
TYPE Original Research

PUBLISHED 23 July 2025

DOI 10.3389/fnins.2025.1593580

OPEN ACCESS

EDITED BY

Lei Deng,

Tsinghua University, China

REVIEWED BY

Hao Guo,

Taiyuan University of Technology, China

Xinglong Ji,

Tsinghua University, China

*CORRESPONDENCE

Jian Cheng

jian.cheng@ia.ac.cn

†These authors have contributed equally to

this work

RECEIVED 14 March 2025

ACCEPTED 25 June 2025

PUBLISHED 23 July 2025

CITATION

Yao X, Hu Q, Zhou F, Liu T, Mo Z, Zhu Z,

Zhuge Z and Cheng J (2025) SpiNeRF:

direct-trained spiking neural networks for

e�cient neural radiance field rendering.

Front. Neurosci. 19:1593580.

doi: 10.3389/fnins.2025.1593580

COPYRIGHT

© 2025 Yao, Hu, Zhou, Liu, Mo, Zhu, Zhuge

and Cheng. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

SpiNeRF: direct-trained spiking
neural networks for e�cient
neural radiance field rendering

Xingting Yao1,2†, Qinghao Hu1†, Fei Zhou3, Tielong Liu1,2,

Zitao Mo1, Zeyu Zhu1,2, Zhengyang Zhuge1 and Jian Cheng1,2*

1The Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of

Automation, Chinese Academy of Sciences, Beijing, China, 2School of Future Technology, University of

Chinese Academy of Sciences, Beijing, China, 3China Electric Power Research Institute Co., Ltd,

Beijing, China

Spiking neural networks (SNNs) have recently demonstrated significant progress

across various computational tasks, due to their potential for energy e�ciency.

Neural radiance fields (NeRFs) excel at rendering high-quality 3D scenes but

require substantial energy consumption, with limited exploration of energy-

saving solutions from a neuromorphic approach. In this paper, we present

SpiNeRF, a novel method that integrates the sequential processing capabilities

of SNNs with the ray-casting mechanism of NeRFs, aiming to enhance

compatibility and unlock new prospects for energy-e�cient 3D scene synthesis.

Unlike conventional SNN encoding schemes, our method considers the spatial

continuity inherent in NeRF, achieving superior rendering quality. To further

improve training and inference e�ciency, we adopt a hybrid volumetric

representation that allows the predefinition and masking of invalid sampled

points along pixel-rendering rays. However, this masking introduces irregular

temporal lengths, making it intractable for hardware processors, such as graphics

processing units (GPUs), to conduct e�ective parallel training. To address

this issue, we present two methods: Temporal padding (TP) and temporal

condensing-and-padding (TCP). Experiments on multiple datasets demonstrate

that our method outperforms previous SNN encoding schemes and artificial

neural network (ANN) quantizationmethods in both rendering quality and energy

e�ciency. Compared to the full-precision ANN baseline, our method reduces

energy consumption by up to 72.95% while maintaining comparable synthesis

quality. Further verification using a neuromorphic hardware simulator shows that

TCP-based SpiNeRF achieves additional energy e�ciency gains over the ANN-

based approaches by leveraging the advantages of neuromorphic computing.

Codes are in https://github.com/Ikarosy/SpikingNeRF-of-CASIA.

KEYWORDS

spikingneural networks, neuromorphic computing, 3D rendering, neural radiancefields,

e�cient rendering, e�cient SNN data encoding

1 Introduction

Spiking neural networks (SNNs) are considered as the third generation of neural

networks (Maass, 1997; Roy et al., 2019). SNNs use neurons and synapses for computation.

These components communicate via binary, asynchronous signals known as spikes. SNNs

have attracted significant research interest over the last few years since their computing

paradigm allows for theoretically sparse and low-power operations (Zhou et al., 2022; Zhu

et al., 2022, 2023).

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1593580
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1593580&domain=pdf&date_stamp=2025-07-23
mailto:jian.cheng@ia.ac.cn
https://doi.org/10.3389/fnins.2025.1593580
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1593580/full
https://github.com/Ikarosy/SpikingNeRF-of-CASIA
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

However, a significant gap remains between the anticipated

potential of SNNs in advancing diverse efficient intelligence and

the current dominance of artificial neural networks (ANNs)

across most deep learning applications. A prominent example

is high-quality 3D rendering, where ANNs have achieved

impressive success but at the cost of substantial computational

and energy overhead. For instance, NeRF (Mildenhall et al., 2021)

achieves impressive rendering quality, yet demands massive energy

consumption (Garbin et al., 2021). This inefficiency raises a critical

question: Can SNNs, with their event-driven and energy-efficient

nature, enable high-quality 3D scene rendering while significantly

reducing energy consumption?

