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Emotion recognition based on electroencephalogram (EEG) faces substantial

challenges. The variability of neural signals among di�erent subjects and the

scarcity of labeled data pose obstacles to the generalization ability of traditional

domain adaptation (DA) methods. Existing approaches, especially those relying

on the maximum mean discrepancy (MMD) technique, are often highly sensitive

to domain mean shifts induced by noise. To overcome these limitations, a novel

framework named Domain Adaptive Deep Possibilistic clustering (DADPc) is

proposed. This framework integrates deep domain-invariant feature learning

with possibilistic clustering, reformulating Maximum Mean Discrepancy (MMD)

as a one-centroid clustering task under a fuzzy entropy-regularized framework.

Moreover, the DADPc incorporates adaptive weighted loss and memory

bank strategies to enhance the reliability of pseudo-labels and cross-domain

alignment. The proposed framework e�ectively mitigates noise-induced

domain shifts while maintaining feature discriminability, o�ering a robust

solution for EEG-based emotion recognition in practical applications. Extensive

experiments conducted on three benchmark datasets (SEED, SEED-IV, and

DEAP) demonstrate the superior performance of DADPc in emotion recognition

tasks. The results show significant improvements in recognition accuracy

and generalization capability across di�erent experimental protocols, including

cross-subject and cross-session scenarios. This research contributes to the

field by providing a comprehensive approach that combines deep learning

with possibilistic clustering, advancing the state-of-the-art in cross-domain

EEG analysis.

KEYWORDS

electroencephalography, emotion recognition, deep domain adaptation, clustering

assumption, memory bank

1 Introduction

In the field of affective computing (Muhl C. and G., 2014), automatic emotion

recognition (AER) (Stern, 2002) has gained significant attention (Kim et al., 2013; Zhang

et al., 2013), especially for EEG-based emotion recognition (Wenming, 2017; Li et al.,

2018a; Pandey and Seeja, 2019; Jenke et al., 2014; Musha T. and A., 1997). From a machine

learning perspective, EEG-based AER tasks are typically formulated as classification or

regression problems (Kim et al., 2013; Zhang et al., 2013). However, due to inter-subject

variability in emotional expression patterns (Pandey and Seeja, 2019), classifiers trained

on specific subjects often have poor generalization ability. Although optimizing feature
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representations and learning models has improved recognition

accuracy (Li et al., 2018, 2019; Du et al., 2022; Song et al., 2018;

Zhong et al., 2020; Zheng and Lu, 2015; Wei et al., 2015; Zhou

et al., 2023), applying these classifiers to new subjects still yields

unsatisfactory results (Zheng and Lu, 2013; Ghifary et al., 2017;

Lan et al., 2019; Vinay et al., 2015; Wang et al., 2023). Domain

Adaptation (DA) has emerged as a solution, aiming to transfer

knowledge from related source domains to the target domain with

scarce labeled data (VMPatel, 2015; Dan et al., 2022; Tao et al., 2017;

Zhang et al., 2019; Tao et al., 2022).

The key to effective knowledge transfer in DA is to ensure data

distribution similarity between the source domain and the target

domain. Existing DA approaches mainly focus on distribution

matching (such as instance re-weighting and feature mapping) and

classifier model adaptation (Pan and Yang, 2018; VM Patel, 2015;

Pan et al., 2011; Gretton et al., 2009; Chu et al., 2013; Long et al.,

2013; Mahsa et al., 2013; Ganin et al., 2016; Kang et al., 2022; Liang

et al., 2019; Tao et al., 2019, 2012, 2015, 2016). Early methods for

addressing domain distribution shift, such as instance weighting

techniques, including the popular Maximum Mean Discrepancy

(MMD) (Gretton et al., 2009), have limitations. MMD often

decouples optimization from classifier training. Feature mapping

approaches (Pan et al., 2011; Long et al., 2013; Mahsa et al.,

2013; Kang et al., 2022), like Transfer Component Analysis (TCA)

(Pan et al., 2011) and Joint Domain Adaptation (JDA) (Long

et al., 2013), have been developed to address these issues, but

they still have drawbacks. Mahsa et al. (2013) introduced the

Domain Invariant Projection (DIP) algorithm, which employs a

polynomial kernel on the MMD metric to establish a concise

shared feature space and decrease intra-class dispersion through a

clustering-based method.

Conventional MMD-based DA approaches overlook the

statistical framework of the target domain, which can impede

accurate label prediction. Some methods, including the Contrastive

Adaptation Network and Domain Invariant Projection Ensemble

(Kang et al., 2022) attempt to address this issue, yet they remain

MMD-based. Moreover, current MMD-based methods do not fully

account for intra-domain noise, which can lead tomean-shift issues

and compromise generalization.

Possibilistic clustering frameworks (Dan et al., 2024;

Krishnapuram and Keller, 1993) offer a solution to these

problems as they can mitigate noise interference during data

clustering. The conventional MMD metric has been adapted into

a single-cluster center objective in a noisy context, and a resilient

domain adaptation classifier (EDPC) (Dan et al., 2024) based on

the possibilistic distribution distance metric has been proposed.

However, EDPC, as a shallow DA method, has limited feature

extraction capabilities. Deep neural networks, with their powerful

feature-extraction ability, have led to the development of deep DA

models (Long et al., 2015; Mingsheng Long and Wang Jianmin,

2016; Chen et al., 2019; Lee et al., 2019; Ding et al., 2018; Tang

and Jia, 2019). Contemporary affective models often use deep

transfer learning methods like domain-adversarial neural networks

(DANN) (Ganin et al., 2016). Although these models can reduce

domain distribution differences in large datasets, they have not

fully resolved the domain-shift problem with small datasets(i.e.,

EEG datasets).

In this study, we propose a novel Domain Adaptive Deep

Possibilistic clustering (DADPc) approach for EEG-based emotion

recognition. It integrates an adaptive loss function with a

fuzzy entropy regularization mechanism to enhance the model’s

cross-domain adaptability and clustering performance. The main

contributions are as follows:

• Integrating clustering with neural network training, creating a

DADPc criterion for simultaneous feature reconstruction and

clustering based on deep features.

• Using a robust loss function with adaptive weights and fuzzy

entropy increases insensitivity to outliers and introduces fuzzy

entropy regularization for the affinity matrix. The affinity and

possibilistic centroid matrices are updated efficiently without

using stochastic gradient descent.

• Demonstrating the effectiveness of the proposed method

through extensive experiments on multiple EEG datasets

(SEED, SEED-IV, and DEAP).

2 Related research

Over the past decade, research on using EEG signals for

emotion recognition has burgeoned (Shi et al., 2013; Zheng and

Lu, 2015; Li et al., 2016; Alarco and Fonseca, 2019; Luo et al., 2024;

Zhong et al., 2020; Chen et al., 2021; Zheng and Lu, 2013). Early

on, Shi et al. (2013) employed EEG features and SVMs for emotion

classification. With advancements in deep learning, deep neural

networks gained popularity in EEG-based emotion recognition

(Luo et al., 2024; Zhou et al., 2023; Zhong et al., 2020). These

models excel in subject-dependent tasks but struggle with subject-

independent tasks due to inter-subject EEG variability (Luo et al.,

2024; Zhou et al., 2023; Zheng and Lu, 2013).

To address this issue, transfer learning strategies have been

implemented. Zheng and Lu (2013) utilized non-deep transfer

learning methods such as TCA (Pan et al., 2011) and TPT for

cross-subject emotion recognition. Jin et al. (2017) introduced

DANN-based deep transfer learning for EEG emotion recognition,

outperforming non-deep methods. Following this development,

refined DANN-based architectures have emerged (Li et al., 2019b;

Peng et al., 2022). For example, Li et al. (2019b) minimized

distribution divergence, while Peng et al. (2022) proposed JAGP,

both of which enhance cross-subject performance. However, deep

transfer learning has limitations (Luo et al., 2024) regarding label

noise or small datasets.

Given these challenges, new transfer learning techniques and

shallow methods are needed, especially for using labeled source

data alongside unlabeled data augmented by pseudo-labels (Peng

et al., 2023, 2022; Magdiel and Gibran, 2023; Zhou et al.,

2023; Tao and Dan, 2021; Tao et al., 2023; Dan et al., 2022).

Zhang and Etemad (2022) introduced the PARSE model to

address domain distribution mismatch in semi-supervised EEG

emotion recognition, enhancing cross-subject performance. Dan

et al. (2024) proposed a semi-supervised model with possibilistic

clustering, which requires less labeled data.

To improve the accuracy of shallow methods, we explore

a possibilistic clustering method with deep learning features to
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develop a classifier. Our aim is to address the challenges posed by

noise and the limitations of small-scale datasets while enhancing

the accuracy of emotion recognition.

3 Preliminary

In this study, matrices are denoted by uppercase bold letters,

while vectors are represented by lowercase bold letters. For a given

matrixQ, qi refers to the ith row vector, qi represents the i
th column

vector, and qij denotes the element at position (i, j). Additionally,

QT signifies the transpose of Q. The vector 1 = [1, 1, · · · , 1]T

consists entirely of ones, while 0 denotes a zero matrix. The

notation Q > 0 indicates that all elements of the matrix are

positive. The ℓ1-norm and ℓ2-norm of a vector q are expressed as

‖q‖1 and ‖q‖2, respectively. For a scalar-output function f (x), the

gradient is given by ∇xf (x) =
[

∂f
∂x1

,
∂f
∂x2

, · · · ,
∂f
∂xn

]T
. For a vector-

output function g(x), the gradient with respect to x is denoted as

∇xg(x) =
[

∂g1
∂x ,

∂g2
∂x , · · · ,

∂gn
∂x

]

.

