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Cognitive impairment (CI) is common, with diverse underlying causes, symptoms, and 
imaging features. It often leads to disability and loss of independence. Early diagnosis 
and assessment of CI are crucial for the prognosis improvement. Conventional 
diagnostic methods for CI are hindered by subjectivity and imprecision. Radiomics, 
a sophisticated and objective methodology, has been increasingly utilized in CI in 
recent times. This article describes the methodology of radiomics and reviews the 
application of radiomics in the prediction and evaluation of cognitive impairment 
related to neurological diseases such as Alzheimer’s disease (AD), Parkinson’s 
disease (PD), cerebral small vessel disease (CSVD), and stroke. It can provide imaging 
markers for the early diagnosis and risk stratification of cognitive impairment.
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1 Background

As the global population ages, the incidence of cognitive impairment (CI) and dementia 
is increasing significantly. Studies indicate that approximately one in five individuals over the 
age of 65 will experience varying degrees of cognitive decline (Han et al., 2020). CI encompasses 
a complex symptomatology associated with various diseases and may lead to disability and 
compromised independent living capacity in affected individuals. Growing evidence suggests 
that dementia can be significantly mitigated through early diagnosis and intervention (Reuben 
et al., 2024). Traditional diagnostic methods for cognitive impairment (CI) primarily rely on 
clinical assessments and standardized scales, which are often constrained by subjectivity and 
limited precision. In this context, radiomics emerges as an advanced and complementary 
technique for the diagnosis and evaluation of CI.

2 Overview of radiomics

2.1 Introduction

Radiomics is an imaging technology, which extracts a large number of quantitative features 
based on the medical imaging data through computer science and statistical methods to reveal 
potential associations between images and diseases, and to support the diagnosis, prognosis 
assessment and treatment of diseases. It is firstly proposed by Lambin et al. (2012). This 
technology excels in identifying imaging features or biomarkers associated with specific 
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diseases through systematic analysis of high-dimensional imaging 
data and textural features (Gillies et al., 2016). Radiomics analysis 
encompasses a diverse spectrum of analytical approaches, including 
voxel-based methods, connectivity-based techniques, and pattern 
recognition-based strategies. The radiomics analysis process typically 
involves several key steps: image data acquisition, region of interest 
(ROI) segmentation, feature extraction, feature selection, model 
training, and ultimately classification or prediction (Bera et al., 2022; 
Lambin et al., 2012), Figure 1 depicts a radiomics workflow diagram 
and provides additional methodological details.

2.2 Segmentation of region of interest

Segmentation of ROI facilitates targeted analysis of specific brain 
regions or structures. The methodologies for ROI segmentation can 
be categorized into several distinct approaches (Cardenas et al., 2019; 
van Timmeren et al., 2020): (1) Manual labeling: Researchers manually 
delineate the boundaries of the ROI by selecting and segmenting 
specific regions. This approach is well-suited for limited datasets and 
less complex anatomical structures. However, it exhibits limitations in 
both computational efficiency and anatomical precision when dealing 
with large datasets or complex brain regions (Kumar et  al., 2012; 
Zwanenburg et  al., 2020). (2) Standard templates: This method 
employs validated standard brain templates, such as those from the 
Montreal Neurological Institute (MNI) (Pan et al., 2022), whereby 
researchers spatially normalize these templates to individual brain 
images and segment the ROI based on predefined regions. While 
effective for normative brain regions, this method may not account for 
individual neuroanatomical variations, thereby potentially 
compromising segmentation accuracy in specific brain regions. (3) 
Automatic segmentation algorithms: These algorithms implement 
advanced image processing techniques to autonomously localize and 
segment the ROI through the application of mathematical models and 
statistical methods. These algorithms substantially improve efficiency 
and consistency of segmentation but encounter significant limitations 
when applied to complex brain regions or in the presence of 
substantial pathological changes (Puzio et al., 2025; Yu et al., 2025). 
(4) Hybrid method: This integrative approach synergistically combines 
the strengths of manual labeling and automatic segmentation 
algorithms. For example, initial manual contours can inform and 
constrain the automatic segmentation process, with subsequent 
refinements and iterative optimizations based on the algorithm’s 
results (Parmar et al., 2014).

The selection of an appropriate method should be determined by 
the research objectives, the intrinsic characteristics of the data, and the 
available research resources. Segmentation accuracy and 
methodological reproducibility constitute the fundamental criteria for 
evaluating the performance of these segmentation approaches.

2.3 Extraction of features and construction 
of prediction model

Features can be  broadly categorized into qualitative and 
quantitative categories (Cheung et  al., 2022). Qualitative features 
include specific location, size, morphology, etc. Quantitative features 
can be systematically subdivided into the following four types: (1) 

Morphological Features: These features elucidate the three-
dimensional shape and structural features of the lesion (Kumar et al., 
2012); (2) First-Order Features (Histogram Features): These features 
represent the distribution of the lesion across different gray levels, 
providing quantitative metrics regarding of the lesion’s intensity 
characteristics (Zwanenburg et al., 2020); (3) Second-Order Features: 
These quantify the heterogeneity of the lesion by examining the spatial 
relationships between voxels or pixels, thereby capturing complex 
textural patterns and architectural information (Zwanenburg et al., 
2020); (4) Higher-Order features: These comprise advanced 
mathematical transformations including Wavelet transforms, Laplace 
filters, and Gabor filters, etc. which facilitate multi-scale analysis of the 
lesion at a more sophisticated level, elucidating subtle patterns and 
structures (Kumar et al., 2012; Zhang et al., 2022; Zwanenburg et al., 
2020). When performing radiomics analysis, the focus is on 
identifying various image attributes including shape, intensity, texture, 
gradient, and wavelet. Furthermore, the incorporation of non-image 
data encompassing clinical information and biogenetic data should 
be  systematically evaluated to optimize model performance and 
clinical relevance.

