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Introduction: The anterior insular cortex (AIC) integrates interoceptive,

cognitive-emotional, and error-monitoring signals, and is consistently

hyperactive in anxiety and depression. Converging evidence links elevated

glutamate + glutamine (Glx) in fronto-insular regions to stress reactivity;

however, it is unknown whether AIC Glx relates to a transdiagnostic general

psychopathology factor (G-score) or to the tendency to overweight prediction

errors during learning. We therefore combined functional MRS (fMRS) with

reinforcement-learning modeling to test whether (i) baseline AIC Glx predicts

the G-score derived from bifactor analysis of PHQ-9, GAD-7, and STAI-X1, and

(ii) task-evoked Glx changes track individual di�erences in error sensitivity during

gain- and loss-based learning.

Methods: Fifty-six healthy adults (22 ± 2 yr, 16 women) completed the

questionnaires and performed a two-armed bandit task (40 loss then 40 gain

trials) while single-voxel semi-LASER spectra were acquired from AIC andmedial

prefrontal cortex (mPFC) at rest and during each block. Six Rescorla-Wagner

variants were fitted to the choices; the best model (based on the lowest LOOIC)

included error sensitivity, decision temperature, and value decay. Glx (CRLB

< 20%) was quantified using LCModel and analyzed with repeated-measures

ANOVA and Bonferroni-corrected correlations; mediation was assessed using

Baron-Kenny steps (α = 0.05).

Results: Baseline AIC Glx correlated with the G-score (r = 0.39, p = 0.004) and

with error sensitivity for gains and losses (r ≈ 0.41–0.44, p ≤ 0.005); mPFC Glx

showed no such relations. AIC Glx fell during gain learning (−2.21%, p = 0.034)

and remained low post-task, whereas mPFCGlx was unchanged. Error sensitivity

fully mediated the AIC-Glx/G-score link; associations were specific to Glx, not

other metabolites.

Discussion: Higher excitatory tone in the AIC appears to enlarge prediction-

error weighting, which in turn amplifies a shared anxiety-depression dimension.

Dynamic Glx reductions during reward learning suggest acute metabolic

demand superimposed on a trait-like baseline that biaes cognition. Targeting

insular glutamatergic function–pharmacologically or via neuromodulation–may

therefore mitigate maladaptive error processing that underlies internalizing

psychopathology.

KEYWORDS

reinforcement learning, general psychopathology, functional MRS, glutamate, error

sensitivity
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1 Introduction

The anterior insular cortex (AIC) is a pivotal brain region

involved in a wide range of cognitive and emotional processes,

including interoception (Dobrushina et al., 2020), error detection

(Palermo et al., 2018), and risk assessment (Gogolla, 2017; Paulus

and Stein, 2006). Its unique anatomical and functional connectivity

positions the AIC as a critical hub for integrating sensory

information with emotional states, making it particularly relevant

in the context of anxiety and depression (Wager and Barrett,

2017). These mental health conditions are often characterized by

heightened sensitivity to negative outcomes and an exaggerated

response to perceived threats or errors, functions that are closely

tied to AIC activity (Paulus and Stein, 2006; Wager and Barrett,

2017).

The involvement of the anterior insula in psychopathology,

particularly in anxiety and depression, has been supported by

numerous neuroimaging studies (Gogolla, 2017). Functional MRI

(fMRI) research has consistently shown that the AIC is hyperactive

in individuals with anxiety disorders during tasks that involve

uncertainty or error monitoring (Paulus and Stein, 2006). For

example, increased AIC activation has been observed in response

to negative feedback during decision-making tasks, a response

that correlates with the severity of anxiety symptoms (Paulus and

Stein, 2006). Similarly, in depression, the AIC has been implicated

in the processing of negative emotional stimuli, with increased

insular activity being associated with rumination and negative

affect (Wager and Barrett, 2017).

The concept of the general psychopathological factor score,

or “G-score,” which captures the shared variance across various

mental health symptoms, including anxiety and depression, has

gained prominence in recent years (Caspi et al., 2014; Lahey

et al., 2017). The G-score provides a more holistic understanding

of psychopathology, recognizing the overlap between different

mental health conditions. Previous research has suggested that

this G-score is not merely a statistical artifact but may be

underpinned by common neurobiological mechanisms (Lahey

et al., 2017). Moreover, because anxiety and depression symptoms

are highly comorbid and often show substantial overlap even in

subclinical samples, focusing on a single general factor enhances

statistical power and reliability compared to analyzing each scale

separately. In healthy or non-clinical populations, individual PHQ-

9 and GAD-7 scores frequently exhibit floor effects and restricted

range, which can obscure true association with neurobiological

measures. By applying bifactor modeling to large independent

normative datasets, we derive a latent G-score that captures

shared variance across multiple instruments while partitioning

out domain-specific noise and reducing measurement error.

This transdiagnostic approach aligns with emerging frameworks

in psychiatric research, emphasizing common neurobiological

substrates across internalizing disorders and enabling detection

of Glx-psychopathology relationships that might be missed when

anxiety and depression are examined in isolation.

Glutamate is the primary excitatory neurotransmitter in the

brain, playing a central role in synaptic plasticity, learning, and

memory (Marsman et al., 2014). Alterations in glutamatergic

signaling have been implicated in various psychiatric conditions,

including anxiety, depression, and schizophrenia (Moriguchi et al.,

2019; Marsman et al., 2014; Sanacora et al., 2012). For instance,

elevated glutamate levels in frontal and cingulate brain regions

have been linked to increased stress responsiveness and anxiety,

suggesting that hyperglutamatergic signaling in these regions may

underlie heightened arousal and maladaptive stress reactions.

Similarly, in major depressive disorder, dysregulated glutamate

metabolism—characterized by regional alterations in glutamate

and glutamine concentrations—appears to be a fundamental

mechanism connecting glutamatergic neurotransmission changes

to depressive symptomatology (Sanacora et al., 2012). Specifically,

in the context of anxiety and depression, glutamate’s role in

modulating neural circuits involved in error processing and

emotional regulation is of particular interest (Arnone et al., 2015;

Nasir et al., 2020).