In DA learning, the source domain is defined as DS =
{

xsi , y
s
i

}ns
i=1

, where the sample set is defined as Xs =
[

xs1, . . . , x
s
ns

]

∈

Rd×ns , and the corresponding class labels are defined as Ys =
{

y1, . . . , yns
}T
∈ {0, 1}ns×K . d is the sample(i.e., xi) dimension of

the source domain. ns is the sample number of the source domain.

K is the class number of the source domain. Here, yi ∈ {0, 1}
K×1 is a

one-hot encoded vector; if xi belongs to the j-th class, then yij = 1,

the rest of the elements of yi are 0. The unlabeled target domain

is defined as DT =
{

xtj

}nt

j=1
, where the sample set and unknown

sample labels during training are Xt =
[

xt1, . . . , x
t
nt

]

∈ Rd×nt ,Y t =
{

y1, . . . , ynt
}T
∈ Rnt×K , respectively. nt is the sample number

of target domain. We further define X =
[

Xs,Xt
]

∈ Rd×N and

Y =
[

Ys,Y t
]

∈ RN×K , N = ns + nt .

3.1 Adaptive loss function

For any given vector q, the ℓ1-norm and the squared ℓ2-norm

are defined as ‖q‖1 =
∑

i |qi| and ‖q‖
2
2 =

∑

i q
2
i , respectively.

To leverage the benefits of different norms, a robust loss function,

known as the adaptive loss function, is defined as Nie et al. (2013):

‖Q‖σ =
∑

i

(1+ σ )
∥

∥qi
∥

∥

2

2
∥

∥qi
∥

∥

2
+ σ

(1)

, where σ serves as a trade-off parameter that governs robustness to

different types of outliers. The properties of ‖Q‖σ are summarized

in Nie et al. (2013).

3.2 Possibilistic clustering

In a specific reproducing kernel Hilbert space (RKHS), denoted

as H, the data from the original space can undergo a non-

linear transformation φ that maps it into a feature representation

within the RKHS (Mingsheng Long and Wang Jianmin, 2016).

This transformation is of the form φ :Rd → H. The associated

kernel function, designated as K(..) :X × X → R, is defined by

K (x1, x2) = 〈φ (x1) ,φ (x2)〉H for x1, x2 ∈ X. This kernel technique

is widely utilized in contemporary non-linear learning approaches

(Pan et al., 2011; Long et al., 2015). Research has demonstrated

(Gretton et al., 2009; Bruzzone andMarconcini, 2010) thatmapping

sample data to a high- or infinite-dimensional space can facilitate

the capture of higher-dimensional data features (Carlucci et al.,

2017). In an RKHS, the maximum mean discrepancy (MMD)

criterion effectively gauges the distance between two distributions.

Accordingly, let F represent a set of functions of a particular kind,

f :X → R. The MMD between two domain distributions, P and

Q, is defined as follows:

MMDF [P,Q] := sup
f∈F

(

E
P
[f (x)]− E

Q
[f (x)]

)

. (2)

The maximum mean discrepancy (MMD) metric aims to

reduce the anticipated disparity between two domain distributions

using a specific function f , thereby maximizing their similarity.

As the size of the domain sample becomes sufficiently large (or

approaches infinity), the anticipated disparity converges to (or

matches) the empirical mean difference. Consequently, Equation 3

can be expressed in terms of the empirical MMD form.

MMD
(

Xs,Xt
)

: =

ns
∑

i=1

nt
∑

j=1

∥

∥

∥

∥

∥

∥

1

ns

ns
∑

i=1

φ
(

xsi
)

−
1

nt

nt
∑

j=1

φ

(

xtj

)

∥

∥

∥

∥

∥

∥

2

M

.

(3)

To establish the universal link between the conventional

Maximum Mean Discrepancy (MMD) criterion and the clustering

model based on means, we present the theorem below:

Theorem 1. The Maximum Mean Discrepancy (MMD) metric

can be framed approximately as a unique type of clustering task

with a single cluster centroid, denoted by µ, where the assignment

of instances to the cluster is represented by ζk.

MMD
(

Xs,Xt
)

≤

N
∑

k=1

ζk ‖φ (xk)− µ‖2H (4)

Proof.

MMD
(

Xs,Xt
)

=
∥

∥

∥

1
ns

∑ns
i=1 x

s
i −

1
nt

∑nt
j=1 x

t
j

∥

∥

∥

2

H

=
∥

∥

∥

1
ns

∑ns
i=1 x

s
i − µ+ µ− 1

nt

∑nt
j=1 x

t
j

∥

∥

∥

2

H

≤
∥

∥

∥

1
ns

∑ns
i=1 x

s
i − µ

∥

∥

∥

2

H
+
∥

∥

∥

1
nt

∑nt
j=1 x

t
j − µ

∥

∥

∥

2

H

= 1
n2s

∥

∥

∑ns
i=1 x

s
i − nsµ

∥

∥

2

H
+ 1

n2t

∥

∥

∥

∑nt
j=1 x

t
j − ntµ

∥

∥

∥

2

H

= 1
n2s

∥

∥

∑ns
i=1

(

xsi − µ
)
∥

∥

2

H
+ 1

n2t

∥

∥

∥

∑nt
j=1

(

xtj − µ

)
∥

∥

∥

2

H

≤ 1
n2

∑ns
i=1

∥

∥xsi − µ
∥

∥

2

H
+ 1

n2t

∑nt
j=1

∥

∥

∥
xtj − µ

∥

∥

∥

2

H

=
∑N

k=1 ζk ‖xk − µ‖2H ,

(5)

where µ = δµ + (1− δ)µt is the cluster center with 0 ≤ δ ≤ 1. µs

and µt are the means of the source domain and the target domain,

respectively. When ns = nt , let δ = 0.5. When ns 6= nt , the number

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1592070
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dan et al. 10.3389/fnins.2025.1592070

of data in the source domain and target domain can be set the same

during sampling. The sample membership ζk is defined as follows:

ζk =

{

1
n2s
, xk ∈ Xs

1
n2t
, xk ∈ Xt (6)

Theorem 1 highlights the intrinsic connection between the

MMD criterion for domain distribution and the clustering

model. This connection can facilitate more efficient alignment of

distributions across distinct domains through the clustering of

domain data. However, it is important to note that traditional

clustering models are susceptible to noise, as pointed out by by

Dan et al. (2024). Consequently, DA methods relying on MMD

often face the challenge of domain mean shift due to noisy

data. To tackle this problem, this paper explores more robust

clustering approaches and introduces a novel, effective criterion for

measuring domain distribution distance in the following section.

4 Methodology

Traditional methods such as Kernel K-Means (KKM) and

Possibilistic clustering are impractical for large-scale datasets, while

efficient algorithms like K-means and Possibilistic clustering are

overly simplistic for non-linear data. To address this issue, we

propose the DADPc model, which performs effectively on both

large datasets and non-linearly distributed data. This section

begins by introducing the adaptive loss function and entropy

regularization to enhance possibilistic clustering. The architecture

of our proposed method is depicted in Figure 1. Our method

efficiently utilizes concurrent deep features from the source and

target domains for domain adaptation, based on the general

framework outlined in Section 4.1. In particular, we enhance the

sample reconstruction process using an encoder-decoder deep

neural network, as described in Section 4.2, and present our

technique for generating the source domain with an adaptive

loss function in Section 4.3. Additionally, we introduce a deep

clustering approach that incorporates a memory bank and

possibilistic theory in Section 4.4. This approach enables us to

efficiently extract the essential features from both domains while

guaranteeing the cross-domain transferability of the acquired

features. Subsequently, the specifics of the DADPc model are

discussed in the following subsections.

4.1 General formulation

For the problem of DA in complex structures and noisy

environments, we aim to improve the robustness of distribution

distance metrics for DA and enhance generalization in the

target domain. Based on the DA generalization error theory

(Ben-David et al., 2010), we seek to achieve the following

two core objectives: First, we construct a robust distribution

distance metric that can resist the impact of noise, addressing

the issue of domain mean-shift. The differences in domain

distribution can be selectively corrected. Second, we effectively

perform semantic reasoning in the target domain by maintaining

the geometric structure consistency of the data in the domain,

connecting the discriminative information of the source domain,

and minimizing the discriminative error in the target domain.

A highly generalizable target domain classifier is constructed.

Therefore, our general framework can be described as follows:

min
Ŵ

J = min
W(m) ,b(m) ,V,C

J1 + J2 + J3 (7)

, where Ŵ =
{

W(m), b(m),V,C
}

, J1, J2 and J3 are designed

for different purposes. J1 ensures the minimum reconstruction

error based on data from both domains. J2 is the classification

error for the source domain and a regularization used to avoid

the overfitting of auto-encoders, and also able to prevent the auto-

encoder from generating a trivial map. J3 is the cost function

of deep possibilistic clustering with a memory bank. Inspired by

the adaptive loss function outlined in Equation 1, which serves

as an interpolation between the ℓ2,1-norm and the Frobenius

norm squared, we introduce a new objective function for feature

reconstruction, the parameters (i.e., W and b) of deep neural

networks, and deep possibilistic clustering with an adaptive loss in

J1, J2 and J3.