The construction of the prediction model often employs 
algorithmic models based on machine learning, such as convolutional 
neural networks, support vector machines (SVM), and random 
forests, representing a critical component in the radiomics workflow 
(Lambin et  al., 2017; Rathore et  al., 2017). Sensitivity, specificity, 
accuracy, and the receiver operating characteristic (ROC) curve 
analysis constitute the standard metrics for rigorous evaluation of the 
model (Bera et al., 2022; Lambin et al., 2017). Ultimately, these metrics 
serve as the cornerstone for validating the reliability and performance 
of our predictive models in clinical applications.

3 Advances in radiomics of 
Alzheimer’s disease

Alzheimer’s disease (AD) is the most common neurodegenerative 
disorder, which has a serious impact not only on the patient’s daily life 
but the psychological and economic status of the patient’s family 
(Alzheimer’s Association, 2016). Mild cognitive impairment (MCI) is 
characterized as the transitional stage from normal cognition to AD 
(Dubois et al., 2016) with approximately 10–20% of MCI patients 
progressing to dementia annually (Langa, Levine, 2014). Studies have 
demonstrated that therapeutic intervention during the MCI stage may 
delay the onset of irreversible dementia (Mueller et  al., 2005). 
Therefore, there exists an urgent need for reliable biomarkers to 
facilitate early screening and diagnosis of AD. However, volumetric 
alterations of the brain regions remain subtle and challenging to detect 
during the early stage of AD. Therefore, the identification of alternative 
biomarkers for the early prediction of MCI-to-AD conversion 
is imperative.

In recent years, neuroimaging measures (volume, thickness, 
surface morphometry) derived from structural magnetic resonance 
imaging (MRI), functional MRI, and positron emission tomography 
(PET) have been proposed as reliable biomarkers of AD. Radiomics 
analysis incorporating these parameters has been demonstrated 
significant potential for the automated diagnosis of MCI progression 
to AD. Cheung et al. constructed a model using brain region volumes 
and radiomics features separately (Cheung et al., 2022). A total of 107 
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whole-brain radiomics features were extracted using voxel-based 
morphometry (VBM) and the DARTEL algorithm from structural 
MRI data. Their findings indicated that features of the whole-brain 
derived from T1-weighted MR images achieved excellent performance 
in differentiating between AD and MCI. Besides, the hippocampus are 
also often used as the ROI in studies of cognitive disorders. Sorensen 
and colleagues (Sørensen et  al., 2017) used hippocampal texture, 
hippocampal shape and cortical thickness to differentiate between 
MCI and AD based on T1-weighted structural MRI scans. A total of 
215 radiomics texture features were extracted from the hippocampus, 
with sequential forward feature selection subsequently applied for 
feature selection and model construction. The analysis revealed 
hippocampal texture as the most significant discriminative feature, 
suggesting its diagnostic utility operates independently of 
hippocampal volume. Ranjbar et  al. (2019) received similar 

conclusions. In their analysis of 173 subjects comprising AD, MCI, 
and healthy control groups, hippocampus texture features acquired 
the favorable performance in distinguishing AD from controls with 
an area under curve (AUC) of 0.89. While the hippocampus have 
remained a focal region in AD radiomics research, Chen et al. (2025) 
explored the potential of cerebellar-derived radiomics for predicting 
AD progression over a 6-year follow-up with integrated machine 
learning models. Notably, the cerebellar models outperformed 
hippocampal models in distinguishing MCI and in predicting 
transitions from normal cognition to MCI. Key predictors included 
textural features in the right III and left I and II lobules, as well as 
network properties in Vermis I  and II, which were significantly 
associated with cognitive decline in AD. In conclusion, the whole-
brain, hippocampus and cerebellum are regarded as ROI in different 
researches, more studies are required to ensure the optimal choice.

FIGURE 1

Radiomics workflow. CT, computed tomography; MRI, magnetic resonance imaging; PET-CT, positron emission tomography-computed tomography; 
SPECT–CT, single-photon emission computed tomography-computed tomography; ROI, region of interest; SVM, support vector machine; ROC, 
receiver operation characteristic.

https://doi.org/10.3389/fnins.2025.1591605
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xiao et al. 10.3389/fnins.2025.1591605