Functional magnetic resonance spectroscopy (fMRS) studies

have provided valuable insights into the neurochemical landscape

of these disorders, showing that glutamate levels can be altered in

key brain regions like the AIC (Park et al., 2018). However, the

relationship between glutamate concentrations, especially the Glx

complex (a combined measure of glutamate and glutamine), and

general psychopathology remains underexplored (Deelchand et al.,

2018).

The role of the AIC in learning from errors and decision-

making further underscores its relevance to mental health (Paulus

and Stein, 2006). The AIC is activated during tasks that involve

processing prediction errors—the difference between expected and

actual outcomes—particularly in contexts that involve potential

losses (Addicott et al., 2021). Error sensitivity is a critical

component of adaptive learning, allowing individuals to update

their beliefs and strategies based on feedback (Wagner and

Rescorla, 1972). In the context of psychopathology, however, this

process can become maladaptive. Individuals with anxiety or

depression may overestimate the significance of errors or negative

outcomes, leading to heightened stress and maladaptive decision-

making (Aylward et al., 2019; Tobias and Ito, 2021).

Accordingly, our primary aim was to characterize how AIC

Glx concentrations fluctuate across reinforcement learning—

specifically during gain and loss blocks—and to test whether

these task-related changes relate to individual differences in error

sensitivity. Our secondary aim was to examine whether baseline

(pre-task resting) AICGlx levels are associated with a trandagnostic

general psychopathology factor that captures shared variance in

anxiety and depression symptoms.

By focusing on the AIC, this study aims to provide a

more nuanced understanding of how glutamatergic activity

contributes to the neurobiological basis of general psychopathology

(Figure 1). These insights could have significant implications for

the development of targeted interventions, particularly those that

modulate glutamate signaling, in the treatment of anxiety and

depression.

2 Methods

2.1 Participants

Fifty-six subjects (16 women, mean age 22±2 years)

participated in this study. On average, participants scored
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FIGURE 1

Overall workflow of the study. First, general psychopathology scores (G-scores) for anxiety and depression were calculated based on self-reported

questionnaire data (PHQ-9, GAD-7, STAI-X1) obtained from participants (n = 31,720) of the Young Adulthood Depression Research Consortium (Choi

et al., 2021), the parent cohort of this study. Utilizing the bifactor model, which best explained responses on depression and anxiety questionnaires,

we computed G-scores for our fMRS participants for subsequent analyses. After excluding fMRS data from participants (n = 4) who did not meet

quality control criteria, Glx concentrations from the remaining participants were used in the current study. Participants performed decision-making

tasks during MR scanning. Behavioral data collected through the two-armed bandit task were fitted to six candidate models, and the best-fitting

model parameters (e.g., error sensitivity, decision temperature, and decay rate) were subsequently employed in the analysis. PHQ-9, patient health

questionnaire 9; GAD-7, generalized anxiety disorder 7; STAI-X1, state-trait anxiety inventory X1; G-score, general psychopathological factor for

anxiety and depression; Glx, glutamate complex; fMRS, functional magnetic resonance spectroscopy; RL, reinforcement learning; CRLB, Cramèr-Rao

lower bounds.

1.7±2.0 on the PHQ-9, 2.2±1.5 on the GAD-7, and 43.0±9.1 on

the STAI-X1. All had normal or corrected-to-normal vision and

normal stereo-acuity. Four subjects were excluded from analysis

for one or more of the following reasons: early termination of

the experiment, difficult MRS voxel placement as evidenced by

T1-weighted image, and poor signal-to-noise ratio (SNR) in the

metabolite spectra. Subsequently, the final data set comprised

52 subjects (12 women). Each participant took part in the MRS

session. Volunteers received reimbursement of 50,000 KRW (≈40

USD). Participants first completed PHQ-9, GAD-7, and STAI-X1

questionnaires in a face-to-face session up to 2 weeks before their

MRS scan (Hahn, 1996; Kroenke et al., 2001; Spitzer et al., 2006;

Spielberger, 2010). This study was approved by the Institutional

Review Board of KAIST. All participants provided informed

written consent.

2.2 MR data acquisition

Magnetic resonance data were collected using a Siemens 3T

Verio scanner (Erlangen, Germany) at KAIST. High-resolution

T1-weighted structural images (MPRAGE, TR = 2,400 ms, TE =

2.02 ms, TI = 1,000 ms, flip angle: 8◦, FOV: 224 × 224 mm, voxel

size: 0.7 × 0.7 × 0.7 mm3) were acquired from the participants.

After structural image acquisition, shimming was performed using

FASTESTMAP (Gruetter and Tkáč, 2000), and water suppression

pulses were calibrated for 1H-MRS. Single-voxel 1H-MRS using

semilocalization by adiabatic selective refocusing (semi-LASER, TR

= 3,000 ms, TE = 28 ms, 400 scans, 2,048 complex points) was

acquired from mPFC VOIs (15 × 20 × 20 mm3) and AI VOIs (30

× 20 × 20 mm3), which a psychiatrist or a neurologist manually

positioned. Because single-voxel fMRS cannot acquire multiple

regions simultaneously, AIC and mPFC scans were run in separate

sessions spaced 10–20 min apart, with the order of VOI acquisition

randomized across participants to avoid order effects. The semi-

LASEER sequence maintains a uniform B1 field and desired flip

angle within each voxel (Zhu and Barker, 2010). Unsuppressed

water signals were also recorded to enable eddy-current and phase

correction during preprocessing.

2.3 Quality control of MRS data

The preprocessing pipeline for 1H-MRS data consisted of eddy

current correction, frequency correction using a cross-correlation

algorithm, and phase correction using the least square algorithm,

part of MRspa software (version 1.5 f) (Deelchand et al., 2018).

To determine the CSF fraction within the VOI, the metabolite

concentrations were estimated using LCModel software version

6.3-1J (Provencher, 1993) and a basis set (Deelchand et al., 2015;

Park et al., 2018). The estimates with CRLB <20% were considered

reliable (Ip et al., 2017). Seven of the metabolites met the CRLB

criterion: NAA, NAAG, mI, glutamate, Glx, tCho, and tCr. Based

on the visual inspection and preprocessing steps described above,

we conducted a further investigation for quality control. We

investigated the LCModel fitting SNR and motion parameters for

the MRS data.