4.2 Feature reconstruction

The DADPc employs a neural network architecture comprising

(M+ 1) layers to transform raw data into a nonlinear feature space,

where M is an even integer. The initial M
2 hidden layers function

as an encoder, responsible for reducing the dimensionality of the

input data. Conversely, the remaining M
2 hidden layers act as a

decoder, tasked with the reconstruction of the data. Given that

H(0) = X ∈ d×N , whereX belongs to the union of source and target

datasets Xs∪Xt , andN equals the sum ns+nt representing the data

counts in each domain, h
(0)
i signifies the i-th column vector ofH(0),

equivalent to xi and xi ∈ X. The output generated by them-th layer

is denoted as follows:

h
(m)
i = f

(

W(m)h
(m−1)
i + b(m)

)

∈ Rdm (8)

where m ranges from 1 to M, dm represents the number of

neurons in the m-th layer. The activation function for each layer

is denoted by f (·). The weight matrix and bias for the respective

layer, as indicated in Equation 8, are given byW(m) and b(m). When

presented with a data point xi, the auto-encoder network initially

maps the raw data onto a non-linear, low-dimensional space, which

can be expressed as follows:

H
(

M
2

)

=

[

h

(

M
2

)

1 , h

(

M
2

)

2 , · · · , h

(

M
2

)

n

]

∈ R
dM

2
×N

(9)

then reconstructs the feature as:

H(M) =
[

h
(M)
1 , h

(M)
2 , · · · , h(M)

n

]

∈ Rd×N (10)

We employ deep neural networks to reconstruct the features

from the source domain and the target domain, which encompass

deep learning, meticulous analysis, and the effective transformation

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1592070
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dan et al. 10.3389/fnins.2025.1592070

FIGURE 1

The architecture of DADPc: Xs and Xt [i.e., H
(0)] are inputs of the auto-encoder, H(M) is the output of the auto-encoder, i.e., the reconstruction of raw

data, and H

(

M

2

)

represents the deep features.

of both domain features. It aims to generate new features that are

highly similar to the original or possess specific attributes.

J1 = minW(m) ,b(m)

∥

∥

∥
H(M) − X

∥

∥

∥

2

σ
, (11)

, where X = ∪k=1...KXck , Xck includes all xi which belong to class k,

and xi ∈ Rd×1.

By leveraging data reconstruction techniques, the model

captures the intrinsic characteristics and structural information

of the data, thereby extracting more expressive features while

filtering out noise and optimizing data quality. This series of

operations enhances the robustness and generalization capabilities

of subsequent classification and clustering tasks.

4.3 Source classifier

To learn a deep source classification model hs :Xs → Ys, we

aim to minimize the cross-entropy loss J2

J2 = −
∑ns

i=1

∑K
k=1 qk log pk(x

s
i )+ λ1

∑M
m=1

∥

∥

∥
W(m)

∥

∥

∥

2

σ

+λ2
∑M

m=1

∥

∥

∥
b(m)

∥

∥

∥

2

σ1
,

(12)

where xi ∈ Xs
ck
, q denotes a one-hot encoding of ysi where qk is

“1” for the correct class and “0” for the rest. The last two terms are

regularization used to avoid the overfitting of auto-encoders with

regularization parameters λ1 and λ2. The two terms also prevent the

auto-encoder from generating a trivial map. pk(xi) =
exp

(

h
(M)
ik

)

∑K
j=1 exp

(

h
(M)
ij

)

represents the predicted probability that sample xi belongs to class

k. Before applying the cross-entropy loss to the predictions of the

source domain classifier, we first use the sharpening technique to

address the ambiguity in the predictions of the source domain data:

p̃k(x
s
i ) = pk(x

s
i )
−τ /

K
∑

e=1

pe(x
s
i )
−τ . (13)

where τ represents the temperature parameter utilized for scaling

prediction probabilities. When τ approaches 0, the probability

distribution converges to a single point mass (Lee, 2013). Thus,

Equation 12 can be reformulated as follows:

J2 = −
∑ns

i=1

∑K
k=1 qk log p̃k(x

s
i )+ λ1

∑M
m=1

∥

∥

∥
W(m)

∥

∥

∥

2

σ

+λ2
∑M

m=1

∥

∥

∥
b(m)

∥

∥

∥

2

σ1
,

(14)

4.4 Deep possibilistic clustering with
memory Bank

Recent studies have shown the efficacy of probabilistic

clustering methods in mitigating the adverse effects of noise on

clustering outcomes (Dan et al., 2021). Consequently, this section

generalizes the initial one-cluster center method (Theorem 1) to the

context of deep probabilistic one-cluster centering. Subsequently,

we introduce a distance metric for deep possibilistic clustering

distributions, termed DPC. By incorporating the concept of deep

possibilistic clustering entropy, we extend the rigid clustering

method of MMD to a more flexible clustering framework. In this

framework, the contribution of each sample is weighted based on its

proximity to the overall domain mean: data farther from the mean

contribute less and are more likely to be viewed as noise. Thus,

DPC modulates the influence of noise-induced mean shift during

domain alignment. The formula for the deep possibilistic clustering

distribution distance metric at theMth layer is defined as follows:

J3 =
∑N

i=1

∑K
k=1 v

2
i,k

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

σ
(15)

The k-th cluster centroid is denoted by ck ∈ Rd×1. The

initial cluster centroids are derived from the source domain, as

it provides labels for each sample. The cluster centroid for the

emotion category k can be calculated by averaging all sample
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features that belong to this category, expressed as follows:

ck =
1

∣

∣

∣
Xs
ck

∣

∣

∣

∑

xsi∈X
s
ck

h
(M)
i (16)

vi,k represents the possibility membership of the feature h
(M)
i ,

extracted from the sample xi in theM layer of the Encoder-Decoder,

belonging to the k-th class.

To enhance the resilience and efficacy of the possibilistic

clustering method for measuring distribution distance in noisy

datasets, a regularization term involving fuzzy entropy is

introduced in Equation 17. This term is associated with the

parameter vi,k:

J3 = λ3
∑N

i=1

∑K
k=1

(

v2
ik

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

σ
+ Pe(vik)

)

(17)

, where Pe(vik) = v2
ik
ln v2

ik
− v2

ik
, λ3 acts as a tunable balancing

coefficient, ensuring that the values of pertinent data vik stay

elevated, thus preventing the derivation of non-discriminatory,

trivial solutions. The enhanced DADPc model now exhibits a

monotonic decrease as vik diminishes. This model utilizes the

fuzzy entropy term [i.e., Pe(vik)] in Equation 17 to mitigate the

adverse effects of noisy data on classification outcomes. The greater

the fuzzy entropy is, the more the discriminative information

amount of the samples increases, which plays a positive role in

enhancing the robust effectiveness of the distribution distance

metric. Moreover, fuzzy entropy can effectively limit the influence

of noisy or abnormal data in domain distribution alignment. For

a comprehensive discussion and empirical insights into how fuzzy

entropy enhances robustness, see the analysis in reference (Gretton

et al., 2009).

Since each batch of training data includes both the source

and target domains in DPC, and since ck is initialized solely with

data from the source domain, it cannot update ck in real-time

during the training stage. To address this issue, we employ a

memory bank strategy. The Memory Bank is designed to preserve

cluster centroids and their corresponding feature vectors from

both domains, which are mapped according to their respective

data clusters. We apply the L2 -norm technique to normalize the

feature vectors h
(M)
i , resulting in normalized features denoted as

∥

∥

∥
h
(M)
i

∥

∥

∥

2
alongside the cluster centroids. These values are updated

through an iterative process. To estimate real-time probabilities

for generating pseudo-labels, the memory bank stores the cluster

centroids ck. Additionally, the feature vectors h
(M)
i stored in the

memory bank are utilized to compute the latest cluster centroids

and update the outdated ck in the memory bank after each training

epoch at the final decoder layer. The initial cluster centroids stored

in the memory bank originate from the source domain.

Let B ∈ R(N+K)×d be a memory bank that retains the features

of all data from both the source and target domains, along with the

cluster centroids. Here, d signifies the dimensionality of the features

in the final linear layer.

B =
[

h
(M)
1 , h

(M)
2 , . . . h

(M)
N , c1, c2, . . . , cK

]

, (18)

where h
(M)
i and c undergo L2 normalization. To account for

samples not present in the current mini-batch, we utilize a memory

bank to store features and compute similarities, following the

approach outlined in Saito et al. (2020). During each iteration, the

memory bank B is updated with features from the mini-batch. Let

h
(M)
i represent the features within the mini-batch, and let Tb denote

the set of indices corresponding to the samples in the mini-batch.

For every i in Tb, we establish:

Bi = h
(M)
i . (19)

As a result, the memory bank B comprises the recently updated

features from the current mini-batch, the older features that are

not included in the mini-batch, and the K cluster centroids. Unlike

Saito et al. (2020), our approach to updating the memory involves

storing features directly, without considering the momentum of

features from prior epochs.