Frontiers in Neuroscience 04 frontiersin.org

In terms of the model construction, several machine learning 
methods have been used for distinguishing MCI conversion to 
AD. Luk et al. (2018) utilized SVM in distinguishing MCI conversion 
to AD and achieved high accuracy. Feng et al. (2018) constructed a 
logistic regression model using t-test, correlation analysis, and LASSO 
screening, achieving an AUC of 0.720. Tang’s team (Tang et al., 2021) 
followed 162 patients with MCI, and after 5 years of follow-up, 68 
patients transitioned to AD. They built a radiomics model using 
LASSO Cox regression analysis. The C-index was 0.950 (0.929–0.971). 
Lin et  al. (2025) developed and validated a clinical-radiomics 
integrated nomogram model. The radiomics features from 
T1-weighted MRI images combined with clinical factors identified 
through univariate and multivariate Cox regression, were used to 
construct clinical, radiomics, and integrated models. The integrated 
model demonstrated superior predictive performance, achieving a 
C-index of 0.903 (95% CI: 0.870–0.936) in the training cohort and 
0.813 (95% CI: 0.734–0.892) in the validation cohort. In a different 
imaging modality, Jiang et  al. (2022) proposed a workflow for 
radiomics predictive modeling analysis of AD using 
fluorodeoxyglucose positron emission tomography (FDG PET) 
images. A total of 34,400 quantitative features were extracted from 80 
cortical regions in each subject. The machine learning methods they 
used were t-test and LASSO. Three models were constructed: a clinical 
model, a standardized uptake value ratio (SUVR) Cox model, and a 
radiomics-based predictive model (RPM model). This study 
confirmed that metabolic profiles of AD pathologically susceptible 
regions are more effective in predicting progression to AD, and that 
metabolic abnormalities in these regions are better characterized by 
high-dimensional radiomics features (Table 1 presents a summary of 
the above studies).

The application of radiomics in AD can provides insights into the 
mechanisms and pathological processes of AD, which facilitates early 
diagnosis and prediction. Recent studies highlight the potential of 
radiomics and machine learning in predicting AD progression from 
MCI using neuroimaging biomarkers. Key brain regions including the 
hippocampus, cerebellum, and precuneus provide discriminative 
features. While hippocampal textural features outperforms volumetry, 
emerging biomarkers in the cerebellum and precuneus challenge 
traditional AD paradigms. However, current limitations include small 
sample sizes, unclear biological correlates of radiomic features, and 
limited clinical generalizability. Future research should focus on 
longitudinal validation, multimodal integration, and explainable AI 
to enhance translational utility.

4 Advances in radiomics for predicting 
cognitive impairment in Parkinson’s 
disease

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder that primarily affects dopamine-producing neurons in the 
specific region of the brain called the substantia nigra (SN). Diagnosis 
is typically based on clinical history and motor symptoms (Chu et al., 
2024). However, the early-stages of PD often present diagnostic 
challenges due to heterogeneous clinical presentations and overlapping 
symptoms with other neurological disorders. These challenges are 
particularly pronounced when evaluating cognitive impairments 
associated with PD, which are often subtle and difficult to differentiate. 

To address these complexities, radiomics has emerged as a promising 
approach for early diagnosis through the extraction and analysis of 
high-throughput quantitative imaging features. This advanced 
approach not only facilitates in the detection of PD but also holds 
potential for identifying and characterizing cognitive impairments, 
thereby enhancing both diagnostic accuracy and disease management.

Cognitive impairment is one of the most common non-motor 
symptoms of PD (Aarsland et al., 2017). PD dementia (PDD) occurs 
in more than 80% of PD patients with disease duration exceeding 
20 years (Hely et al., 2008). PDD primarily affects cognitive domains 
such as attention, executive function, and working memory. PD-MCI 
is prevalent in 19–42% of PD patients (Aarsland et al., 2009; Yarnall 
et al., 2014) and it is usually considered a risk factor for PDD (Pedersen 
et al., 2013). However, substantial heterogeneity exists in the cognitive 
trajectories of PD-MCI, some patients progress to PDD, while others 
remain stable or even return to normal cognition (Pedersen et al., 
2013). Therefore, the risk stratification of PD-MCI convention to PDD 
is essential, as high-risk patients may require more aggressive 
treatment and could potentially benefit from disease-modifying  
therapies.

Conventional structural MRI sequences were used in the 
evaluation of PD related cognitive impairment. Shin et  al. (2021) 
developed a machine-learning-based predictive model to assess the 
risk of progression to dementia in patients with PD-MCI using 
cortical thickness measurements based on T1-weighted MR images. 
Train random forest and SVM models were used to construct the 
model. The study demonstrated that radiomics features derived from 
the cortical thickness on conventional structural MRI sequences could 
predict the progression from MCI to dementia in individual PD 
patients. More recently, advanced multiparametric radiomics models 
have further improved predictive accuracy and interpretability. Park 
et al. (2023) analyzed T1, T2, and T2-FLAIR sequences from basal 
ganglia MRI and extracted more than 1,200 radiomic features. Their 
multiparametric radiomics model achieved an AUC of 0.928, 
identifying key radiomic features associated with dementia  
progression.