2.4 Anatomical consistency among
participants’ VOIs

Transformation matrices for each participant were acquired

for the transformation of B0 to T1w images to the standard

1 mm3 MNI 152 space using Advanced Normalization Tools.
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Then, the transformation matrix transformed each VOI from the

T1w space to the standard space. Finally, the generalized dice

similarity coefficient as a measure of overlap was computed from

the intersection and union of VOIs (Park et al., 2018; Kim et al.,

2019). We used the Shen brain atlas (Shen et al., 2013), which

consists of 268 regions of interest, including the AIC and mPFC.

The generalized dice coefficient of the VOIs of 52 participants was

0.68 for the mPFC and 0.62 for the AIC (Supplementary Figure 10).

Moreover, because a dice similarity coefficient of 0.6 or greater is

regarded as an excellent agreement for similarities between pairs

(Crum et al., 2006; Zou et al., 2004), our data can be considered

reliable for anatomical consistency.

2.5 Two-armed bandit task with gain and
loss outcomes

Subjects performed decision-making tasks during MR

scanning. The subjects inferred the correct answer among two

options in the decision-making task. The correct option gives a

good outcome with a high probability (70%) and a bad outcome

with a low probability (30%). The wrong answer gives a bad

outcome with a high probability (70%) and a good outcome

with a low probability (30%). Subjects performed two types of

decision-making tasks (Figure 2). The first was the penalty task,

which lost a score (–1,000) for a bad outcome and nothing (±0)

for a good outcome. The second was the gain task, which gained

a score (+1,000) for a good outcome and nothing (±0) for a bad

outcome. Eighty trials were made on each of the two types of tasks.

A 5,000 KRW (Korean currency, ≈ 4 USD) bonus was paid to

participants who scored 8,000 or more. The outcome probability of

each option was hidden from the subjects. The penalty task block

preceded the gain task in all subjects.

On the day of scanning (all between 9 AM and 12 PM),

they ran practice trials in the scanner control room—continuing

until they reported stable performance on both gain and loss

tasks—immediately before entering the scanner. Each participant

completed at least one 40-trial practice block (20 gain, 20 loss).

Practice blocks were repeated until the participant attained ≥50%

correct (chance level) on both tasks. Participants who reached

criterion could request additional practice blocks if they wished.

This procedure ensured that behavior was stable before acquisition

began. In the scanner, each participant completed 10 blocks in total:

three resting-state blocks and, for each VOI (AIC and mPFC),

one loss block and one gain block. Each task block contained 40

decision trials, yielding 160 trials overall (40 trials × 2 outcome

types× 2 VOIs).

FIGURE 2

The experimental design. Participants completed two versions of a two-armed bandit task, one with gains and one with losses. In the gain block, the

option with the higher reward probability yielded +1,000 points on 70% of trials and 0 points on 30% of trials, whereas the alternative option yielded

the opposite probabilities. While learning from losses, the wrong option has a 70% chance of losing 1,000 points, and the right option has a 30%

chance of no loss. (A) A trial consisted of fixation (∼1.5 s)—cue (1.5 s)—outcome feedback (1 s), and the fixation interval ranged from 1.2 s to 1.8 s

(mean 1.5 s) for jittering. Participants were instructed to respond as soon as possible; otherwise, the cue disappears and loses the trial. (B) Participants

performed the loss-learning task and the gain-learning task sequentially. Each learning task consisted of 40 trials. Resting-state sessions were

presented before, between, and after learning sessions. The resting session right before each task (resting #1 for loss learning and resting #2 for gain

learning) was used as the baseline for assessing task-related neurochemical changes.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1592015
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Park et al. 10.3389/fnins.2025.1592015

2.6 Reinforcement learning models

A total of six Rescorla-Wagner model variations were

constructed. Model 1 assumes a one-armed bandit with an error

sensitivity (ǫ).

PEt = outcomet − vt,chosen; outcome ∈ {0, 1}, v ∈ [0, 1]

vt+1,chosen = vt,chosen + ǫ ∗ PEt; ǫ ∈ [0, 1]

The information update for an unchosen option was done

simultaneously in the opposite direction.

vt+1,unchosen = 1− vt,chosen

At the observation level, a decision was made by transforming

values to the softmax function.

probabilityt,chosen =
evt,chosen

evt,chosen + evt,unchosen

Model 2 assumes a two-armed bandit, which only updates the

chosen option’s value.

vt+1,unchosen = vt,unchosen

The decision temperature (τ ) was added to the observation

level in Model 3. Decision temperature controls the exploration-

exploitation trade-off of human behavior by adjusting choice

probability. As the decision temperature becomes small, choice

selection becomes more random and shows exploration behavior,

and choice selection becomes more deterministic and shows

exploitation behavior in the opposite case.

probabilityt,chosen =
eτ∗vt,chosen

eτ∗vt,chosen + eτ∗vt,unchosen
; τ ∈ [0, 1]

The decay rate (λ) was added in Model 4, which resulted in the

decay of the value of the unselected option.

vt+1,unchosen = λ ∗ vt,unchosen; λ ∈ [0, 1]

Models 5 and 6 are modified versions of Models 3 and 4,

respectively, in which the lapse parameter (L) replaces the decision

temperature parameter (τ ). The lapse parameter explains the

exploration-exploitation trade-off (Aylward et al., 2019).

probabilityt,chosen =
evt,chosen

evt,chosen + evt,unchosen
∗ (1− L)+ L/2; L ∈ [0, 1]

The optimal learning model was selected using the leave-one-

out information criterion (LOOIC), which gauges the pointwise

prediction accuracy for new data based on a Bayesian model This

approach calculates the log-likelihood of each observation under

posterior simulations of the model parameters, providing a robust

estimate of the model’s predictive performance (Vehtari et al.,

2017). The model with the lowest LOOIC is considered the best,

as it indicates the model has the best trade-off between fitting the

data well and being parsimonious.