4.5 Final formulation

The DADPc model is proposed by embedding the objective

function of possibilistic clustering with entropy regularization

and adaptive loss defined in Equation 20 using an auto-encoder

network as

2(W(m), b(m),V,C) = minW(m) ,b(m) ,V,C

∥

∥

∥
H(M) − X

∥

∥

∥

2

σ

−
∑ns

i=1

∑K
k=1 qk log p̃k(x

s
i )+ λ1

∑M
m=1

∥

∥

∥
W(m)

∥

∥

∥

2

σ

+λ2
∑M

m=1

∥

∥

∥
b(m)

∥

∥

∥

2

σ1
+ λ3

∑N
i=1

∑K
k=1

(

v2
ik

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

σ

+v2
ik
ln v2

ik
− v2

ik

)

s.t. 0 ≤ vik ≤ 1.

(20)

Accordingly, DADPc aims to project the raw data onto

a nonlinear, low-dimensional feature space and to learn a

soft clustering membership matrix using the features mapped

nonlinearly simultaneously.

5 Optimization algorithms

In this section, we initially devise an effective algorithm to

address the adaptive loss function ‖.‖σ , which ensures convergence

to a local minimum. Subsequently, we introduce an algorithm

aimed at solving the loss function associated with DADPc, as

outlined in Equation 20.

5.1 Optimization for Weighted Adaptive
Loss Function

First, we will examine a broader problem of adaptive loss

minimization, formulated as follows:

min
x

f (x)+
∑

i

∥

∥gi(x)
∥

∥

σ
, (21)

where gi(x) yields either a vector or a matrix as output. It is evident

that problems ‖.‖σ in Equation 20 constitute specific instances of
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Equation 21. The Equation 21 can be rewritten as

min
x

f (x)+
∑

i

(1+ σ )
∥

∥g i(x)
∥

∥

2

2
∥

∥g i(x)
∥

∥

2
+ σ

. (22)

Building upon the earlier sparse learning optimization

algorithms Nie et al. (2013), we introduce an iterative re-

weighting approach to address Equation 22. Making the derivative

of Equation 22 w.r.t x and equating it to zero, we are able to obtain

∇f (x)+ 2(1+ σ )
∑

i

∥

∥g i(x)
∥

∥

2
+ 2σ

2
(
∥

∥g i(x)
∥

∥

2
+ σ

)2
∇g i(x) · g i(x) = 0, (23)

Define

di = (1+ σ )

∥

∥g i(x)
∥

∥

2
+ 2σ

2
(∥

∥g i(x)
∥

∥

2
+ σ

)2
, (24)

Then, Equation 23 can be rewritten as follows:

∇f (x)+ 2
∑

i

di∇g i(x) · g i(x) = 0. (25)

Note that Equation 25 is still difficult to solve. However, if we

fix di, then Equation 21 is equivalent to

min
x

f (x)+
∑

i

di
∥

∥g i(x)
∥

∥

2

2
, (26)

In the given context, the iterative update rule for di is defined as

di ← (1+ σ )
‖g i(x)‖2+2σ

2(‖g i(x)‖2+σ)
2 . To address Equation 21, we introduce

Algorithm 1. The iterative optimization of the adaptive loss

function has been demonstrated to converge in Nie et al. (2013).

As Algorithm 1 employs an alternating approach to optimize the

adaptive loss, the objective function value decreases monotonically,

ensuring the convergence of Algorithm 1.

Input: Data vector x.

Output: The current x.

1 while Not Converge do

2 1. Calculate di = (1+ σ)
∑

i
‖gi(x)‖2+2σ

2(‖gi(x)‖2+σ)
2 .

3 2. Update x by solving

minx f(x)+
∑

i di
∥

∥gi(x)
∥

∥

2
2.

4 end

Algorithm 1. Algorithm to solve Equation 21.

5.2 Optimization for DADPc

In this subsection, we will present the details regarding the

optimization of Equation 20 using an iterative method known

as stochastic gradient descent (SGD). For simplicity, we rewrite

Equation 20 as

minŴ J =

minŴ
1
2

∥

∥

∥
hi

(M) − xi

∥

∥

∥

2

σ
−
∑ns

i=1

∑K
k=1 qk log p̃k(x

s
i )

+ λ1
2

∑M
m=1

∥

∥

∥
W(m)

∥

∥

∥

2

σ

+ λ2
2

∑M
m=1

∥

∥

∥
b(m)

∥

∥

∥

2

σ1
+ λ3

∑N
i=1

∑K
k=1

(

v2
ik

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

σ

+v2
ik
ln v2

ik
− v2

ik

)

s.t. 0 ≤ vik ≤ 1

(27)

where Ŵ =
{

W(m), b(m),V,C
}

in order to keep the equations

unclustered. As shown in Subsection 5.1, Equation 27 is equivalent

to the following dual:

minŴ L =

minŴ
1
2aik

∥

∥

∥
hi

(M) − xi

∥

∥

∥

2

2
−
∑ns

i=1

∑K
k=1 qk log p̃k(x

s
i )

+ λ1
2

∑M
m=1 r

w
ik

∥

∥

∥
W(m)

∥

∥

∥

2

σ
+ λ2

2

∑M
m=1 r

b
ik

∥

∥

∥
b(m)

∥

∥

∥

2

σ1

+λ3
∑N

i=1

∑K
k=1

(

eikv
2
ik

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

2
+ v2

ik
ln v2

ik
− v2

ik

)

s.t. 0 ≤ vik ≤ 1

(28)

where

aik = (1+ σ )

∥

∥

∥
h
(M)
i − xi

∥

∥

∥

2
+ 2σ

2
(
∥

∥

∥
h
(M)
i − ck

∥

∥

∥

2
+ σ

)2
(29)

rwik = (1+ σ )

∥

∥

∥
W(m)

∥

∥

∥

2
+ 2σ

2
(∥

∥W(m)
∥

∥

2
+ σ

)2
(30)

rbik = (1+ σ1)

∥

∥

∥
b(m)

∥

∥

∥

2
+ 2σ1

2
(
∥

∥b(m)
∥

∥

2
+ σ1

)2
(31)

eik = (1+ σ )

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

2
+ 2σ

2
(∥

∥

∥
h
(M)
i − ck

∥

∥

∥

2
+ σ

)2
(32)

We can solve Equation 27 by utilizing the coordinate

blocking method.

Update W(m), b(m) by fixing V, C : According to the definition

of h
(m)
i and the back-propagation algorithm, the subgradient of

Equation 28 w.r.t.W(m) and b(m) can be derived as

{

∇W(m)L = 1
(m)
i h

(m−1)T
i + λ1r

w
ik
W(m)

∇b(m)L = 1
(m)
i + λ2r

b
ik
b(m)

(33)

where 1(m) is defined as follows:

1
(m)
i =







(

W(m+1)
1

(m+1)
i

)

⊙ f ′
(

a
(m)
i

)

,m 6= M
(

2
(M)
1i − λ12

(M)
2i + λ32

(M)
3i

)

⊙ f ′
(

a
(M)
i

)

,m = M

(34)

where 2
(M)
1i and 2

(M)
2i are defined as

2
(M)
1i =

(

h
(M)
i − h

(0)
i

)

aik, (35)
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2
(M)
2i =

∑ns
i=1

∑K
k=1 qk

(

1−
exp

(

h
(M)
ik

)

∑K
j=1 exp

(

h
(M)
ij

)

)

, (36)

2
(M)
3i =

(

H(M) − Y
(M)
MBC

(M)
MB

)

eikv
2
ik

(37)

⊙ is the element-wise multiplication, f ′(·) is derivative of the

activation function f (·), and a
(m)
i is the input of m-th layer, i.e.,

a
(m)
i = W(m)h

(m−1)
i + b(m). Y

(M)
B ∈ RN×K . C

(M)
B ∈ RK×d is from

memory bank. According to the cluster centroid ck ∈ C
(M)
B , we

can obtain the label of each feature vector yi ∈ Y
(M)
B in the M-th

layer. Y
(M)
B C

(M)
B ∈ RN×d. Each row in Y

(M)
B C

(M)
B corresponds to the

cluster centroid of each feature vector.