Increased iron deposition in the SN system is one of the most 
common features of PD. Evidence suggests that cognitive impairment 
is often secondary to abnormal brain tissue iron deposition and this 
mechanism may also contribute to the pathology of PDD (Uchida et al., 
2019). Therefore, imaging markers that quantify iron deposition have 
received increasing attention in recent years (An et al., 2018). Magnetic 
susceptibility value (MSV) derived from quantitative susceptibility 
mapping (QSM) can quantify iron deposition while radiomics can 
analyze the distribution of iron deposition. Kang et al. (2022) explored 
whether MSV and radiomics features could serve as imaging markers 
for the objective assessment of CI in PD patients. The study used SN, 
head of the caudate nucleus (HCN), and putamen as the 
ROI. Multivariate logistic regression and SVM models were developed. 
The study revealed that characteristics including mean absolute 
difference, variance, and gray-scale variance of the HCN in PD patients 
were negatively correlated with the Montreal Cognitive Assessment 
(MoCA) scores. Similar to the previous study, Zhao et al. (2022) used 
QSM to evaluate iron deposition and microstructural changes in 60 
patients with PD (16 with MCI). They performed voxel-based and 
radiomic analysis of subcortical nuclei (substantia nigra, basal ganglia) 
to extract texture and susceptibility-related features. A SVM classifier 
was able to distinguish cognitively normal PD patients from PD-MCI 

https://doi.org/10.3389/fnins.2025.1591605
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


X
iao

 et al. 
10

.3
3

8
9

/fn
in

s.2
0

2
5.159

16
0

5

Fro
n

tie
rs in

 N
e

u
ro

scie
n

ce
0

5
fro

n
tie

rsin
.o

rg

TABLE 1 Summary of radiomics studies predicting progression of MCI to AD.

First authors Number of 
subjects

Image 
acquisition 
method

Pre-
processing: 
yes/no

Region of 
interest (ROI) 
and 
segmentation

Feature 
selection 
method

Model 
construction 
method

Model evaluation 
metric

Conclusions

Cheung et al. 

(2022)

512(AD = 97, MCI = 293, 

NC = 192) from the ADNI 

database

T1- weighted MRI 

images

Yes Whole-brain Not specified Random

Forest

Accuracy, Sensitivity, 

Specificity, Area under 

ROC curve.

The radiomics features from T1-

weighted MR images achieved 

excellence performance in 

differentiating AD, MCI and NC.

Sørensen et al. 

(2017)

504 (AD = 101, MCI = 234, 

NC = 169) from ADNI 

database, 145 (AD = 28, 

MCI = 29, NC = 88) from 

AIBL database and 30 

(AD = 9, MCI = 9, NC = 12) 

from CAD Dementia 

database

T1- weighted MRI 

images

Yes Hippocampus 

(manually)

Sequential 

forward feature 

selection, 

Pearson 

correlation

Support vector machine 

(SVM) with a radial 

Gaussian kernel

Accuracy, Sensitivity, 

Area under ROC curve.

This study highlighted the importance 

of hippocampal texture as a feature in 

the algorithm in order to discriminate 

NC, MCI, and AD simultaneously 

based on a single structural MRI scan.

Ranjbar et al. 

(2019)

173 (AD = 41, MCI = 70, 

NC = 62) from ADNI 

database

T1- weighted MRI 

images

Yes Hippocampus Student t test, 

Pearson chi-

square test

Diagonal quadratic 

discriminant analysis 

(DQDA)

Area under ROC curve. The study supported the use of brain 

MR radiomics features to identify early 

cognitive impairment and the clinical 

utility of MR texture features as 

biomarkers of Alzheimer’s disease.

Chen et al. (2025) 1,319 (AD = 215, 

MCI = 530, NC = 574) from 

ADNI database; 308 

(AD = 102, MCI = 104, 

NC = 102) from in-house 

database

T1- weighted MRI 

images

Yes Cerebellar and 

Hippocampus

Minimum 

Redundancy 

Maximum 

Relevance 

(mRMR)

Support vector Machine 

(SVM), Linear 

discriminant analysis.

Autoencoder, Random 

forest, Logistic regression, 

Logistic regression via

LASSO, AdaBoost, 

decision tree, Gaussian 

process, and Naive Bayes.

Area under ROC curve. Cerebellum-derived radiomic-network 

modeling shows promise as a tool for 

early identification and prediction of 

disease progression during the 

preclinical stage of AD.

Luk et al. (2018) 790 (AD = 183, MCI = 382, 

NC = 225) from ADNI 

database

T1- weighted

MRI images

Yes Whole-brain F-test Binary logistic regression 

model

Area under ROC curve. Whole-brain 3D texture analysis had 

potential to predict progression from 

MCI to AD.

(Continued)
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TABLE 1 (Continued)

First authors Number of 
subjects

Image 
acquisition 
method

Pre-
processing: 
yes/no

Region of 
interest (ROI) 
and 
segmentation

Feature 
selection 
method

Model 
construction 
method

Model evaluation 
metric

Conclusions

Feng et al. (2018) 122 (AD = 78, NC = 44) 

from a local cohort

3D magnetization 

prepared rapid 

gradient echo 

images (3D MP-

RAGE images)

No Corpus callosum 

(manually)

T-test and the 

rank test, 

Correlation 

analysis, Least

Absolute 

Shrinkage and 

Selection 

Operator 

(LASSO)

Logistic regression model Area under ROC curve, 

Sensitivity, Specificity, 

Accuracy, Precision, and 

Positive and negative 

predictive values.

Corpus callosum texture features based 

radiomics model was valuable for the 

diagnosis of AD.

Tang et al. (2021) 162 MCI from ADNI 

database

T1- weighted MRI 

images and T2-

weighted fluid-

attenuation 

inversion recovery 

MRI images

Yes Bilateral 

hippocampus and 12 

subcortical nuclei 

(manually)

Spearman rank 

correlation, 

Univariate cox 

analysis, LASSO 

and 10-fold cross 

validation

LASSO cox regression Area under ROC curve, 

C-index.