2.7 Baron and Kenny’s four-step approach
to mediation

To assess the behavioral parameters’ role in mediating between

neurochemicals and the mental state, we first performed Baron

and Kenny’s four-step mediation analysis (Baron and Kenny,

1986). Step one was to regress the dependent variable on the

independent variable to confirm that the independent variable is

a significant predictor of the dependent variable. Step two was to

regress the mediator on the independent variable to ensure that the

independent variable was a significant predictor of the mediator.

There will be no mediation if the mediator is not associated

with the independent variable. Finally, step three was to regress

the dependent variable on both the mediator and independent

variable to confirm that the mediator is a significant predictor

of the dependent variable, and the strength of the coefficient of

the previously significant independent variable in step one is now

significantly reduced.

2.8 Statistical analysis

All statistical tests were conducted in R (version 4.4). Behavioral

performance (accuracy, win-stay/lose-stay) was examined with

one-sample and paired-sample t-tests against chance levels. Time

effects on Glx and on resting-state comparisons were evaluated

using one-way repeated-measure ANOVA with Greenhouse-

Geisser correction for nonsphericity, followed by Bonferroni-

corrected post hoc pairwise contrasts. Correlations between

metabolites, model parameters, and questionnaire scores employed

Pearson’s or Spearman’s rank correlations, with Bonferroni

adjustment for multiple comparisons. Mediation analyses followed

Baron and Kenny’s four-step regression approach, and moderation

was tested via linear regression including an interaction term

between Glx and error sensitivity. All tests used a two-tailed

α = 0.05.

3 Results

3.1 Behavioral results

Two-armed bandit tasks with gain and loss outcomes were

performed (Figure 2). The correct rates of the two-armed bandit

tasks of 52 subjects were above the chance rate for both learning

from gains (62.0%, p < 0.001) and learning from losses (60.9%, p <

0.001). Performance did not differ by the learning type (p = 0.142);

however, the win-stay rate (WS), which represents a tendency to

remain in the current choice when they win the game, was higher

than the lose-stay rate (LS) for both gain outcome (WS: 84.5%,

LS: 79.3%, p = 0.003) and loss outcome (WS: 85.4%, LS: 80.7%,

p = 0.003).

3.2 Computational modeling results

A total of six models were fitted to the data, and the optimal

learning model was selected using the leave-one-out information
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criterion (LOOIC) (see reinforcement learning models in the

Materials and methods section). The winning model was the

Rescorla-Wagner model with three parameters: error sensitivity,

decision temperature, and decay rate (Model 4 in Table 1).

Parameters were successfully recovered (Supplementary Figure 2),

meaning that the model sufficiently fitted parameters despite

the innate correlation between error sensitivity and decision

temperature (Addicott et al., 2021).

3.3 Spectra fitting for glutamate-glutamine
complex

The LCModel fit characteristics for metabolites from each

volume-of-interest (VOI, Figure 3A), including Glx, and a

representative spectrum, are depicted in Figure 3B. After spectra

preprocessing, which included averaging, frequency, and phase

correction using MRspa software (version 1.5 f) (Deelchand

et al., 2018), the metabolite concentrations were estimated using

LCModel software version 6.3-1J (Provencher, 1993). The analysis

incorporated a basis set (Deelchand et al., 2015; Park et al., 2018)

and accounted for the cerebrospinal fluid (CSF) fraction within

the VOI. Metabolite estimates with Cramèr-Rao lower bounds

(CRLB) <20% were considered reliable. Seven metabolites—

N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG),

myo-inositol (mI), glutamate (Glu), glutamate+glutamine (Glx),

glycerylphosphorylcholine+phosphorylcholine (tCho), and

creatine + phosphocreatine (Cr + PCr) met the CRLB criterion.

3.4 Dynamic Glx changes during
reinforcement learning

Glx concentration in each block was calculated with fMRS

data acquired during reinforcement learning experiments, which

consisted of resting-loss-resting-gain-resting blocks. A full model

TABLE 1 Model specification and fit indices.

RL models Error sensitivity Decision temperature Lapse Decay rate LOOIC

One-arm

Model 1 X – – – 9,156

Two-arm

Model 2 X – – – 7,377

Model 3 X X – – 7,317

Model 4 X X – X 6,330

Model 5 X – X – 7,448

Model 6 X – X X 7,510

Model 4 (error sensitivity + decision temperature + decay rate) showed the lowest LOOIC. The details of each model are described in the Methods’ reinforcement learning model section. RL,

reinforcement learning; LOOIC, leave-one-out information criterion, lower values indicate better fit.

FIGURE 3

The volume of interest and spectroscopic data sample. (A) Axial cross-section of the single-subject representative voxel locations for the left anterior

insular and medial prefrontal cortex were superimposed on the anatomical scan from the same subject. (B) The cortical metabolic profile by

1H-fMRS analysis. Profile shows the average of 80 spectra acquired during the first resting period. The red and black line depicts the raw and fitted

signals, respectively. The blue line is an isolated signal for Glx. AIC, anterior insular cortex; mPFC, medial prefrontal cortex; MRS, magnetic resonance

spectroscopy.
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FIGURE 4

Glutamate changes during learning tasks. (A, B) During gain learning, Glx levels decreased in the AIC but not in the mPFC. Glx did not show

significant changes during loss learning. The baseline refers to the resting period immediately before performing each task. (C) AIC 1 Glx shows that

it has dropped during gain learning, but not loss learning. 1Glx refers to task block Glx minus preceding resting-state Glx. The * indicates that the

time e�ect of the partial ANOVA model was significant at the level of p < 0.05. Error bars indicate 95% confidence intervals.

of the AIC (Montreal Neurological Institute (MNI) coordinates:

x = −38.2, y = 8.9, z = −3.9) Glx using one-way repeated

measures ANOVA correcting for nonspherical distribution showed

a significant time effect [F(4,47) = 2.63, p = 0.036]. Post hoc

analysis with Bonferroni correction did not reveal significant

differences between blocks. Conversely, Glx levels in the mPFC

(x = 0.8, y = 47.0, z = −2.0) did not show a significant

time effect [F(4,47) = 1.62, p = 0.169]. These results

were consistent even when Glx was referenced to the Cr+PCr

level. Our findings suggest that Glx concentration in the AIC,

but not the mPFC, decreased during or after reinforcement

learning tasks.