Li et al. (2025) were among the first to recognize the energy-

saving potential of SNNs for efficient 3D rendering. However, their

approach relies on the ANN2SNN conversion strategy (Diehl et al.,

2016; Rueckauer et al., 2017), which results in an excessively large

number of time-steps per sampled point, leading to significant

energy redundancy. Therefore, their models fail to surpass or even

match the energy efficiency of some optimized ANN works.1 In

contrast, this paper explores NeRF rendering using directly trained

SNNs and introduces a novel data encoding method designed to

minimize time-steps, reduce energy consumption, and maintain

high rendering quality.

Specifically, we adopt voxel grid methods (Hedman et al., 2021;

Liu et al., 2022; Sun et al., 2022), which explicitly store volumetric

parameters and allow predefined masking of invalid sampled

points, to enable fast and efficient synthesis. For more energy-

efficient computation, we use a directly trained spiking multilayer

perceptron (MLP) that implicitly encodes volumetric parameters

through a spike-driven approach with a minimal number of time-

steps. By combining these explicit and implicit strategies, our SNN-

based NeRF (named SpiNeRF) achieves both fast and energy-

efficient neural radiance rendering.

Inspired by the imaging process of the primate fovea where

photoreceptor cells are stimulated by the accumulation of light

intensity over time (Masland, 2012; Wässle, 2004) we draw a

comparison between the accumulation process in NeRF rendering

and the temporal integration in SNNs that stimulates spiking

activity. Concretely, we align each pixel-rendering ray with the

temporal dimension of the spiking MLP, mapping each sampled

point along the ray to a corresponding time-step during rendering.

This approach transforms the geometric consecutiveness of the

ray into temporal continuity within the SNN. Thus, SpiNeRF can

achieve higher rendering quality and better energy efficiency when

compared to previous data encoding methods.

Moreover, since invalid sampled points are masked out, the

number of sampled points along different pixel-rendering rays

varies, resulting in irregular temporal lengths across different

rays. Consequently, querying volumetric parameters becomes

challenging to parallelize during rendering, which significantly

hinders the training process on graphics processing units (GPUs).

Abbreviations: TP, temporal padding; TCP, temporal condensing-and-

padding; TRA, time-ray alignment; T/S, Time-step/Sample.

1 Energy comparisons in Table 2, 3, along with the analysis in Section 5.2.2,

demonstrate that this issue significantly undermines the energy-saving

potential of SNNs.

To solve this issue, we first investigate the temporal padding (TP)

method, which standardizes the temporal length within a querying

batch (i.e., creates a regular-shaped tensor), ensuring parallelism

and enabling efficient GPU-based training. Furthermore, we

propose a temporal condensing-and-padding (TCP) strategy,

which further reduces tensor size and condenses the data

distribution, making the approachmore hardware-friendly for both

neuromorphic hardware and GPUs. Extensive experiments prove

that TCP effectively maintains the energy efficiency advantages of

SNNs while maintaining high-quality NeRF rendering.

Additionally, we discuss the querying direction of SpikNeRF

since SNNs process temporal information in a particular direction

while the accumulation process of the NeRF rendering does not.

In summary, the main contributions of this work are as

follows:

• We propose SpiNeRF, a novel framework that aligns the

temporal dimension of SNNs with the pixel-rendering rays

of NeRF, effectively leveraging the temporal characteristics

of SNNs. To the best of our knowledge, this is the first

work to employ directly trained SNNs for reconstructing 3D

RGB scenes, enabling efficient and high-quality 3D rendering

feasible on neuromorphic hardware.

• We introduce TP and TCP to solve the issue of irregular

temporal lengths, enabling parallelism during training and

inference on GPUs. In particular, TCP further enhances

hardware compatibility, making SpiNeRF efficient on both

neuromorphic hardware and GPUs.

• We validate the effectiveness of SpiNeRF across four

mainstream tasks, demonstrating significant energy efficiency

advancements. For example, on the Tanks&Temples task,

SpiNeRF achieves a 72.95% reduction in energy consumption

with only a 0.33 dB drop in PSNR.

This paper is structured as follows: Section 2 reviews related

work, Section 3 outlines the preliminaries, Section 4 details the

proposed methods, Section 5 presents the results, and Section 6

concludes the study.