The prediction of individual time to 

progression from MCI to AD could 

be accurately conducted using the 

radiomics-clinical-laboratory model 

and multi predictor nomogram.

Lin et al. (2025) 244 (preclinical AD = 51, 

NC = 193) from ADNI 

database

T1- weighted MRI 

images

Yes Gray matter, White 

matter, and 

Cerebrospinal fluid 

(automatically 

segmented)

LASSO 

regression, 

Spearman rank 

correlation

Cox proportional hazards 

model.

C-index. The study constructed a clinical-

radimoics integrated model to predict 

the progression of preclinical AD and 

stratify the risk of disease progression 

in preclinical AD.

Jiang et al. (2022) Cohort I (sMCI = 18, 

pMCI = 168, NC = 94) from 

ADNI database;

Cohort II (sMCI = 81, 

pMCI = 3) from the ADNI-

Go database;

Cohort III (NC = 138, 

SCD = 76, MCI = 41, 

AD = 60) from local 

hospitals.

FDG PET images Yes 80 cortical regions 

from the automated 

anatomical labelling 

(AAL) atlas

T-test, LASSO Proportional hazards 

model

C-index The preliminary results demonstrated 

that the developed radiomics-based 

predictive model had the potential to 

monitor progression in high-risk 

populations with AD.

AD, Alzheimer’s disease; MCI, Mild Cognitive Impairment; NC, Normal Control; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging Biomarkers and Lifestyle flagship study of ageing; CAD Dementia, Computer-Aided Diagnosis of 
Dementia; AUC, area under the ROC curve; SVM, Support Vector Machine; DQDA, The diagonal quadratic discriminant analysis; MP-RAGE, magnetization prepared rapid gradient echo; LASSO, Least Absolute Shrinkage and Selection Operator; sMCI, stable MCI 
(refer to patients fulfill MCI diagnostic criteria but demonstrate no significant progression during 3 years follow-up); pMCI, progressive MCI (refer to patients fulfill MCI diagnostic criteria and transfer to AD during 3 years follow-up); ADNI-Go, Alzheimer’s Disease 
Neuroimaging Initiative grand opportunities; SCD, subjective cognitive decline; FDG PET, fluorodeoxyglucose positron emission tomography; AAL, Automated Anatomical Labeling; PET, positron emission tomography.
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ones with 83% accuracy, suggesting that QSM-based radiomics 
represents a sensitive biomarker for early cognitive impairment in PD.

Diffusion tensor imaging (DTI) scan was also used in the prediction 
of PD-MCI and PDD. In a multicenter study conducted by Jian et al. 
(2024), the investigators developed an MRI-based radiomics model 
based on T1-weighted and DTI. They extracted 3,396 radiomic features 
focusing on gray and white matter regions. The feature selection 
method was LASSO regression and the model construction method was 
random forest model. The model achieved an AUC of 0.86. Zeng et al. 
(2025) investigated hippocampal functional imaging with resting-state 
fMRI in 89 PD patients (55 with cognitive impairment). Their research 
results suggest the logistic regression model achieved 88.9% accuracy, 
emphasizing hippocampal functional connectivity detected by resting-
state fMRI as a key predictor of cognitive decline of PD patients.

Beyond structural changes, cognitive impairment in PD has also 
been linked to disruptions in specific neural circuits. Previous research 
suggests that CI is associated with dysfunction in frontal-striatal 
circuits, frontal-basal ganglia circuits, and frontal-thalamic circuits in 
patients with PD (Apostolova et al., 2010; Kim et al., 2012). Supporting 
this, functional and molecular imaging studies have further explored 
radiomic correlates of CI. For instance, Rahmim et al. used single-
photon emission computed tomography (SPECT) radiomic features 
to investigate the correlation between striatal dopamine transporter 
and PD-MCI (Rahmim et al., 2016). This study suggested that SPECT 
could also be  used as the tool for objectively assessing CI in PD 
patients (Table 2 presents a summary of the above studies).

In conclusion, radiomics shows promise in predicting cognitive 
impairment in PD, capturing subtle brain changes and enhancing 
diagnostic precision. Integration with clinical data improves predictive 
accuracy, but challenges persist. Model heterogeneity and lack of 
interpretability hinder clinical adoption. Future research should 
address these issues to develop robust, interpretable, and generalizable 
radiomics models for PD cognitive impairment prediction.

5 Advances in radiomics for predicting 
cognitive impairment associated with 
cerebrovascular disease

As life expectancy continues to increase, age-related diseases have 
become one of the most significant health challenges worldwide. 
Cerebral small vessel disease (CSVD) is a common age-related 
condition that affects 80% of the elderly population are suffering 
(Zhang et al., 2023). CSVD is recognized as one of the major causes of 
stroke and vascular cognitive dysfunction, significantly impacting 
patients’ quality of life (Cannistraro et al., 2019). The pathogenesis of 
CSVD-related cognitive dysfunction remains incompletely 
understood, however, early intervention can delay or even reverse its 
progression (Ngandu et al., 2015).

