in accuracy between our model and the baseline
methods were statistically significant. The null hypothesis (H0)
was that there was no significant difference in classification
accuracy between our method and each baseline method, while
the alternative hypothesis (H1) was that our method achieved a
significantly different accuracy. Before conducting the t-test, we
verified that the differences in accuracy between paired samples
were approximately normally distributed, satisfying the normality
assumption required for a paired-sample t-test. The outcomes of
this statistical analysis are illustrated in Table 2, revealing that
the classification accuracy of our algorithm exhibited significant
differences compared to all baseline algorithms, with a p value of
less than 0.05. This indicates a statistically meaningful advantage of
our proposed algorithm over the alternatives.

We visualized the high-dimensional features of subject S1
using t-SNE to compare the raw input data with the feature
representations from the FN-SSIR. As shown in Figure 7, the
model output (right) formed more compact clusters and clearer
class boundaries compared to the input data (left), suggesting
that the FN-SSIR effectively captured discriminative patterns for
classification.

To further illustrate the classification capability of our model,
we plotted confusion matrices for all 15 subjects (Figure 8),
providing a comprehensive overview of its performance across
individual subjects. True positives and true negatives are evenly
distributed, and the proportions of false negatives and false
positives are relatively small. The results demonstrate that the
proposed approach can decode mental imagery across various
modalities without exhibiting bias toward particular tasks.

In addition, we performed an ablation study to assess the
contributions of the three key components in FN-SSIR: MSSTCN,
CAE, and LSTM-SA. Each module was removed individually while
keeping the remaining architecture intact. All experiments were
conducted under identical conditions. As illustrated in Figure 9,
removing any of the modules led to a noticeable decrease in
accuracy, with the absence of the MSSTCN module causing the
most significant performance drop. These results highlight the
complementary roles of the three modules and underscore the
importance of multi-scale temporal modeling.

To evaluate the model’s generalization across subjects,
we performed leave-one-subject-out cross-validation. In each
iteration, one subject was held out as the test set, while the model
was trained on the remaining 14. The classification accuracy for
each subject is shown in Figure 10. The model demonstrated
moderate to strong generalization, with consistent performance
observed across most subjects. Notably, the highest accuracy was
achieved on subject S15, while subject S1 exhibited comparatively
lower performance, reflecting potential inter-subject variability in
EEG patterns.
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FIGURE 4

MI-EEG feature analysis results. (a) The average time-frequency maps of C3 electrode and the brain topographic maps in the alpha frequency band
(8–13 Hz). A power decrease (Blue) indicates the ERD phenomenon when subjects performing MI task. (b) The brain topographic maps (8–13 Hz)
within the four time windows (0–5, 1–5, 2–5, and 3–5 s) during the motor imagery phase. (c) ERSP curves in alpha band and beta band. The curves
show the changes of power (in dB) with time (in second).

FIGURE 5

The average MRCP waveforms in the FC3 electrode. There were significant differences, particularly at the 1st second after the onset.

To further verify the generalizability of FN-SSIR, we
additionally carried out comparative experiments on Dataset2 (a
publicly available four-class MI-EEG dataset).

Following the official protocol of the BCI Competition
IV-2a dataset, we used the first session of each subject for
training and the second session for testing. The proposed model
achieved an average classification accuracy of 78.4% with a
standard deviation of 13.0%. To assess statistical significance,

we conducted paired t-tests comparing FN-SSIR with each

baseline method. The results showed in Table 3 that FN-

SSIR significantly outperformed OVRCSP (p = 0.0099), 2D

CNN-LSTM (p = 0.0002), EEGNet (p = 0.0020), MSTCN-

AM (p = 0.0024), and BrainGridNet (p < 0.0001). No

significant difference was found between FN-SSIR and FBMNet

(p= 0.1652).
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TABLE 2 Classification accuracy (%) comparison for different algorithms on dataset 1.

FN-SSIR BrainGird
Net

FBMS
Net

2d CNN-
LSTM

OVR-CSP
+SVM

EEGNet MSTCN-
AM

S1 92.4 90.3 88.1 80.5 86.4 86.6 85.5

S2 89.4 89.5 88.1 82.9 80.9 87.3 88.7

S3 83.7 83.2 90.5 85.8 79.2 91.1 86.6

S4 91.3 87.4 64.7 82.2 88.0 77.8 76.2

S5 85.8 70.3 69.1 68.1 68.7 67.3 63.5

S6 90.0 83.1 74.4 79.7 72.0 79.4 80.6

S7 94.7 95.6 79.4 71.8 72.1 78.8 78.5

S8 90.7 92.3 92.0 90.6 80.8 89.7 86.0

S9 74.1 68.1 59.9 62.7 69.6 63.9 70.8

S10 81.9 83.9 77.5 87.0 71.1 80.1 77.6

S11 93.3 90.0 93.7 91.3 76.0 78.1 79.2

S12 74.0 73.2 64.6 72.2 80.0 60.6 55.0

S13 89.5 85.0 91.8 88.2 92.0 74.7 77.9

S14 79.9 76.8 85.3 79.9 72.8 61.9 60.7

S15 89.6 81.2 76.3 70.8 87.1 71.2 70.5

Mean± Std 86.7± 6.6 84.6± 7.8* 79.6± 8.7* 78.4± 7.4** 76.6± 9.9** 75.8± 9.9*** 74.2± 8.6***

Stars denote the statistically significant difference between two algorithms (where ∗denotes p < 0.05, ∗∗Denotes p < 0.01, and ∗∗∗denotes p < 0.001).