2 Related work

2.1 NeRF-based 3D rendering

In contrast to traditional 3D rendering methods that rely on

explicit and discrete volumetric representations, NeRF (Mildenhall

et al., 2021) utilizes a coordinate-based neural network to implicitly

represent the 3D radiance field. It synthesizes novel views by

accumulating density and color information along view-dependent

rays using a ray tracing algorithm (Kajiya and Von Herzen,

1984). This paradigm has significantly improved the quality of

novel view synthesis. Subsequent works have enhanced rendering

quality (Deng B. et al., 2020; Barron et al., 2021; Tancik et al.,

2020), while others have focused on accelerating training (Deng

et al., 2022; Fridovich-Keil et al., 2022; Sun et al., 2022) or

optimizing the rendering process itself (Lindell et al., 2021;

Reiser et al., 2021; Yu et al., 2021; Sun et al., 2022). In this

work, we explore the integration of spike-based, low-energy

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

computation with NeRF-based high-quality 3D synthesis, aiming

to enable energy-efficient and neuromorphic-hardware-compatible

3D rendering.

2.2 Fast NeRF synthesis

The accumulation process in NeRF (Mildenhall et al., 2021)

involves a large number of MLP queries, resulting in substantial

flop operation and memory-access overhead, which slows down

the synthesis speed. To address this, recent studies have introduced

hybrid models that combine traditional explicit volumetric

representations such as voxels (Hedman et al., 2021; Liu et al., 2022;

Sun et al., 2022) and MPIs (Wizadwongsa et al., 2021) with MLP-

dependent implicit representations, thereby improving efficiency

by reducing redundant queries in free space. In this work, we

adopt voxel grids to mask out irrelevant low-density regions and

discard unimportant sampled points with low weights, significantly

reducing synthesis overhead. Notably, our proposed method based

on a novel adaptation of SNNs is designed as a plug-in component

that remains orthogonal to existing ANN-based NeRF models.

2.3 Spiking neural networks

Due to their high sparsity and multiplication-free operations,

SNNs outperform ANNs in potential energy efficiency (Davies

et al., 2018; Li et al., 2020; Lee et al., 2022). However, they have

historically lagged behind in performance. To bridge this gap,

research has focused on deepening SNN architectures (Zheng et al.,

2021; Fang et al., 2021a), accelerating convergence (Wu et al., 2019;

Deng et al., 2021), and achieving high performance (Zhou et al.,

2022). With advancements in both energy efficiency and model

performance, recent research has explored more versatile SNN

models, including Spikformer (Zhou et al., 2022), Spiking GCN

(Zhu et al., 2022), and SpikeGPT (Zhu et al., 2023). In this paper,

we seize the analogous nature of NeRF and SNNs to enable spiking

neural networks to reconstruct 3D scenes with high quality at low

energy consumption.

2.4 SNNs in 3D reconstruction

The application of SNNs to 3D reconstruction remains

relatively unexplored. Spiking-NeRF (Li et al., 2025) represents

one of the first attempts to achieve efficient NeRF rendering

using SNNs as the fundamental model. However, their approach

relies on the ANN2SNN conversion strategy (Diehl et al., 2016;

Rueckauer et al., 2017), which leads to excessively long temporal

lengths for each sampled point, resulting in superfluous energy

consumption. In contrast, our method directly trains SNN models

from scratch, reducing the number of time-steps per sampled point

to 1. Consequently, our approach achieves orders of magnitude

lower energy consumption compared to previous works.

Additionally, Liao et al. (2023) propose a non-linear,

non-spiking function, B-FIF, to post-process the density

estimation of the original ANN-based NeRF (Mildenhall

et al., 2021). While this method may enhance depth prediction,

it abandons the binary spiking nature and potential energy

efficiency of SNNs contradicting the core motivation of our

work. Moreover, their evaluation is limited to the Chamfer

metric, which does not support comprehensive quantitative or

qualitative comparisons with our method, which targets full RGB

scene rendering.