3.5 Post-learning decrease in resting AIC
Glx

To test whether the significant time effect on resting-state Glx

specifically reflected an after-effect of the gain learning task, we

compared AIc Glx at three resting intervals—pre-task baseline,

between the loss and gain blocks, and post-task—using a one-way

repeated measures ANOVA with Greenhouse-Geisser correction

for nonsphericity. This analysis revealed a significant main effect

of time in the AIC [F(2,49) = 3.54, p = 0.033] but not on

the mPFC [F(2,49) = 1.63, p = 0.200]. Bonferroni-corrected

post hoc tests showed that resting AIC Glx decreased from the

between-task to the post-task interval (1 = −2.27%, p =

0.045), indicating a specific post-gain-learning reduction in

Glx. These findings held when normalizing to Cr + PCr

(Supplementary Figure 3), with a significant time effect in the AIC

[F(2,49) = 4.15, p = 0.019], and a consistent post-task drop (1 =

−2.56%, p = 0.022), but no effects in the mPFC [F(2,49) = 0.438,

p = 0.646].

3.6 Task-specific AIC Glx decrease during
gain learning

We tested whether the Glx level changes during learning

compared to the baseline Glx level. Baseline(pre-task), during-task,

and post-task Glx levels were entered into a one-way repeated

measures ANOVA. Learning from the gainmodel with AICGlx had

a significant task effect [F(2,49) = 4.27, p = 0.017; Figures 4A, C].

The post hoc comparisons after the Bonferroni correction revealed

that the Glx level during learning from gains was significantly

decreased compared to that at baseline (1 = −2.21%, p = 0.034).

This decrement was not restored after the task (1 = +0.18%, p =

0.927). AIC Glx during learning from losses had no significant task

effect [F(2,49) = 0.289, p = 0.750]. Also, Glx concentration in the

mPFC had no significant task effect both on learning from gains

[F(2,49) = 1.17, p = 0.313] and losses [F(2,49) = 0.402, p = 0.670;

Figure 4B]. These results held when normalizing Glx to Cr+PCr

(Supplementary Figure 3). Learning from gains repeated measures

ANOVA, which used AIC Glx corrected to Cr+PCr, was significant

[F(2,49) = 8.75, p < 0.001], and the Glx level decreased during

learning (1 = −3.66%, p < 0.001), and was not restored after

learning (1 = +1.15%, p = 0.222). Further, we used absolute

concentrations rather than the normalized to Cr+PCr.

3.7 Associations between Glx and
computational parameters

Pearson’s correlation analyses were performed to investigate

the association between each behavioral parameter acquired from

the winning model with Glx level and learning-induced Glx shift

(1Glx, compared to baseline). Highlighting the role of Glx on

behavior, baseline AIC Glx, but not 1Glx, showed a significant
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FIGURE 5

Pearson correlation between AIC Glx, error sensitivity, and G-score. (A, B) Both loss- and gain-error sensitivity show significant Pearson correlation

with AIC Glx. (C) G-score shows a significant linear correlation with AIC Glx. The depicted lines are least-squares lines.

relationship with error sensitivity to losses (r = 0.437, p = 0.002)

and gains (r = 0.408, p = 0.005). Furthermore, each error

sensitivity was significantly correlated with the Glx concentration

in the corresponding task block (Figures 5A, B). However, there

was no relationship between baseline AIC Glx and decision

temperatures (|r| < 0.085, p > 0.594) or decay rates (|r| <

0.241, p > 0.115). Furthermore, AIC 1Glx did not have a

relationship with the corresponding task error sensitivity (loss:

r = 0.180, p = 0.201, gain: r = 0.076, p = 0.592), decision

temperature (loss: r = −0.032, p = 0.824, gain: 0.071, p = 0.620),

and decay rate (loss: r = 0.068, p = 0.633, gain: r = −0.113, p =

0.426). In the mPFC, behavioral parameters of both gain and loss

conditions did not significantly correlate with either baseline Glx

(|r| < 0.229, p > 0.103) or1Glx (|r| < 0.215, p > 0.126). Pearson’s

correlation was used, and significance levels were corrected with

Bonferroni methods. The positive association between AIC Glx

and error sensitivity existed even though AIC Glx had significantly

decreased during learning from the gain.

3.8 Calculation of the general
psychopathology score reflecting
depression and anxiety severity: the
bifactor analysis

Since previous studies have reported high comorbidity between

anxiety and depression (Gorman, 1996), the association with

glutamatergic metabolites of anxiety and depression (Nasir et al.,

2020) may not be independent. In this study, we calculated the

shared score of anxiety and depression severity from Patient Health

Questionnaire 9 (PHQ-9) (Kroenke et al., 2001), General Anxiety

Disorder 7 (GAD-7) (Spitzer et al., 2006), and State-Trait Anxiety

Inventory X1 (STAI-X1) (Spielberger, 2010; Hahn, 1996) using the

bifactor analysis. With exploratory (n = 17,413) and confirmatory

(n = 13,450) bifactor analyses in a large independent sample

of the general population, a bifactor model was established for

calculating the shared score of anxiety and depression, termed

as a general factor score (G-score) here (Supplementary Table 1).

In the result of the model fit, the bifactor model showed

the best fit in chi-square tests (Supplementary Table 2). Items

from the six subgroups loaded similarly and strongly onto

their group factors (Supplementary Figure 1). In addition, we

computed “omega hierarchical” reliability, which denotes the

proportion of variance in a total sum score attributable to the

general factor. Our bifactor model’s hierarchical and total omega

scores were 0.72 and 0.97, respectively. The bifactor analysis is

described in detail in the Supplementary Method. Chi-square test

results showed the superiority of the orthogonal bifactor model

(Supplementary Table 2), supporting the computation of a total

score and interpreting it as a reflection of the general factor of

anxiety and depression (Bornovalova et al., 2020) primarily.