With advances in neuroimaging techniques, multiparametric MRI 
plays a crucial in the early diagnosis of CSVD-related cognitive 
dysfunction. These techniques can non-invasively assess neuroimaging 
indices of brain structure, function, perfusion, and metabolism. 
Comprehensive analysis of multiparametric MRI data using machine 
learning can facilitate accurate diagnosis and prognostic assessment 
of CSVD at the individual level. Türe et al. (2000) reported that the 
majority of pathological changes associated with CSVD occur in the 
basal ganglia and corona radiata regions supplied by the 

lenticulostriate artery (LSA). These regions affect basic motor, sensory, 
and visual functions. Additionally, a recent study (Decavel et al., 2012) 
reported that cognitive deficits occur in approximately 30–80% of LSA 
infarction cases, necessitating analysis of the potential relationship 
between LSA and cognitive deficits. Zhou et al. (2024) collected data 
from 102 CSVD patients with cognitive dysfunction and developed a 
model that combined LSA radiomics with clinical features using high-
resolution magnetic resonance black blood sequences, which aimed 
to analyze the potential relationship between corresponding LSA 
imaging markers and cognitive dysfunction. The study selected four 
clinical features (left hemisphere stems, left hemisphere branches, 
bilateral stems, total vessel count) and six wavelet transform features 
using LASSO regression analysis. Three models were constructed 
based on clinical features, radiomics features, and combined clinical-
radiomics features, respectively. The study demonstrated that the 
combined model achieved the best predictive performance, with the 
radiomics model also outperformed the clinical model.

Post-stroke cognitive impairment (PSCI) is a major component 
of stroke sequelae (Pantoni, Salvadori, 2021), which includes ischemic 
PSCI (iPSCI) and hemorrhagic PSCI (hPSCI) each with distinct 
pathogenesis. iPSCI stems from ischemic cerebral infarction 
disrupting the cortico-subcortical network, particularly in the 
frontal-executive circuit. In contrast, hPSCI results from direct tissue 
destruction via hematoma mass effect with secondary iron-mediated 
neurotoxicity, neuroinflammation and subarachnoid hemorrhage 
(SAH)-associated delayed cerebral ischemia. Despite their distinct 
mechanisms, both iPSCI and hPSCI represent critical forms of post-
stroke cognitive dysfunction requiring early intervention to prevent 
irreversible decline. Studies have shown that the interval between the 
onset of stroke and PSCI development represents a therapeutic 
window for early intervention to preserve cognitive function (Brainin 
et  al., 2015). Therefore, identifying reliable predictors of PSCI is 
essential for improving long-term stroke outcomes. For iPSCI, 
radiomics analysis of white matter integrity can capture subtle 
microstructural changes prior to cognitive decline (Habes et  al., 
2016). In hPSCI, perihematoma lesion heterogeneity quantified 
through CT/MRI radiomics (Haider et al., 2023) may predict the risk 
of iron-mediated neurotoxicity. Such imaging biomarkers may enable 
targeted interventions during this vulnerable stage, ultimately 
improving long-term cognitive outcomes.

The texture features derived from routine clinical MR images can 
represent robust early predictors of PSCI. Betrouni et al. (2022) analyzed 
texture features of the hippocampus and entorhinal cortex to predict 
cognitive status 6 months post-stroke using a random forest model based 
on T1-weighted images. The model achieved an accuracy of 0.90 ± 0.05, 
sensitivity was 0.92 ± 0.04, specificity was 0.93 ± 0.02, and AUC for the 
subject’s working characteristics was 0.90 ± 0.03 in the study.

Several studies have leveraged radiomics and functional 
connectivity (FC) analyses to uncover early predictive markers of 
PSCI. Dragoș et al. (2025) enrolled 144 patients to investigate the 
predictive role of FC and MRI radiomic markers in evaluating PSCI 
1 year after acute ischemic stroke (AIS). The study employed MRI 
and electroencephalogram (EEG) processing techniques to assess 
brain and cognitive reserve. By integrating these measures with 
predictive models based on quantitative EEG (QEEG), MRI 
radiomics, and clinical data, the study sought to identify early 
predictive factors for PSCI using Cox proportional hazards models. 
The integration of FC and radiomics biomarkers offers potential for 
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TABLE 2 Summary of Radiomics Studies Predicting Cognitive Impairment in PD.

First 
authors

Number of 
subjects

Image acquisition 
method

Pre-
processing: 
yes/no

Region of 
interest (ROI) 
and 
segmentation

Feature 
selection 
method

Model 
construction 
method

Model 
evaluation 
metric

Conclusions

Kang et al. 

(2022)

149 (PD = 104, NC = 45) 

from a local cohort

T1-weighted MRI images, T2-

weighted MRI images, and T2 

fluid-attenuated inversion 

recovery MRI images

Yes Substantia nigra, 

Head of caudate 

nucleus, and 

Putamen

LASSO regression MLR and SVM Area under ROC 

curve

Radiomics features and magnetic susceptibility 

value of the nigrostriatal system from 

quantitative susceptibility mapping could have a 

crucial role in diagnosing PD and assessing CI.

Zhao et al. 

(2022)

60 (PD-MCI = 16, PD-

NC = 16, NC = 28) from 

a local cohort

T1-weighted MRI images, T2-

weighted MRI images, and multi-

gradient echo-based QSM 

sequences.

Yes Substantia nigra, 

Hippocampus

Not specified Not specified Area under ROC 

curve, sensitivity, 

specificity

Magnetic resonance quantitative susceptibility 

mapping combined with voxel-wise and 

radiomic analysis can assess mild cognitive 

impairment in Parkinson’s disease.