Based on Equations 33–37 using the SGD algorithm, we update

W(m) and b(m) as follows:
{

W(m) =W(m) − µ∇W(m)F

b(m) = b(m) − µ∇b(m)F
(38)

Using the initial K cluster centroids from the source domain,

we then acquire new pseudo-labels for the target domain by

employing a nearest-centroid classification approach: yt =

argmink D
(

h
(M)
(t,j)

, ck

)

. The distance between a and b is quantified

by D(a, b). By default, our chosen measure of distance is the cosine

similarity metric. Since the feature vectors from h
(M)
i and the initial

K cluster centroids are retained in the memory bank, we update

C and yt according to Equation 39 (i.e., C
(M)
B ) after each batch of

data training:

ck =

∑N
i=1 1

(

ŷt = k
)

h
(M)
i

∑

ŷ∈Ys ,Ŷt
1
(

ŷ = k
) (39)

Updating V by fixing W(m), b(m) and C through optimizing

Equation 20 directly: When W(m) and b(m) are fixed, Equation 20

becomes equivalent to:

minvik
∑N

i=1

∑K
k=1 λ3

(

v2
ik

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

σ
+ v2

ik
ln v2

ik
− v2

ik

)

,

s.t. 0 ≤ vik ≤ 1

(40)

The Lagrangian function for Equation 40 is represented as

minvikλ3





N
∑

i=1

k
∑

j=1

v2ik

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

σ
+ v2ik ln v

2
ik − v2ik





−

N
∑

i=1

k
∑

j=1

βik (vik)

(41)

where βik is aa Lagrangian multiplier with 0 < βik < 1. According

to KKT conditions, we have

vik = exp







1− λ3
∑N

i=1

∑K
k=1

∥

∥

∥
h
(M)
i − ck

∥

∥

∥

σ

4






(42)

We can therefore apply an iterative algorithm to update W(m),

b(m), V and C. If SGD decreases L in Equation 28, the algorithm

will converge to a local minimum, as the optimization can be

viewed as a variant of coordinate gradient descent.

The optimization procedure of Equation 27 is summarized in

Algorithm 2.

Input: Labeled data:

{Xs,Ys} = {(x
s
1,y

s
1),...,(x

s
ns
,ysns)} ;

Unlabeled data: Xt = {x
t
1,...,x

t
nt
} ;

V0 is initialized by Equation 42, the number of

clusters k, parameters λ1, λ2, λ3, β, SGD maximum

iterations L.

Initialize: H(0) =X,V =V0, a random matrix

C ∈ Rd(M)×k, random matrices W(m) and random

vectors b(m) where m = 1,2, · · · ,M.

Pre-train the auto-encoder.

Output: clustering assignment matrix V, centroid

matrix C and parametric neural network

with W(m) and b(m).

/* The iterative steps empirically converge in

fewer than 40 iterations, as illustrated in

Subsection 6.4.3. */

1 while C does not converge or V doesn’t exceed the

maximum iterations do

2 Calculate aik, rw
ik
, rb

ik
, eik by Equations 29,

30, 31, 32 for i = 1,2, · · · ,N and k = 1,2, · · · ,K.

3 for iter = 1 to L do

4 Update W(m) and b(m) by Equation 38 for

m = 1,2, · · · ,M .

5 end

6 Update C by Equation 39.

7 Update V by Equation 42.

8 end

Algorithm 2. Algorithm to solve Equation 27.

6 Experimental analysis

This section employs three well-known benchmark datasets:

SEED (Zheng and Lu, 2015), SEED-IV (Zheng and Lu, 2013; Zhou

et al., 2023), and DEAP (Sander et al., 2012), to thoroughly assess

the model’s ability to recognize EEG-based emotions. Specifically,

in the following tables of experimental results, the bold values in

each table are the best accuracy performance results achieved. Pacc

denotes the average accuracy performance of each method.

6.1 Datasets

6.1.1 Description
The SEED dataset includes EEG data on emotions collected

from 15 individuals who watched 15 movie clips designed

to elicit three emotional responses: positive, negative, and

neutral. Conversely, the SEED-IV dataset contains EEG

emotion data from 15 participants as well but features 24

movie segments aimed at evoking four emotions: happiness,

sadness, neutrality, and fear. Both the SEED and SEED-IV

datasets involved participants engaging in three sessions, each

occurring on separate days with a one-week interval between

them. The EEG signals were recorded using a 62-channel ESI

Neuroscan system.
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Moreover, we are keen to investigate performance in cross-

dataset scenarios, specifically exploring whether acceptable

recognition precision can be sustained when the training and

testing data originate from different subjects, are recorded with

varying EEG equipment, and involve emotional states elicited

by diverse stimuli. Furthermore, our objective is to assess if

multi-source domain adaptation methods can enhance results

in such circumstances. To achieve this, we utilize the DEAP

dataset (Sander et al., 2012), which is publicly available, to examine

emotional states. This dataset includes data from 32 individuals

who viewed 40 one-minute music videos intended to evoke

emotional reactions, while their physiological responses were

recorded. After watching each video, the participants evaluated

their emotions in five aspects: valence (how pleasant it was),

arousal (the level of excitement), dominance (degree of control),

liking (personal preference), and familiarity (recognition of the

stimulus). The evaluation scores range from one (the lowest level)

to nine (the highest level), but for familiarity, the scores vary from

one to five.

To gain a deeper understanding of these three benchmarks,

please refer to Lan et al. (2019). As stated in Zhong et al.

(2022) and Lan et al. (2019), there are notable differences

among these benchmarks. These discrepancies can arise from

various factors, including variations in sessions, participants,

experimental procedures, EEG equipment, and the types of

emotional stimuli used.

6.1.2 Feature extraction
The SEED dataset’s EEG data preprocessing followed standard

procedures outlined in Luo et al. (2024). First, the EEG signals were

downsampled to 200 Hz. Next, artifacts such as electrooculogram

(EOG) and electromyography (EMG) were removed. A bandpass

filter ranging from 0.3 to 50 Hz was applied to enhance signal

quality. Each trial was then divided into several 1-second data

segments. The length of each trial in the SEED dataset varied

between 185 and 265 seconds, depending on the duration of the

emotional stimulus used to evoke the targeted emotion. To ensure

consistency across various classes, all trials were shortened to a

uniform length of 185s.

The DEAP dataset’s EEG data were recorded using Biosemi

Active Two devices, initially sampled at 512 Hz and subsequently

down-sampled to 128 Hz. In DEAP, emotions are scored on a

five-point scale; to align with the SEED dataset, we discretize

the emotional dimensions as follows: positive for valence ratings

above 7, neutral for ratings between 3 and 7, and negative for

ratings below 3. We identify DEAP trials where the majority

of participants reported the successful induction of positive,

neutral, and negative emotions. Specifically, trial 18 evokes

positive emotion, trial 16 evokes neutral emotion, and trial

38 evokes negative emotion, with 27, 28, and 19 participants,

respectively, confirming the intended emotion. The participants

who consistently reported successful emotion elicitation in these

trials (18, 16, and 38) are subjects 2, 5, 10, 11, 12, 13, 14, 15,

19, 22, 24, 26, 28, and 31. Therefore, for the DEAP dataset, we

only use the selected trials from these fourteen subjects. Each

trial lasts 63 seconds, but the first 3 seconds consist of baseline

recordings without emotion elicitation; thus, we use the segment

starting from the 4th second, resulting in a 60-second valid

trial length.

To capture emotion-related information, we computed

differential entropy (DE) features (Zhong et al., 2022; Lan

et al., 2019) for five frequency bands: Delta (1–3 Hz), Theta

(4–7 Hz), Alpha (8–13 Hz), Beta (14–30 Hz), and Gamma

(31–50 Hz). This process generated 310 features (62 channels

× 5 frequency bands) for every 1-second data segment,

serving as model input. For the DEAP dataset, the ultimate

feature vector comprised 160 dimensions (32 channels × 5

frequency bands), with each trial containing 60 samples. In

the SEED dataset, the final feature vector had 310 dimensions

(62 channels × 5 frequency bands), with each trial yielding

185 samples.

Following the approach in Donahue et al. (2014), our

DADPc method can be readily trained utilizing deep features

extracted from established models. We fine-tune pre-trained

deep models, such as Resnet101 (EEG differential entropy

features (62 channels × 5 bands) are reshaped into 62×5

matrices, mimicking image input for ResNet-101). The

Resnet101’s bottleneck layer outputs are used to balance

semantic and spatial information for cross-domain alignment.

He et al. (2016), on the source domain and then extract

deep features from EEG signals.The Resnet101’s Bottleneck

layer outputs are used to balance semantic and spatial

information for cross-domain alignment. Pre-experiments

showed ResNet-101’s deep residual structure outperforms

ResNet-50/DenseNet in cross-domain scenarios, with mature

open-source implementations aiding reproducibility.. These

deep representations can subsequently be used to train the

recognition model.

6.2 Experimental protocols

Since the parameter b does not require feature selection, the

lσ1-norm on b can be fixed as the l2-norm. To thoroughly assess the

robustness and consistency of our proposed DADPc method and

facilitate comparison with previous works, we utilize four unique

validation protocols that incorporate various evaluation strategies

for a comprehensive examination, as outlined in Zhou et al. (2022);

Tao et al. (2024):

1) Cross-subject cross-session (CUCE) with leave-one-subject-

out (LOSO) cross-validation. To rigorously evaluate the

model’s durability on novel subjects and sessions, we apply

a strict assessment protocol known as CUCE with LOSO.

During each cycle, the session data of one subject is designated

as the target, while the session data from all other subjects are

utilized as the source. This training and validation procedure

is repeated until each subject’s sessions have served as the

target once. Given the inherent variability among individuals

and sessions, this evaluation protocol poses a significant

challenge for the model’s proficiency in EEG-based emotion

recognition tasks.
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2) Cross-subject single-session (CUSE) with LOSO cross-

validation. The most commonly adopted validation technique

in EEG-based emotion recognition (Li et al., 2019a; Luo et al.,

2018; Li et al., 2019b; Zhou et al., 2022; Luo et al., 2024)

involves assigning data from a single session of one subject

as the target, while data from all other subjects serve as the

source. This iterative training and validation process continues

until each subject has been designated as the target once.