3.9 G-score is associated with AIC Glx

PHQ-9 (r = 0.409, p = 0.003), STAI-X1 (r = 0.357, p =

0.010), and GAD-7 (r = 0.300, p = 0.033) had a positive

relationship with baseline (pre-task resting) AIC Glx. Spearman’s

rank correlation, a nonparametric correlation measure, was used

because the survey scores did not satisfy the assumption of

normality. The general factor score of anxiety and depression also

showed a significant correlation with AIC Glx at baseline (r =

0.394, p = 0.004, Figure 5C) and with the average AIC Glx during

the whole task (r = 0.411, p = 0.002, Supplementary Table 3).

However, AIC 1Glx was unrelated to the g-score (loss: r =

0.107, p = 0.452, gain: r = −0.018, p = 0.897). Multiple

linear regression was performed using a G-score with independent

variables of baseline AIC Glx, mPFC Glx, age, and sex. A significant

regression predictor was found [F(4,47) = 3.92, p = 0.007], with an

adjusted R2 of 0.25. AIC Glx was a significant predictor of the G-

score (b = 0.183, p = 0.004), whereas mPFC Glx was not (b =

0.004, p = 0.969). All reported p-values were Bonferroni corrected.

3.10 Mediation analysis: higher error
sensitivity mediated positive relation
between Glx and G-score

To assess the error sensitivity’s mediation effect on the

association between baseline Glx concentration in the AIC and
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FIGURE 6

Parameter estimate for the four-step mediation analysis. AIC Glx

(independent variable) predicts G-score for anxiety and depression

(dependent variable). After controlling for the error sensitivity

(mediator), those e�ects were no longer significant.

G-score, we performed Baron and Kenny’s four-step mediation

analysis (Figure 6). Regression analysis predicting the G-score

(dependent variable, DV) using AIC Glx (independent variable,

IV) showed a significant association (b = 0.409, p = 0.003),

which corresponds to step one in the mediation analysis (IV

→ DV). In step two, we regressed the average error sensitivity

(mediator) on the Glx level, which was a significant predictor

of error sensitivity (IV → mediator; b = 0.437, p < 0.001).

Finally, we regressed the G-score using error sensitivity and the Glx

level in step three (mediator → DV). The error sensitivity was a

significant predictor of the G-score (b = 0.762, p < 0.001). At

the same time, the effect of Glx was no longer significant (IV →

DV, controlling for mediator; b = 0.081, p = 0.426), implying

that error sensitivity mediates a positive association between AIC

Glx and the general psychopathological factor score of anxiety

and depression.

3.11 Moderation analysis: error sensitivity
did not modulate the relationship between
Glx and G-score

Whereas mediation tests whether error sensitivity explains

how Glx influences the G-score, moderation examines whether

the strength of the Glx-G-score association depends on levels of

error sensitivity. We ran a linear regression with the G-score as

the outcome, AIC Glx as the predictor, and error sensitivity as

the moderator. The Glx × error sensitivity interaction was not

significant (b = 0.828, p = 0.223). Although the full model

was significant (F = 29.2, p < 0.001), neither AIC Glx (b =

−0.175, p = 0.446), error sensitivity (b = 0.084, p = 0.881), nor

their interaction predicted the G-score. Removing the interaction

term yielded a significant model (F = 42.62, p < 0.001) in which

error sensitivity predicted the G-score (b = 0.762, p < 0.001), but

AIC Glx did not (b = 0.081, p = 0.406).

3.12 Specificity of Glx associations relative
to other metabolites

To test whether the relationship between AIC Glx and error

sensitivity reflected a general metabolic effect rather than Glx-

specific signaling, we repeated the same Pearson correlation

analyses for six other metabolites with CRLB <20% (NAA, NAAG,

mI, Glu, tCho, Cr + PCr). None of these metabolites correlated

significantly with error sensitivity to gains or losses (all |r| <

0.18, p > 0.20) or with learning-induced spectral changes (all

|r| < 0.15, p > 0.25). These null results support the specificity of

the Glx-error sensitivity associations.

4 Discussion

The present findings provide convergent evidence that the

anterior insula cortex (AIC) glutamate-glutamine complex (Glx)

levels are associate with individual differences in error sensitivity

during reinforcement learning and correlated with a trandiagnostic

dimension of depression and anxiety. Specifically, baseline AIC

Glx was positively related to both gain- and loss-related error

sensitivity, suggesting that higher excitatory tone in this region

is linked to an amplified perception of prediction errors. Such

overestimation of errors is often observed in internalizing

disorders, where individuals tend to focus disproportionately on

negative outcomes and worrisome predictions. Moreover, this

behavioral overestimation of errors statistically mediated the

association between AIC Glx and a unified factor of anxiety and

depression. Clinically, these results imply that insular glutamatergic

processes contributing to error processing may underlie a core

vulnerability across anxiety and depressive symptoms, and thus

could inform future efforts to refine diagnostics or tailor

interventions.

A notable finding is that Glx changes during reinforcement

learning were specific to the AIC and not evident in the medial

prefrontal cortex (mPFC), despite the well-established role of

the mPFC in mood regulation. One possible interpretation is

that AIC and mPFC subserve partially distinct functions within

broader corticolimbic circuits implicated in affective processing.

The AIC is often described as a key region for interoception,

salience processing, and the integration of bodily signals into

subjective feelings (Craig, 2009; Ullsperger et al., 2010). By this

account, fluctuation of insular Glx levels may reflect dynamic shifts

in the evaluation of salient prediction errors, particularly during

reward-based tasks such as learning from gains. In contrast, the

mPFC, especially its ventromedial portion, is frequently associated

with long-term mood regulation, self-referential thought, and

decision-making guided by more abstract values (Alexander

and Brown, 2011). The lack of observable task-related changes

in mPFC Glx could mean that the mPFC’s involvement in

mood regulation is driven by more enduring neurochemical or

functional changes rather than the short-term fluctuations revealed

by our reinforcement learning paradigm (Billeke et al., 2020).