FIGURE 6

Box plot of classification accuracy of the FN-SSIR and other baseline algorithms. The box plot shows the comparison of classification accuracy
results in Table 2 (“+” represents the average value).
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FIGURE 7

The t-SNE feature visualization of FN-SSIR. (A) High-dimensional input data projected into 2D space. (B) Corresponding feature representations from
the FN-SSIR.

FIGURE 8

Confusion matrices for FN-SSIR classification across S1–S15 subjects.

This evaluation was mainly conducted to verify the
generalizability of FN-SSIR beyond the experimental
conditions of Dataset1.

5 Discussion

In current MI-BCI, the paradigms for imagining the force
intensity of limb typically adopt the movements of hand grip.
These paradigms are constantly concerned with static force under
the right upper-limb, which belongs to the motor imagery of
unilateral upper-limb. Nevertheless, it is hard to achieve interaction
of dynamic force between robots and patients in brain-controlled

rehabilitation robot systems. This limitation consequently restricts
its application in rehabilitation training. To address this issue,
recently researchers have introduced MI paradigms with force
intensity that focuses on dynamic actions, such as wiping a tabletop
and lifting a water bottle (Sheng et al., 2023; Karakullukcu et al.,
2024). This development expands the category of MI with different
force levels under unilateral upper-limb dynamic actions. However,
the force of these paradigms is fixed in a single trial and it is
difficult to meet the requirements of naturalistic interactions in
brain-controlled rehabilitation robot systems.

Therefore, we design a MI paradigm in which subjects
imagined the force intensity variations of dynamic movements
in the unilateral upper-limb. Three combinations of variations in
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FIGURE 9

Ablation study results of the FN-SSIR. W/o, without the component; MSSTCN, multi-scale spatial-temporal convolutional module; CAE,
convolutional auto-encoder module; LSTM-SA, LSTM with self-attention module.

FIGURE 10

Cross-subject classification accuracy of the FN-SSIR using leave-one-out validation.

force intensity were introduced: large-to-medium, large-to-small,
and medium-to-small. It increased the number of MI thinking
categories with force intensity variations under a unilateral upper-
limb dynamic state. Then, we analyze the EEG signals induced by
this paradigm in the time, time-frequency, and spatial domain. It
showed that there were significant ERD phenomena in both alpha
and beta frequency bands, in which subjects imagined the force

intensity variations of dynamic movements in a single trial. And
the ERD phenomenon gradually weakened as the force intensity
decreased. Meanwhile, brain topographic maps showed that the
activation extent of the contralateral sensorimotor area decrease
as the force intensity reduces. It displays a pattern of brain region
responses from strong to weak. Although the EEG features overlap
in the spatial domain when the subjects imagined variations of force
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TABLE 3 Classification accuracy (%) comparison for different algorithms on dataset 2.

FN-SSIR BrainGird
Net

FBMS
Net

2d CNN-
LSTM

OVR-CSP
+SVM

EEGNet MSTCN-
AM

S1 88.5 64.6 87.8 77.4 80.2 85.8 82.6

S2 63.2 41.7 63.9 55.6 64.6 61.6 57.6

S3 92.4 71.2 88.9 85.4 86.1 88.5 85.4

S4 75.0 47.9 68.4 60.1 55.2 67.0 66.0

S5 64.6 47.6 72.2 51.7 47.9 55.9 60.4

S6 61.1 43.4 52.4 51.4 55.2 52.1 45.8

S7 94.8 53.8 86.5 78.1 77.8 89.6 80.6

S8 86.1 71.2 82.3 77.8 86.5 83.3 81.3

S9 80.2 71.2 79.9 78.8 75.3 79.5 80.9

Mean± Std 78.4± 13.0 56.9± 12.6*** 75.8± 12.5 68.5± 13.5** 69.9± 14.5** 73.7± 14.7** 71.2± 14.1**

Stars denote the statistically significant difference between two algorithms (where ∗denotes p < 0.05, ∗∗denotes p < 0.01, and ∗∗∗denotes p < 0.001).

intensity, they still exhibit distinct regional differences. We found
individual differences in ERD phenomena across subjects by brain
topographic maps segmented with time windows. Additionally,
in the time-domain waveforms of the FC3, we can observe the
significant differences in negative shift between the three classes
of force intensity. These results establish a foundation for the
development of our algorithm aimed at recognizing EEG features
induced by our paradigm.