Consistent with other research, this cross-validation method

considers only the first session.

3) Within-subject Cross-session (WUCE) with LOSO cross-

validation. Consistent with prevalent techniques, we use a time

series cross-validation methodology that leverages historical

data to forecast present or future data. In this context, the

first two sessions for each subject serve as the source domain,

while the following session acts as the target domain. The

final results are obtained by calculating the mean accuracy and

standard deviation across all subjects.

4) Cross-database cross-validation (CDCV). In line with the

configurations specified in Tao and Dan (2021); Tao et al.

(2023), we employ 32 common channels from SEED and

DEAP to construct a unified feature space of 160 dimensions,

enhancing cross-dataset generalization. This enables the

formulation ofmultiple cross-dataset generalization scenarios:

DEAP → SI, DEAP → SII, DEAP → SIII, SI →

DEAP, SII → DEAP, and SIII → DEAP. Here, “A→ B”

denotes adapting from dataset A to dataset B, with SI, SII, and

SIII denoting Session I, Session II, and Session III of SEED,

respectively. When DEAP is the source dataset, 2,520 data

points are selected, whereas 2775 data points are chosen from

each of the three SEED sessions (SI, SII, and SIII) to serve as

the target datasets. Conversely, when each SEED session is the

source, we resample 41,625 data points for training and 180

samples from DEAP as the target.

6.3 Experimental results

Given that parameter selection remains a pressing issue in

machine learning, this study empirically investigates the parameter

space to identify the most effective settings. Our approach involves

three primary model parameters, initially set to λ1, λ2, and λ3 equal

to 0. These parameters are then fine-tuned using cross-validation

within the range
[

10−4, 105
]

. Moreover, for the experimental setup,

the matrix norm is set at σ = 0.001. The results are reported as the

average performance across all participants.

To compare our method with several recently introduced deep

adaptation models, we specifically assess DADPc using deeply

extracted features from the neural network with five layers (i.e.,

1024-500-300-500-1024). For other deep benchmarks, we directly

utilize their publicly available source codes to fine-tune the pre-

trained models employed in their respective works.

6.3.1 CUCE with LOSO cross-validation
To assess the effectiveness and consistency of our model

across both cross-subject and cross-session contexts, we employ

LOSO cross-validation to validate the proposed DADPc approach

within the CUCE framework, utilizing the SEED and SEED-IV

datasets. The results, presented in Tables 1, 2, reveal that our

method outperforms others on both datasets, achieving an emotion

recognition accuracy of 87.83 ± 4.21% for three classes on SEED

and 75.31 ± 6.22% for four classes on SEED-IV. These findings

underscore the superior recognition precision and enhanced

generalization capability of the DADPc method, particularly in

the presence of complex individual and environmental variations,

which suggests improved emotional validity.

6.3.2 CUSE with LOSO cross-validation
Tables 3, 4 summarize the experimental outcomes of the

LOSO recognition task conducted on the SEED and SEED-IV

datasets within the CUSE framework, alongside a benchmarking

against previous studies. All results are reported as mean ±

standard deviation. Our proposed DADPc model, as shown in

these tables, achieves a peak performance of 94.62% with a

standard deviation of 4.37%. DADPc outperforms the best-reported

literature results by 1.56%, exhibiting a lower standard deviation on

the SEED-IV dataset. Notably, the model’s performance is superior

on the SEED-IV dataset compared to the SEED dataset. This

highlights DADPc’s efficacy in addressing individual differences

and improving robust pseudo-labeling (Litrico et al., 2023) for a

wider range of emotion recognition in affective Brain-Computer

Interface (aBCI) applications.

6.3.3 WUCE with LOSO cross-validation
The outcomes of the WUCE cross-validation for the SEED

dataset are outlined in Table 5, and those for the SEED-IV dataset

are presented in Table 6.

During the experiments on the SEED datasets, EEGMatch

emerged as the top-performing method. This can be attributed to

the mixup technique, which enriched the data and enhanced model

training, albeit at the cost of higher computational expenses due to

the increased data volume. Nonetheless, DADPc achieved results

that were comparable, closely trailing behind. This underscores

DADPc’s proficiency in categorizing distinct classes. For the

SEED-IV dataset, which involves four-class emotion recognition,

DADPc excelled, particularly as the number of categories increased.

This highlights DADPc’s superior accuracy in recognizing more

nuanced emotions and its robust scalability.

6.3.4 CDCV results
In this section, we aim to evaluate the extensive and consistent

generalization capability of our proposed DADPc method,

particularly in the realm of cross-dataset emotion recognition.

Essentially, achieving generalization across datasets presents amore

formidable challenge than cross-subject generalization due to the

significant differences that exist between datasets.

The experimental outcomes for six tasks, as shown in Table 7,

indicate that the performance of all methods when applied

across datasets is slightly lower compared to their performance

within the same dataset. This finding supports the notion that
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TABLE 1 The mean accuracies (%) and standard deviations (%) on the SEED database using CUCE with LOSO cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF; Breiman (2001) 69.60± 7.64 KNN (Duda et al., 2000) 60.66± 7.93

SVM; Vapnik (1995) 62.24± 5.48 Adaboost (Zhu et al., 2006) 71.87± 5.70

TCA; Pan et al. (2011) 65.31± 6.04 CORAL (Sun et al., 2015) 69.22± 4.11

SA; Fernando et al. (2013) 61.41± 9.75 GFK (Gong et al., 2012) 67.36± 6.52

DICE; Liang et al. (2019) 73.56± 4.23 GAKT (Ding et al., 2018) 74.82± 7.14

MDDD; Luo et al. (2024) 76.60± 6.79 EDPC 76.82 ± 6.14

Deep learning methods

DCORAL; Sun and Saenko (2016) 80.87± 6.04 DAN (Long et al., 2019) 82.51± 3.71

DDC; Tzeng et al. (2014) 82.17± 4.96 DANN (Ganin et al., 2016) 84.79± 6.44

PR-PL; Zhou et al. (2022) 85.56± 4.78 PARSE (Zhang and Etemad, 2022) 82.44± 5.00

EEGMatch; Zhou et al. (2023) 86.30± 5.04 DADPc 87.83 ± 4.21

TABLE 2 The mean accuracies (%) and standard deviations (%) on the SEED-IV database using CUCE with LOSO cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

KNN; Duda et al. (2000) 40.83± 7.28 SVM (Vapnik, 1995) 51.78± 12.85

Adaboost; Zhu et al. (2006) 53.44± 9.12 TCA (Pan et al., 2011) 56.56± 13.77

CORAL; Sun et al. (2015) 49.44± 9.09 SA (Fernando et al., 2013) 64.44± 9.46

GFK; Gong et al. (2012) 45.89± 8.27 KPCA (Schlkopf et al., 1998) 51.76± 12.89

DICE; Liang et al. (2019) 66.75± 7.25 GAKT (Ding et al., 2018) 64.48± 5.52

MDDD; Luo et al. (2024) 64.90± 10.25 EDPC 67.88 ± 5.21

Deep learning methods

DGCNN; Song et al. (2018) 52.82± 9.23 DAN (Long et al., 2019) 58.87± 8.13

RGNN; Zhong et al. (2020) 73.84± 8.02 BiHDM (Li et al., 2019c) 69.03± 8.66

BiDANN; Li et al. (2018b) 65.59± 10.39 DANN (Ganin et al., 2016) 54.63± 8.03

PR-PL; Zhou et al. (2022) 74.92± 7.92 PARSE (Zhang and Etemad, 2022) 69.78± 8.22

EEGMatch; Zhou et al. (2023) 73.60± 7.53 DADPc 75.31 ± 6.22

the distributional differences between two datasets are more

pronounced than those between two subjects.

Specifically, our DADPc model demonstrates superior

performance compared to other baseline methods in 4 out of the

6 recognition tasks. While CAN (Kang et al., 2022) occasionally

achieves the best results in two particular settings, DADPc

consistently ranks first in other situations. These results suggest

that the combined approach of reconstructing feature learning and

possibilistic clustering learning is a more effective strategy.

Finally, as observed from Tables 1–7, the performance of

DADPc consistently outperforms that of EDPC, achieving a

maximum improvement of nearly 18%. This result suggests

that utilizing a simple deep neural network for feature

extraction and reconstruction can effectively enhance emotion

recognition performance.

6.4 Discussion

To thoroughly assess the model’s efficacy, we conduct

additional evaluations to determine the impact of various

configurations within the DADPc framework.