Jian et al. 

(2024)

183 (PD-MCI = 50, 

PD-NC = 133)from 

PPMI database;49 (PD-

MCI = 18, PD-NC = 21)

T1-weighted MRI images, 

Diffusion tensor imaging 

sequence

Yes Gray matter, White 

matter, and 

Cerebrospinal fluid 

(automatically 

segmented)

Minimum 

redundance 

maximum relevance 

(mRMR), and 

LASSO regression

Logistic regression 

model

Area under ROC 

curve

MRI radiomics combined with clinical features 

can predict cognitive decline in Parkinson’s 

disease.

Shin et al. 

(2021)

117 (PDD = 42, PD-

MCI = 75) from a local 

cohort

T1-weighted

MRI images

Yes Cortical thickness LASSO regression Random forest and 

SVM

Area under ROC 

curve

Cortical thickness from MRI helped predict 

conversion from mild cognitive impairment to 

dementia in Parkinson’s disease at an individual 

level, with improved performance when 

integrated with clinical variables.

Park et al. 

(2023)

262 (Among them, 

PDD = 75) from a local 

cohort

T1-weighted MRI images, T2-

weighted MRI images, and T2 

fluid-attenuated inversion 

recovery MRI images

Yes Frontal/executive 

function domain, 

Caudate

Ten-fold cross 

validation

Multiparametric 

radiomics model

Area under ROC 

curve, accuracy, 

sensitivity, 

specificity

An interpretable multiparametric radiomics 

model of basal ganglia can predict dementia 

conversion in Parkinson’s disease.

Zeng et al. 

(2025)

89 (PD-CI = 55, PD-

NC = 34) from a local 

cohort

T1-weighted MRI images, T2-

weighted MRI images, T2 fluid-

attenuated inversion recovery 

MRI images, High-resolution 3D 

T1-weighted structural images, 

and the gradient-recalled echo 

echo-planar imaging sequence

Yes Bilateral hippocampi Spearman rank 

correlation, LASSO 

regression

Logistic regression 

models

Area under ROC 

curve, sensitivity, 

and specificity

Hippocampal functional imaging-derived 

radiomics features can diagnose cognitively 

impaired patients with Parkinson’s disease.

Rahmim 

et al. (2016)

122 (PD = 85, NC = 56) 

from PPMI database

Dopamine transporter (DAT) 

SPECT images; High-resolution 

MRI images

Yes Boundaries of the 

caudate and putamen 

(both left and right)

Pearson correlation, 

Multivariate 

stepwise linear 

regression analysis

Multivariate 

stepwise linear 

regression analysis

Pearson 

correlation 

coefficient

The results demonstrated the ability to capture 

valuable information using advanced texture 

metrics from striatal DAT SPECT, enabling 

significant correlations of striatal DAT binding 

with cognitive outcomes.

PD, Parkinson’s disease; PUT, putamen; LASSO, The least absolute shrinkage and selection operator; QSM, Quantitative susceptibility mapping; LR, Multivariate logistic regression; SVM, support vector machine; PDD, Parkinson disease dementia; PD-CI, Parkinson 
disease with cognitive impairment; PD-MCI, Parkinson disease with mild cognitive impairment; PD-NC, Parkinson disease with normal cognition; PPMI, Parkinson’s progression markers initiative.
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TABLE 3 Summary of Radiomics Studies Predicting Cognitive Impairment in Cerebrovascular disease.

First authors Number of 
subjects

Image 
acquisition 
method

Pre-processing: 
yes/no

Region of interest 
(ROI) and 
segmentation

Feature 
selection 
method

Model 
construction 
method

Model 
evaluation 
metric

Conclusions

Zhou et al. (2024) 120 (MCI = 58, 

MSCI = 44) from a 

local cohort

T1-weighted MRI 

images, High-resolution 

magnetic resonance 

black blood sequences 

MRI images

Yes Entire lenticulostriate artery 

(LSA) vasculature (manual)

The max-relevance 

and min-

redundancy, Five-

fold cross-validation 

and LASSO

Multivariate logistic 

regression

Area under 

ROC curve

The model that combines clinical 

and radiomics features of LSA could 

predict MCI.

Dragoș et al. 

(2025)

144 stroke patients 

from a local cohort

T1-weighted MRI 

images, T2 fluid-

attenuated inversion 

recovery MRI images, 

diffusion-weighted MRI 

images

Yes The AIS lesion Not specified Cox proportional hazards 

model,

Area under 

ROC curve, 

Accuracy

A predictive model is constructed 

based on quantitative 

electroencephalogram, MRI 

radiomics and clinical data, which 

can identify patients with acute 

ischemic stroke who are prone to 

develop PSCI at an early stage.

Weaver et al. 

(2021)

2,950 stroke 

patients from 12 

local cohorts

T1-weighted MRI 

images, T2 fluid-

attenuated inversion 

recovery MRI images, 

diffusion-weighted MRI 

images

Yes The left frontotemporal 

lobes, left thalamus, and 

right parietal lobe

Leave-one-cohort-

out cross-validation

Multivariate logistic 

regression model

Not specified The occurrence of PSCI could 

be predicted by a voxel-based 

lesion-symptom mapping (VLSM) 

model.