3 Preliminaries

3.1 Neural radiance field

To reconstruct view-dependent colors of a given scene, NeRF

(Mildenhall et al., 2021) utilizes an MLP that takes in the location

coordinates p ∈ R
3 and the view direction v ∈ R

2, and outputs the

density σ ∈ R and the color c ∈ R
3. This MLP implicitly maintains

a continuous volumetric representation:

e, σ = MLPθ (p), (1)

c = MLPγ (e, v), (2)

where θ and γ denote the parameters of the two separate parts of

the MLP, and e denotes the embedded features. Next, NeRF renders

each pixel of the desired view by casting a pixel-rendering ray r

from the camera origin toward the corresponding pixel direction

and sampling K points along this ray. Through querying the MLP

K times, as described in Equations 1, 2,K color values andK density

values are obtained. Finally, following the principles of discrete

volume rendering proposed byMax (1995), the expected RGB color

of the pixel, Ĉ(r), is computed as follows:

αi = 1− exp(−σiδi), wi =
i−1
∏

j=1
(1− αi), (3)

Ĉ(r) ≈
K

∑

i=1
wiαici, (4)

where ci and σi denote the color and density values of the i-th

sampled point, respectively; δi is the distance between adjacent

points i and i + 1, and αi is an intermediate variable used in

volume rendering.

After rendering all the pixels, the expected view is

reconstructed. Given the ground-truth pixel color C(r), the

MLP parameters can be trained end-to-end by minimizing the

MSE loss:

L = 1

|R|
∑

r∈R
‖Ĉ(r)− C(r)‖22, (5)

whereR is the mini-batch containing the sampled rays.

3.2 Hybrid volumetric representation

The number of sampled points K in Equation 4 is usually

large, leading to a heavy MLP querying burden, as displayed in

Equations 1, 2. To alleviate this problem, voxel grid representations

(Liu et al., 2020; Sun et al., 2022) are utilized to directly store

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

volumetric parameters such as the embedded feature e and density

σ from Equation 1 as values within the grid. Therefore, the costly

MLP queries in Equation 1 are replaced with simpler voxel grids

and interpolation operations, significantly reducing computational

overhead:

σ = act(interp(p,Vσ)), (6)

e = interp(p,Vf), (7)

where Vσ and Vf denote the voxel grids corresponding to

volumetric density and features, respectively. The operator “interp”

denotes the interpolation operation, while “act” represents an

activation function, such as ReLU or the shifted softplus (Barron

et al., 2021).

Furthermore, irrelevant points with low density or unimportant

points with low accumulated weight can be masked using

predefined thresholds λ. Therefore, Equation 4 is modified to:

A , {i :wi > λ1,αi > λ2}, (8)

Ĉ(r) ≈
∑

i∈A
wiαici. (9)

Thus, the number of MLP queries for sampled points, as

shown in Equation 2, is significantly reduced. These computational

benefits make hybrid volumetric representation widely used in

neural radiance rendering (Sun et al., 2022; Chen et al., 2022).

3.3 Spiking neuron

The spiking neuron is the most fundamental unit of SNNs

and serves as the key distinguishing factor between SNNs and

ANNs. Spiking neurons are commonly adopted using the leaky

integrate-and-fire (LIF) model:

utj = (1− 1

τ
)vt−1j + 1

τ

∑

i

wijs
t
i +

1

τ
vreset , (10)

stj = H(utj − vthr), (11)

vtj = utj · (1− stj)+ vresets
t
j . (12)

In this work, we adopt the LIF neuron implementation

provided by the renowned SpikingJelly framework (Fang et al.,

2023a). The membrane potential of neuron j at time-step t, denoted

as utj , is updated according to Equation 10, where vt−1j represents

the post-spike membrane potential, and wij is the synaptic weight

from neuron i to neuron j. The output spike stj is determined by the

Heaviside step function H(·) in Equation 11, which triggers a spike

when the membrane potential exceeds the potential threshold vthr .

Depending on whether a spike is emitted at time-step t, the post-

spike membrane potential vtj is either retained as utj or reset to a

fixed value vreset , as described in Equation 12.

Since the Heaviside step function H(·) is not differentiable, we
use the surrogate gradient method (Neftci et al., 2019) to solve this

issue:

In the forward pass,

H(x) =
{

1, x ≥ 0,

0, otherwise.
(13)

In the backward pass,

dH(x)

dx
≈ d Sigmoid(βx)

dx
= β exp(−βx)

(1+ exp(−βx))2
, (14)

where β is a predefined hyper-parameter. This allows spiking

neural networks to be optimized in an end-to-end manner.

4 Methods

This section describes the process of constructing an efficient

NeRF using directly trained SNNs. First, we explore two

conventional SNN encodings (direct encoding and Poisson

encoding) to adapt SNNs for NeRF. We also consider ANN

quantization as an encoding strategy for building efficient NeRF

models. These encodings will serve as comparative baselines. Next,

on the basis of direct encoding, we propose the time-ray alignment

encoding, which integrates the sequential processing capabilities

of SNNs with the ray-casting mechanism of NeRF. Following

this, we develop TP to handle the irregularities introduced by

the masking operation along the temporal dimension. We further

propose TCP to create a denser data structure, making it more

compatible with hardware computation. We also address the

alignment direction issue and propose the temporal flip trick as part

of our empirical study. Lastly, we provide the network architecture,

the overall algorithm, and the experimental setups to finish the

practical establishment of SpiNeRF and ensure the reproducibility

of our results.