Alternatively, the mPFC may exhibit more subtle neurometabolic

shifts or might rely on other neurotransmitter systems during acute

learning, making the immediate Glx response more challenging
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to detect without specialized methods or larger sample sizes.

The dissociation underscores the possibility that the AIC is

preferentially responsible for the on-the-fly registration of error-

related signals, whereas the mPFC might orchestrate broader

cognitive-emotional integrations over longer intervals.

Another relevant observation is that although AIC Glx
decreased specifically during gain-based tasks, the trait-like
association between baseline Glx and error sensitivity remained

robust. This pattern implies that while learning-related processes
may transiently lower local glutamate levels—perhaps reflecting
increased metabolic demand or altered excitatory signaling

during the task—such an acute shift does not disrupt the more

stable, baseline neurochemical context that correlates with

trait-level biases in error processing. These findings also fit

into the broader framework that, although insular metabolic

activity fluctuates with momentary salience detection and

prediction error, baseline Glx indices may represent a more

enduring predisposition toward negative affect and cognitive

distortion. The novelty and importance of this study lie in its

demonstration that a neurochemical marker in the AIC can

be mechanistically linked to a transdiagnostic dimension of

depression and anxiety via error sensitivity. While prior work

has associated insular activity and glutamatergic metabolites

with either anxiety or depression in isolation (Nasir et al., 2020),

the emphasis here on a bifactor model clarifies that a shared

internalizing dimension underpins these conditions. Moreover,

the mediation by reinforcement learning’s error sensitivity

parameter suggests a specific cognitive pathway—overestimation

of errors—through which elevated AIC Glx confers risk for

internalizing psychopathology. These insights may promote more

targeted approaches in computational psychiatry, emphasizing

interventions that modulate insular function or attenuate error

overvaluation. For example, real-time neurofeedback methods

could focus on downregulating hyperactivation in the insula during

error detection, or pharmacological tools could aim at modulating

glutamatergic signaling in this region to reduce maladaptive

salience attribution.

Despite its strengths, a primary limitation of the current study is

its relatively modest sample size for functional MRS investigations,

which can raise questions about statistical power, particularly

for detecting more nuanced individual differences. Furthermore,

the cross-sectional design does not definitively establish that

elevated AIC Glx causes increased error sensitivity and subsequent

anxiety-depression; it remains plausible that chronic negative

affect gradually alters insular glutamate metabolism or that a

bidirectional relationship exists. Another point to consider is that

we focused on two targeted regions—the AIC and mPFC—and

thus cannot rule out the possibility that other neural circuits

or neurotransmitter pathways contribute to the observed effects.

Additionally, MRS signals can be sensitive to partial volume effects,

scanner hardware, and data processing methods, so efforts to

replicate these findings at higher field strengths or with more

refined voxel placement are necessary. Finally, because the loss

block always preceded the gain block—even though participants

completed extensive practice trials to familiarize themselves

with both tasks—we cannot fully exclude order or adaptation

effects that might have influenced Glx dynamics; future studies

should counterbalance block order to disentangle task-specific

neurochemical changes from sequence-related confounds (Garrett

andDaw, 2020; Dundon et al., 2020).Moreover, Because scheduling

constraints required some participants to finish the questionnaires

7–14 days before the MRS session, state-related fluctuations may

have introduced additional noise. Although the PHQ9, GAD7,

and STAI-X1 show robust test–retest reliability across similar

intervals (Kroenke et al., 2001; Spitzer et al., 2006; Spielberger,

2010), the temporal gap remains a limitation. Future studies should

collect psychometric and neuroimaging data on the same day—

or use repeated questionnaire administrations—to quantify intra-

individual variability Lastly, the selected bifactor model indicated

that two group factors had higher values than their corresponding

specific factors. Therefore, it is important to note that the specific

factors with lower values (e.g., generalized anxiety) may still

contribute to the general factor score calculated from the model,

albeit to a lesser extent. This limitation suggests that caution should

be exercised when interpreting the calculated scores, as the lower

values of these specific factors may indicate a lack of meaningful

variance. While the use of a bifactor model is an elegant way

to distill the core dimension of anxiety-depression, future studies

would benefit from assessing more clinically severe samples or

adding other relevant constructs like worry or anhedonia to further

validate and refine the transdiagnostic scope.

5 Conclusion

These results enrich our understanding of how the anterior

insula’s glutamatergic environment shapes not only the acute

processes involved in detecting and weighting errors but also the

broader affective landscape of depression-anxiety. The specificity

of the AIC Glx changes, in contrast to a relative absence of such

changes in the mPFC, suggests that the anterior insula may

be particularly instrumental in driving momentary salience-

and error-related computations, which, when exaggerated,

predispose individuals to internalizing psychopathology. By

bridging computational modeling, neurometabolic imaging, and

advanced psychometric analyses, this study supports a model in

which heightened AIC glutamate promotes the overestimation

of prediction errors, thereby reinforcing anxious or depressive

thought processes. Further longitudinal and interventional work

will help ascertain whether modulating insular glutamate could

attenuate these maladaptive error sensitivities and reduce the

burden of internalizing disorders.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institutional

Review Board of KAIST. The studies were conducted in accordance

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2025.1592015
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Park et al. 10.3389/fnins.2025.1592015

with the local legislation and institutional requirements. The

participants provided their written informed consent to participate

in this study.

Author contributions

HP: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review & editing.

MK: Formal analysis, Methodology, Writing – original draft. JK:

Conceptualization, Investigation, Supervision, Writing – review

& editing. SK: Investigation, Validation, Writing – review &

editing. BJ: Conceptualization, Resources, Supervision, Writing –

review & editing.

Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. This

research was supported by the Bio and Medical Technology

Development Program of the National Research Foundation

of Korea (NRF) funded by the Korean government (MSIT)

(NRF-2016M3C7A1914448, NRF-2017M3C7A1031331, and

RS-2025-00562004).