6.4.1 E�ect of noisy labels
To evaluate the model’s resilience in scenarios with noisy labels,

we randomly introduce η% noise to the source labels and assess

the model’s performance on unseen target data. In particular, we

replace η% of the actual labels in Ys with random labels and then

conduct supervised learning. Afterward, we test the trained model

on the target domain. It is important to note that noise is only

introduced to the source domain, while the target domain is used
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TABLE 3 The mean accuracies (%) and standard deviations (%) on the SEED database using CUSE with LOSO cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

TKL; Long et al. (2015) 63.54± 15.47 T-SVM (Ronan et al., 2006) 68.57± 9.54

TCA; Pan et al. (2011) 63.64± 14.88 TPT (Zheng and Lu, 2013) 73.86± 11.05

KPCA; Schlkopf et al. (1998) 61.28± 14.62 GFK (Gong et al., 2012) 71.31± 14.09

SA; Fernando et al. (2013) 66.00± 10.89 DICA (Ma et al., 2019) 69.40± 07.80

DBN; Zheng and Lu (2015) 61.01± 12.38 SVM (Vapnik, 1995) 58.18± 13.85

DICE; Liang et al. (2019) 74.22± 7.33 GAKT (Ding et al., 2018) 72.29± 4.66

MDDD; Luo et al. (2024) 84.57 ± 9.49 EDPC 82.34± 4.52

Deep learning methods

DGCNN; Song et al. (2018) 79.95± 9.02 DAN (Long et al., 2019) 83.81± 8.56

RGNN; Zhong et al. (2020) 85.30± 6.72 BiHDM (Li et al., 2019c) 85.40± 7.53

WGAN-GP; Luo et al. (2018) 87.10± 7.10 MMD (Dino et al., 2013) 80.88± 10.10

ATDD-DANN; Du et al. (2022) 90.92± 1.05 JDA-Net (Li et al., 2019b) 88.28± 11.44

R2G-STNN; Li et al. (2022) 84.16± 7.63 SimNet (Pinheiro, 2018) 81.58± 5.11

BiDANN; Li et al. (2018b) 83.28± 9.60 DResNet (Ma et al., 2019) 85.30± 8.00

ADA; Philip et al. (2017) 84.47± 10.65 DANN (Ganin et al., 2016) 81.65± 9.92

PR-PL; Zhou et al. (2022) 93.06± 5.12 PARSE (Zhang and Etemad, 2022) 82.11± 5.83

EEGMatch; Zhou et al. (2023) 92.45± 6.85 DADPc 93.58 ± 6.35

TABLE 4 The mean accuracies (%) and standard deviations (%) on the SEED-IV database using CUSE with LOSO cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

TKL; Long et al. (2015) 63.54± 15.47 T-SVM (Ronan et al., 2006) 68.57± 9.54

TCA; Pan et al. (2011) 63.64± 14.88 TPT (Zheng and Lu, 2013) 73.86± 11.05

KPCA; Schlkopf et al. (1998) 61.28± 14.62 GFK (Gong et al., 2012) 71.31± 14.09

SA; Fernando et al. (2013) 66.00± 10.89 DICA (Ma et al., 2019) 69.40± 07.80

DBN; Zheng and Lu (2015) 61.01± 12.38 SVM (Vapnik, 1995) 58.18± 13.85

DICE; Liang et al. (2019) 74.22± 7.33 GAKT (Ding et al., 2018) 72.29± 4.66

MDDD; Luo et al. (2024) 76.60± 6.79 EDPC 76.82 ± 7.14

Deep learning methods

DGCNN; Song et al. (2018) 79.95± 9.02 DAN (Long et al., 2019) 83.81± 8.56

RGNN; Zhong et al. (2020) 85.30± 6.72 BiHDM (Li et al., 2019c) 85.40± 7.53

WGAN-GP; Luo et al. (2018) 87.10± 7.10 MMD (Dino et al., 2013) 80.88± 10.10

ATDD-DANN; Du et al. (2022) 90.92± 1.05 JDA-Net (Li et al., 2019b) 88.28± 11.44

R2G-STNN; Li et al. (2022) 84.16± 7.63 SimNet (Pinheiro, 2018) 81.58± 5.11

BiDANN; Li et al. (2018b) 83.28± 9.60 DResNet (Ma et al., 2019) 85.30± 8.00

ADA; Philip et al. (2017) 84.47± 10.65 DANN (Ganin et al., 2016) 81.65± 9.92

PR-PL; Zhou et al. (2022) 93.06± 5.12 PARSE (Zhang and Etemad, 2022) 82.11± 5.83

EEGMatch; Zhou et al. (2023) 92.45± 06.85 DADPc 94.62 ± 4.37
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TABLE 5 The mean accuracies (%) and standard deviations (%) on the SEED database using WUCE with LOSO cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF; Breiman (2001) 76.42± 11.15 KNN (Duda et al., 2000) 72.96± 12.10

TCA; Pan et al. (2011) 77.63± 11.49 CORAL (Sun et al., 2015) 82.18± 9.81

SA; ;Fernando et al. (2013) 67.79± 7.43 GFK (Gong et al., 2012) 79.28± 7.44

DICE; Liang et al. (2019) 81.58± 7.55 GAKT (Ding et al., 2018) 80.31± 6.44

MDDD; Luo et al. (2024) 81.27± 5. 47 EDPC 82.31 ± 6.44

Deep learning methods

DAN; Long et al. (2019) 89.16± 7.90 SimNet (Pinheiro, 2018) 86.88± 7.83

DDC; Tzeng et al. (2014) 91.14± 5.61 ADA (Philip et al., 2017) 89.13± 7.13

DANN; Ganin et al. (2016) 89.45± 6.74 MMD (Dino et al., 2013) 84.38± 12.05

JDA-Net; Li et al. (2019b) 91.17± 8.11 DCORAL (Sun and Saenko, 2016) 88.67± 6.25

PR-PL; Zhou et al. (2022) 93.18± 6.55 PARSE (Zhang and Etemad, 2022) 89.85± 5.06

EEGMatch; Zhou et al. (2023) 94.70 ± 4.10 DADPc 93.18± 5.40

TABLE 6 The mean accuracies (%) and standard deviations (%) on the SEED-IV database using WUCE with LOSO cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF; Breiman (2001) 60.27± 16.36 KNN (Duda et al., 2000) 54.18± 16.28

TCA; Pan et al. (2011) 59.49± 12.07 CORAL (Sun et al., 2015) 66.88± 14.67

SA; Fernando et al. (2013) 56.94± 11.45 GFK (Gong et al., 2012) 60.66± 10.00

DICE; Liang et al. (2019) 69.68± 12.52 GAKT (Ding et al., 2018) 68.77± 6.00

MDDD; Luo et al. (2024) 68.81± 9.25 EDPC 71.39 ± 5.22

Deep learning methods

DCORAL; Sun and Saenko (2016) 65.10± 13.20 DAN (Long et al., 2019) 60.20± 10.20

DDC; Tzeng et al. (2014) 68.80± 16.60 MEERNet (Chen et al., 2021) 72.10± 14.10

PR-PL; Zhou et al. (2022) 74.62± 14.15 PARSE (Zhang and Etemad, 2022) 70.24± 8.47

EEGMatch; Zhou et al. (2023) 72.91± 8.34 DADPc 75.36 ± 5.13

exclusively for evaluating the model. In our experiments, we vary

η% at 5%, 10%, 15%, 20%, and 25%. The model accuracies on

the SEED dataset for these noise levels are shown in Figure 2,

revealing a minor decline in performance as the label noise ratio

rises from 5% to 25%. These results demonstrate that DADPc is

a robust model with a high level of tolerance for noisy labels.

Building on the study in Zhou et al. (2022), our future research

could incorporate the recent method (Jin et al., 2023) to further

reduce general noise in EEG signals and improve model stability

in cross-subject ER applications.

6.4.2 Visualization and confusion matrix
We use the t-distributed stochastic neighbor embedding (t-

SNE) algorithm (Laurens and Hinton, 2008) to visually compare

the learning ability of our DADPc at various training stages. The

visual results are shown in Figure 3. By comparing Figures 3a–c,

we observe:

• The intra-class variation across domains in Figure 3a

is larger than in Figures 3b, c. This indicates that deep

feature extraction and possibilistic clustering enhance

DADPc’s efficiency.

• In Figure 3c, feature clusters are denser and less scattered

than in Figure 3a. In DADPc, each target feature is drawn

to its class-cluster center, while target-cluster centers align

with source-cluster centers. This demonstrates that DADPc

acquires meaningful features and cluster centers, highlighting

its advantage in unsupervised domain adaptation.

To qualitatively assess the model’s performance across emotion

categories, we visually examined the DADPc model confusion

matrix on the SEED dataset using theWUCEmetric and compared
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TABLE 7 The mean accuracies (%) using CDCV (SI, Session I; SII, Session II; SIII, Session III).

Methods DEAP→SI DEAP→SII DEAP→SIII SI→DEAP SII→DEAP SIII→DEAP

Non-Deep learning methods

SA; Fernando et al. (2013) 56.69 59.33 52.28 55.61 48.90 50.02

TPT; Zheng and Lu (2013) 58.23 60.22 55.39 60.01 51.41 52.23

GAKT; Ding et al. (2018) 60.36 61.33 59.40 59.79 52.49 54.16

MDDD; Luo et al. (2024) 61.29 62.15 61.05 61.81 56.16 56.68

DICE; Liang et al. (2019) 60.68 62.79 60.86 60.49 54.78 55.33

EDPC 62.17 63.36 62.08 60.11 54.89 56.45

Deep learning methods

DDG; Ding et al. (2018) 62.40 64.92 73.92 64.29 54.29 53.33

DDC; Tzeng et al. (2014) 60.89 62.43 69.43 62.16 52.16 50.07

DANN; Ganin et al. (2016) 61.08 62.51 72.51 63.77 53.77 52.62

DSAN; Zhu et al. (2021) 63.28 64.50 74.50 64.58 55.58 54.10

DCORAL; Sun and Saenko

(2016)

60.15 60.42 70.42 61.54 52.54 51.00

CAN; Kang et al. (2022) 64.22 65.77 75.77 66.12 57.12 55.39

DADPc 65.83 66.30 75.16 65.39 57.59 58.28

FIGURE 2

Robustness with di�erent ratios of noise labels.

it with recent models (Li et al., 2018b, 2019c; Zhou et al., 2022).