As a traditional extraction method of EEG features, OVR-
CSP+SVM needs manual extraction of features, and the process
of extraction is independent of the classification. CSP focuses on
extracting linear spatial features of EEG signals, which makes
it difficult to capture complex nonlinear relationships. Although
SVM deals with nonlinear problems through kernel functions,
its performance is limited under high-dimensional features. Both
EEGNet and 2D CNN-LSTM use the end-to-end approach without
manual extraction of features. They automatically extract features
from raw EEG data and perform classification directly. However,
fixed-size convolutional kernels or fixed time steps are used in these
network models, resulting in their ability to extract features only
from a single scale. This constraint hinders the ability to capture
features of EEG signals across different frequency bands and time
scales. Thus, it limits the classification performance.

FBMSNet employs mixed depthwise convolution and spatial
filtering to efficiently extract multi-scale temporal-frequency-
spatial features. MSTCN-AM combines an attention mechanism
with a multi-scale convolutional network to extract fine-grained
time-frequency and spatial features, with the attention module
further reducing information redundancy. Although these models
effectively capture multi-scale features in the time-frequency
and spatial domains, they still rely on a one-dimensional
spatial representation. BrainGridNet addresses this limitation
by employing a two-branch depthwise CNN to process 3D
EEG data, thereby enriching spatial information and optimizing
computational efficiency. However, all the above methods focus
primarily on recognizing ERD features in EEG signals, leading
to limited feature diversity. In summary, above algorithms have
some limitations in recognizing the features of EEG signals
corresponding to MI tasks with different combinations of force
intensity variations.

For the recognition of EEG features associated with MI
involving force intensity variations, we propose a network
algorithm (FN-SSIR). The spatial-temporal-enhanced features of
EEG signals in multiple dimensions are extracted by the multi-
scale spatial-temporal convolution module. This is achieved
by integrating multi-scale convolutional kernels with three-
dimensional convolutions, allowing the model to effectively learn
spatial dependencies and temporal dynamics simultaneously.
The use of small-scale kernels enables the capture of subtle,
localized features from neighboring electrodes, while large-scale
kernels aggregate broader contextual information across brain
regions. This design balances the need for local sensitivity and
global awareness. The convolutional auto-encoder module (CAE)
progressively extracts the temporal information in the EEG signals
through multiple layers of convolutions. It also utilizes the pooling
layer to reduce dimensions, thereby mitigating noise and producing
a compact representation of features, which helps to enrich the
diversity of extracted patterns. Then, the decoder reconstructs the
features through transposed convolution. To address the individual
differences when subjects performing MI tasks, we introduce an
LSTM module with a self-attention mechanism to dynamically
focus on the input sequence. This module applies temporal
weighting to the output features from the MSSTCN module and
CAE module. By combining the long range temporal modeling
capacity of LSTM with the selective focusing ability of attention,
the network is better equipped to capture subtle temporal features
associated with force intensity variations in motor imagery.

The classification results on Dataset1 (the MI-EEG dataset
involving force intensity variations) are summarized in Table 2.
Our proposed algorithm achieved a classification accuracy of
86.7% ± 6.6%, outperforming all baseline methods. Moreover,
the accuracy differences between our algorithm and the baseline
algorithms were statistically significant (p < 0.05). For Dataset2
(the public BCI Competition IV-2a dataset), FN-SSIR also
demonstrated good generalizability, achieving competitive
performance despite being originally designed for force intensity
variations MI tasks. FN-SSIR not only achieves high average
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performance but also demonstrates statistically significant
improvements over most baseline methods in Dataset2. The lack
of significant difference between FN-SSIR and FBMNet may be
attributed to their comparable ability to capture complex temporal-
spatial patterns. However, FN-SSIR still offers better performance
stability across subjects.

In this study, one limitation lies in the potential subjective
differences in how individual subjects perceive force variations,
which could affect the performance of the MI tasks. These
individual differences may lead to inconsistent task performance
across subjects. To address this, future work could incorporate
additional modalities, such as electromyographic (EMG) signals or
force-feedback devices, during the MI training phase to standardize
the force variations and improve the control of the MI tasks. While
the FN-SSIR captures spatiotemporal EEG features effectively, it
can be further refined to better handle individual differences.
Future work could explore adaptive feature extraction or transfer
learning to enhance the model’s generalization and classification
performance across subjects.

6 Conclusion

For the limitations of current MI-BCI systems in force control
of rehabilitation robots, we designed a MI paradigm for force
intensity variations under dynamic movements of the unilateral
upper-limb. The category of thinking about MI tasks with force
intensity is enriched by the introduction of different combinations
of force intensity variations. Based on this, the FN-SSIR is
proposed, combining multi-scale spatial-temporal convolution
with spatial-temporal-enhanced strategy, a convolutional auto-
encoder for information reconstruction, and LSTM with self-
attention to extract and classify multidimensional features. For
our MI-EEG dataset involving force intensity variations, FN-SSIR
achieved an average classification accuracy of 86.7% and the lowest
standard deviation of 6.6%, outperforming all baseline methods.
These results further validate the effectiveness and robustness of
the proposed algorithm. In addition, evaluations on the public
dataset suggested that FN-SSIR exhibits a certain degree of
generalizability. By effectively capturing and identifying the subtle
variations that occur during MI with varying force intensity, our
approach supports more natural interaction in future MI-BCI
rehabilitation robots.
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