Betrouni et al. 

(2022)

327 stroke patients 

from the 

STROKOG 

members

T1-weighted

MRI images

Yes The hippocampus and the 

entorhinal cortex

Not specified Random forest Accuracy, 

Sensitivity, 

Specificity

These results suggested that texture 

features obtained from routine 

clinical MR images were robust 

early predictors of poststroke 

cognitive impairment.

Miao et al. (2021) 58 (HC = 21, 

hPSCI = 16, 

iPSCI = 21) from a 

local cohort

T1-weighted MRI 

images, Resting-state 

MRI images

Yes Caudate Nucleus Pearson’s correlation Unmodeled Intraclass 

correlation 

coefficient

The radiomic features of stroke 

lesions may suggest FCs damage and 

low abundant club organization, 

which are potential imaging markers 

of PSCI and provide new insights 

into the neural mechanisms of PSCI.

MCI, mild cognitive impairment; MSCI, moderate or severe cognitive impairment (MoCA score≤17); ROC, Receiver Operating Characteristic Curve; LSA, lenticulostriate artery; AIS, acute ischemic stroke; PSCI, post stroke cognitive impairment; VLSM, voxel-based 
lesion-symptom mapping; STROKOG, Stroke and Cognition Consortium from centers; hPSCI, hemorrhagic stroke post-stroke cognitive impairment; iPSCI, infarct stroke post-stroke cognitive impairment.
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enhanced predictive accuracy, possibly facilitating more effective 
therapeutic approaches for PSCI. Besides, Weaver et  al. (2021) 
conducted a large multicohort study including 2,950 patients were 
enrolled, with MRI imaging data and cognitive assessments were 
obtained up to 15 months after AIS onset. The study selected the 
infarcts in the left frontotemporal lobe, right parietal lobe, and left 
thalamus as the ROI and got the conclusion that the occurrence of 
PSCI could be  predicted using a voxel-based lesion-symptom 
mapping (VLSM) model. This study underscores the importance of 
lesion location in predicting PSCI, complementing the findings of 
Dragoș et al. by emphasizing the structural correlates of PSCI. Miao 
et al. (2021) combined resting-state functional magnetic resonance 
imaging (rs-fMRI) with radiomics features to investigate FC of 
low-degree rich club organization and the caudate nucleus. The 
results revealed that changes in functional connectivity of low-degree 
rich club organization and the caudate nucleus were correlated with 
3D shape features and first-order statistics of stroke lesions. These 
radiomic features may indicate disruption of FC and low-degree rich 
club organization, serving as potential imaging markers of PSCI and 
providing new insights into its neural mechanisms (Table 3 presents 
a summary of the above studies).

These studies demonstrate the potential of radiomics as a robust 
tool for predicting cognitive outcomes following stroke. By leveraging 
multiparametric MRI and machine learning, radiomics models can 
identify early predictive markers of cognitive dysfunction. The 
integration of radiomics with functional connectivity and clinical data 
enhances predictive accuracy, providing insights into the neural 
mechanisms underlying cognitive decline. However, challenges 
remain, including the need for larger, diverse cohorts to validate the 
findings and the complexity of interpreting radiomics features in the 
clinical background.

6 Discussion

The above studies highlight the potential of radiomics to extract 
high-dimensional quantitative features from medical images. The 
recent studies integrate radiomics with clinical and neuropsychological 
data, thereby enhance the predictive accuracy of the models. This 
multidimensional approach allows for a more comprehensive 
assessment of cognitive decline, capturing both imaging-derived and 
clinical risk factors. The application of machine learning techniques 
in radiomics analysis enables the development of sophisticated 
predictive models. These models can identify complex patterns and 
relationships within the data, facilitating early diagnosis and risk 
stratification of cognitive impairment.

The existing studies also exhibit several limitations. First, significant 
heterogeneity exists in the imaging protocols, patient populations, and 
cognitive assessment tools employed across studies. Standardization of 
imaging protocols and cognitive assessments is essential to enhance the 
comparability of radiomics-based studies. Second, many studies are 
limited by small sample sizes, which may diminish both statistical 
power and generalizability of the findings. Larger, prospective studies 
are needed to validate the predictive value of radiomics biomarkers. 
Third, while little studies employ longitudinal follow-up, many existing 
researches are cross-sectional, thereby restrict the ability to understand 
the dynamic changes of cognitive decline. Fourth, despite the high 
predictive accuracy of radiomics models, their interpretability remains 

challenging. Future researches should focus on developing interpretable 
radiomics models that can be easily integrated into clinical practice.

7 Conclusion

The strength of radiomics lies in its capacity to systematically and 
efficiently extract complex information from medical images, thereby 
providing novel perspectives and valuable tools for the realms of 
medical diagnosis and disease management. Radiomics-derived 
imaging biomarkers, particularly those targeting cognitive dysfunction, 
represent important clinical applications. These biomarkers enable 
physicians to efficiently differentiate patients with cognitive disorders 
across a spectrum of neurological conditions, facilitating timely and 
appropriate interventions. Nevertheless, the field of radiomics 
continues to face several challenges, including index standardization 
and normalization, limited sample sizes, and data consistency of data 
across multicenter studies. Therefore, further research and 
technological advancement are required to enhance the effectiveness 
and reliability of radiomics in cognitive impairment research.
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