Acknowledgments

We would like to thank Dr. Hyunwook Park and Young Woo

Park for contributing fMRS data acquisition. An earlier version of

this manuscript was presented as a thesis, available at the following

link: https://www.researchsquare.com/article/rs-2483035/v1. This

manuscript was edited for the English language by Editage (https://

www.editage.co.kr/).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2025.

1592015/full#supplementary-material

References

Addicott, M. A., Pearson, J. M., Schechter, J. C., Sapyta, J. J., Weiss, M. D., Kollins,
S. H., et al. (2021). Attention-deficit/hyperactivity disorder and the explore/exploit
trade-off. Neuropsychopharmacology 46, 614–621. doi: 10.1038/s41386-020-
00881-8

Alexander, W. H., and Brown, J. W. (2011). Medial prefrontal cortex as an action-
outcome predictor. Nat. Neurosci. 14, 1338–1344. doi: 10.1038/nn.2921

Arnone, D., Mumuni, A. N., Jauhar, S., Condon, B., and Cavanagh, J.
(2015). Indirect evidence of selective glial involvement in glutamate-based
mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal
neuro-metabolic concentrations. Eur. Neuropsychopharmacol. 25, 1109–1117.
doi: 10.1016/j.euroneuro.2015.04.016

Aylward, J., Valton, V., Ahn, W.-Y., Bond, R. L., Dayan, P., Roiser, J. P., et al. (2019).
Altered learning under uncertainty in unmedicated mood and anxiety disorders. Nat.
Hum. Behav. 3, 1116–1123. doi: 10.1038/s41562-019-0628-0

Baron, R.M., andKenny, D. A. (1986). Themoderator-mediator variable distinction
in social psychological research: conceptual, strategic, and statistical considerations. J.
Personal. Soc. Psychol. 51:1173. doi: 10.1037/0022-3514.51.6.1173

Billeke, P., Ossandon, T., Perrone-Bertolotti, M., Kahane, P., Bastin, J., Jerbi,
K., et al. (2020). Human anterior insula encodes performance feedback and relays
prediction error to the medial prefrontal cortex. Cereb. Cortex 30, 4011–4025.
doi: 10.1093/cercor/bhaa017

Bornovalova, M. A., Choate, A. M., Fatimah, H., Petersen, K. J., and Wiernik, B. M.
(2020). Appropriate use of bifactor analysis in psychopathology research: appreciating

benefits and limitations. Biol. Psychiatry 88, 18–27. doi: 10.1016/j.biopsych.2020.
01.013

Caspi, A., Houts, R. M., Belsky, D.W., Goldman-Mellor, S. J., Harrington, H., Israel,
S., et al. (2014). The p factor: one general psychopathology factor in the structure
of psychiatric disorders? Clin Psychol. Sci. 2, 119–137. doi: 10.1177/21677026134
97473

Choi, K. S., Kim, S., Kim, B.-H., Jeon, H. J., Kim, J.-H., Jang, J. H., et al. (2021). Deep
graph neural network-based prediction of acute suicidal ideation in young adults. Sci.
Rep. 11:15828. doi: 10.1038/s41598-021-99825-5

Craig, A. D. (2009). How do you feel—now? The anterior insula and human
awareness. Nat. Rev. Neurosci. 10, 59–70. doi: 10.1038/nrn2555

Crum, W. R., Camara, O., and Hill, D. L. (2006). Generalized overlap measures
for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25,
1451–1461. doi: 10.1109/TMI.2006.880587

Deelchand, D. K., Adanyeguh, I. M., Emir, U. E., Nguyen, T.-M., Valabregue,
R., Henry, P.-G., et al. (2015). Two-site reproducibility of cerebellar and brainstem
neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn. Reson. Med.
73, 1718–1725. doi: 10.1002/mrm.25295

Deelchand, D. K., Kantarci, K., and Öz, G. (2018). Improved localization, spectral
quality, and repeatability with advanced MRS methodology in the clinical setting.
Magn. Reson. Med. 79, 1241–1250. doi: 10.1002/mrm.26788

Dobrushina, O., Dobrynina, L., Arina, G., Kremneva, E., Suslina, A., Gubanova, M.,
et al. (2020). Interaction of interoceptive perception and emotional intelligence:

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2025.1592015
https://www.researchsquare.com/article/rs-2483035/v1
https://www.editage.co.kr/
https://www.editage.co.kr/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1592015/full#supplementary-material
https://doi.org/10.1038/s41386-020-00881-8
https://doi.org/10.1038/nn.2921
https://doi.org/10.1016/j.euroneuro.2015.04.016
https://doi.org/10.1038/s41562-019-0628-0
https://doi.org/10.1037/0022-3514.51.6.1173
https://doi.org/10.1093/cercor/bhaa017
https://doi.org/10.1016/j.biopsych.2020.01.013
https://doi.org/10.1177/2167702613497473
https://doi.org/10.1038/s41598-021-99825-5
https://doi.org/10.1038/nrn2555
https://doi.org/10.1109/TMI.2006.880587
https://doi.org/10.1002/mrm.25295
https://doi.org/10.1002/mrm.26788
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Park et al. 10.3389/fnins.2025.1592015

a functional neuroimaging study. Neurosci. Behav. Physiol. 50, 1043–1050.
doi: 10.1007/s11055-020-01003-z

Dundon, N. M., Garrett, N., Babenko, V., Cieslak, M., Daw, N. D., Grafton, S. T.,
et al. (2020). Sympathetic involvement in time-constrained sequential foraging. Cogn.
Affect. Behav. Neurosci. 20, 730–745. doi: 10.3758/s13415-020-00799-0

Garrett, N., and Daw, N. D. (2020). Biased belief updating and suboptimal choice in
foraging decisions. Nat. Commun. 11:3417. doi: 10.1038/s41467-020-16964-5

Gogolla, N. (2017). The insular cortex. Curr. Biol. 27, R580–R586.
doi: 10.1016/j.cub.2017.05.010

Gorman, J. M. (1996). Comorbid depression and anxiety spectrum disorders.
Depress. Anxiety 4, 160–168. doi: 10.1002/(SICI)1520-6394(1996)4:4<160::AID-
DA2>3.0.CO;2-J
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