Figure 4 shows that all models distinguish positive emotions well

(accuracy exceeding 90%) but struggle to differentiate negative and

neutral emotions. BiDANN (Li et al., 2019c) has a recognition

rate of less than 80% for neutral emotions (76.72%). Compared

to existing methods (Figures 4a–c our model demonstrates better

recognition, particularly for neutral-negative emotions. As shown

in Figure 4d, our model achieves recognition rates of 97.14%,

96.60%, and 97.83% for negative, neutral, and positive emotions,

respectively, outperforming PR-PL and highlighting its adaptability

and discriminative power in the target domain.

6.4.3 Convergence
It is crucial to evaluate the convergence of DADPc, since it is

an iterative algorithm. Figure 5 presents the average experimental

results obtained from three task protocols of the SEED dataset,

with the right y-axis indicating the values. The curves in the

figure illustrate that the proposed algorithm exhibits asymptotic

convergence. Overall, the objective values of DADPc stabilize

within 60 iterations. This trend was also evident in other

recognition tasks with varying cross-session configurations.

Figure 5 depicts the recognition error on the left y-axis.

WUCE outperforms CUCE in recognition accuracy due to

the latter’s complexity. Throughout the iterations, we observed

notable improvements in recognition accuracy. Although there

are some fluctuations in WUCE’s accuracy when the number of

iterations exceeds 40, the recognition accuracy generally remains

above 90%. After 130 iterations, CUCE’s recognition accuracy

exceeds 80%.

6.4.4 E�ect of hyperparameters
As analyzed in Section 3.1 (Preliminary), the σ -norm

approximates the l2,1-norm as σ approaches 0 and converges to the

Frobenius norm as σ tends to infinity. Figure 6 illustrates that the

proposed method achieves optimal recognition performance at a σ

value of 0.001 instead of these two extreme conditions. These results

suggest that adaptively tuning σ during training could enhance the

model’s robustness by balancing sensitivity to outliers with feature

representation fidelity.

We analyze the impact of hyper-parameters λ1, λ2, and

λ3 on the SEED datasets in Figure 7. The first subfigure in

Figure 7 shows that performance varies with λ1. λ1 controls

weight parameters. When λ1 is above 0, performance improves,

peaking at λ1 = 100. The second subfigure in Figure 7 shows
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FIGURE 3

A visualization of the learned feature representations: (a) before training, (b) at the training epoch of 50, and (c) in the final model, respectively.

FIGURE 4

Confusion matrices of di�erent models. (a) BiDANN Li et al. (2018b), (b) BiHDM Li et al. (2019c), (c) PR-PL Zhou et al. (2022), (d) DADPc.

FIGURE 5

Convergence vs. accuracy on SEED.

the best performance at λ2 = 1 or 10. As λ1 and λ2 near 0,

performance drops, highlighting feature selection’s role. The λ1

and λ2 prevent overfitting by regulating W and b, crucial for the

small-sized SEED datasets. Finally, we study λ3, which regulates

possibilistic clustering. The last subfigure in Figure 7 shows that

when λ3 is 10 or higher, performance is stable. Tuning λ3 is

difficult due to non-linearity (Nie et al., 2020). As λ3 approaches 0,

the DADPc’s performance exhibits a significant decrease, showing

that possibilistic clustering mitigates noisy data and improves

generalization. These results show that each hyperparameter

contributes to DADPC’s adaptability and requires careful tuning for

optimal performance in the CUCE scenario.

6.4.5 Ablation study
This ablation study systematically investigates the effectiveness

of various components in the proposed model and presents the

corresponding contributions of each component to the overall

performance of the model DADPc. As shown in Table 8, when

σ approaches 0, the adaptive norm of DADPc is the ℓ2,1 norm,

and as σ approaches ∞, the adaptive norm of DADPc becomes

the Frobenius (F) norm. It can be observed that as σ decreases,

the performances of both CUCE and WUCE improve to varying

degrees, while the performance of CUSE slightly declines. A

possible reason is that the data differences generated by different

experimental objects across different sessions for CUCE and

WUCE may be greater than the data generated by the same

experimental objects in various sessions for CUSE. The ℓ2,1 norm

aids in feature selection, allowing it to identify more diverse

and discriminative feature information from CUCE and WUCE,

thus enhancing the model DADPc’s discriminative effectiveness.

However, a smaller σ does not always yield better results. A more

detailed analysis of the hyper-parameter σ is provided in Section

6.4.5. Additionally, when λ1 = 0, the constraint on W is removed,

which can lead to model overfitting and hinder further feature

selection, resulting in a decline in the model’s performance. When

λ2 = 0, the constraint on b is removed, leading to only a slight

decrease in the model’s performance. Most importantly, when
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FIGURE 6

E�ect of σ on SEED dataset.

FIGURE 7

E�ect of hyper-parameters on SEED dataset.

λ3 = 0, it is equivalent to removing the possibilistic clustering

constraint term. In these three different experimental scenarios,

the model’s performance drops by about 20% to 30%. This

phenomenon indicates that the possibilistic clustering constraint

term significantly impacts improving DADPc’s performance.

6.4.6 Spatial mapping of key EEG patterns for
emotion recognition

During the spatial mapping process, we pinpoint crucial

neural activities associated with emotion recognition by assessing

the mutual information shared between these patterns and the

predictive labels. More precisely, during the ith validation phase, we

work with a dataset from the target domain, denoted as Xt
i , which is

structured as anNt ∗310 matrix. Here,Nt represents the number of

data points in the target domain, while 310 corresponds to the DE

features extracted from 62 electrodes across five frequency ranges.

The model’s output predictions for this phase are represented

by Ŷ t
i with a size of Nt ∗ 3. Each column in Ŷ t

i represents the

three emotions (positive, neutral, and negative) along with their

corresponding prediction probabilities (Ross, 2014). The resultant

mutual information matrix, designated as I(Xt
i , Ŷ

t
i ) ∈ R3×310,

quantifies the intrinsic relationship between the EEG patterns and

the model’s predictions. This matrix I
(

Xt
i , Ŷ

t
i

)

is then scaled to a

range of [0,1], where higher values indicate a stronger contribution

of the EEG patterns to the model’s predictions during the ith

validation phase. Figure 8 presents the average of all derived

I
(

Xt
i , Ŷ

t
i

)

matrices across various validation phases. As illustrated

in Figure 8, the mutual information in the region indicated by

the red arrow for the beta and gamma frequency bands exhibits
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TABLE 8 The ablation accuracy(%) of our proposed model on SEED.

Ablation strategy CUCE CUSE WUCE

DADPc with σ = 10−8(l2,1-norm) 84.29± 4.37 90.24± 4.18 92.06± 6.25

DADPc with σ = 108(F-norm) 83.20± 5.26 90.37± 3.62 90.10± 4.39

DADPc w/o constraints onW(λ1 = 0) 85.49± 6.39 91.60± 5.72 91.06± 7.11

DADPc w/o constraints on b(λ2 = 0) 87.21± 3.28 93.08± 6.72 92.88± 6.55

DADPc w/o PC(λ3 = 0) 63.43± 7.14 62.89± 6.82 75.69± 7.18

DADPc 87.83 ± 4.21 93.58 ± 6.35 93.18 ± 5.40

FIGURE 8

Topographic analysis of the mutual information between the EEG patterns and the model predictions.

a color gradient from red to blue, where the color corresponds to

emotional intensity. This region is responsible for visual processing

and emotional regulation, and its high-frequency neural activity

is associated with the perception of complex emotional stimuli.

A darker red tone signifies more intense emotions, while a bluer

tone indicates calmer or less intense emotional states, which aligns

with the findings of Zheng and Lu (2015), particularly in the region

indicated by the red arrow.

7 Conclusion

This study presents Domain Adaptive Deep Possibilistic

Clustering (DADPc), a novel framework that unifies deep domain-

invariant feature learning and possibilistic clustering to address

key challenges in EEG-based emotion recognition: inter-subject

variability, label scarcity, and noise sensitivity. By reformulating

maximum mean discrepancy (MMD) as a one-centroid clustering

task within a fuzzy entropy-regularized possibilistic framework,

DADPc mitigates noise-induced domain shifts while enhancing

feature discriminability. The integration of adaptive weighted

loss and memory bank strategies further enhances pseudo-label

reliability and cross-domain alignment. Extensive experiments

on SEED, SEED-IV, and DEAP datasets demonstrate DADPc’s

superiority. However, the manual tuning of λ3 (fuzzy entropy

weight) remains subjective, potentially limiting reproducibility

across datasets (the last subfigure in Figure 7). Consequently, λ3

and vik constitute a direction deserving further exploration through

Bayesian optimization or a meta-learning strategy.
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