4.1 Data encoding

In this subsection, we explore one classic ANN data/feature

quantization method and two conventional SNN data encoding

approaches: direct encoding and Poisson encoding, as initial

strategies for efficient NeRF rendering. ANN quantization

encodes data/features in a low-precision format, reducing

hardware computing overhead during MAC operations. The two

conventional SNN encodings are designed to facilitate the practical

application of SNNs, reducing computing overhead. Therefore,

these three data encoding strategies represent viable pathways to

achieving efficient NeRF rendering. It is logical to first establish

these baseline models as a foundation for further exploration.

Figure 1 illustrates their operating processes.

For ANN quantization, we adopt the renowned Learned Step-

size Quantization (LSQ) (Esser et al., 2020) to quantize the original

ANN model, thereby establishing an efficient ANN-based NeRF

model as the ANN encoding.

In the direct encoding scheme, the original data is duplicated

T times to match the length of the SNN’s temporal dimension,

where T represents the total length of the temporal dimension.

In the Poisson-encoding scheme, besides the duplication

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

FIGURE 1

Conventional encoding schemes. For ANN quantization #1, 16-bit

or 32-bit float point features are mapped to low-precision values.

For direct encoding, only the operation #2 is necessary that it

duplicates the input data T times to fit the length of the temporal

dimension. For Poisson encoding, both operation #2 and #3 are

utilized to generate the input spike train. The “Mean” or “Voting”

operation is able to decode the SNN output.

operation, the input value is interpreted as the probability of

generating a spike at each time-step. A decoding method is

also required for the subsequent rendering operations, with the

mean (Li et al., 2021) and voting (Fang et al., 2021b) decoding

operations being commonly considered. We employ the former

approach, as the voting method is designed for classification

tasks (Diehl and Cook, 2015; Wu et al., 2019). Thus, we

create two baseline versions of SpiNeRF using these two SNN

encoding methods.

4.2 Time-ray alignment encoding

This subsection explores a more natural and novel approach

to adapting SNNs for the NeRF rendering process. Specifically,

attempt to retain the real-valued input data, as in direct encoding,

but avoid using the duplication-based approach to fill the

temporal dimension.

We first consider the MLP querying process from the ANN

philosophy. To reconstruct the expected view, the volumetric

parameters of the sampled points, such as e and v in Equation 2,

are organized as input data with shapes of [batch, ce] or [batch, cv],

where batch represents the sample index and c is the channel index

of the volumetric parameters. This structure allows the MLP to

query these data and output the corresponding color information

in parallel. However, from a geometric view, the input data should

be structured as [ray, pts, c], where ray represents the ray index and

pts represents the index of the sampled points.

Clearly, the ANN-based MLP querying process does not

capture the geometric relationships between the pixel-rendering

ray and the sampled points. To address this, we consider the

computational modality of SNNs. As illustrated in Equations 10–

12, SNNs involve the temporal dimension to process sequential

signals. This means that a spiking MLP naturally accepts input data

with the shape of [batch, time, c], where time refers to the temporal

index. Therefore, we can reshape the volumetric parameters back to

[ray, pts, c], and intuitively match each sample along the ray to the

corresponding time-step:

InputMLP : = [batch, c]

⇒ [ray, pts, c]

⇒ [batch′, time, c] : = InputSpiking_MLP.

(15)

Thus, ray = batch′ and pts = time, which indicates the

geometric relationships of sampled points can be captured by SNNs

in the form of temporal intervals. This is further illustrated in

Figure 2A. Notably, this alignment does not require any input data

pre-process, such as duplication (Zhou et al., 2022) or Poisson

generation (Garg et al., 2021), which are commonly used in

previous works.

4.3 TCP

However, the masking operation on sampled points, as

illustrated in Section 3.2, complicates the time-ray alignment.

While this masking operation improves rendering speed and

quality by curtailing the computation cost of redundant samples,

it also leads to an irregular number of queried samples across

different rays. Therefore, the reshape operation in Equation 15,

which transforms the data into a tensor, becomes unfeasible on

GPUs after the masking operation.

To ensure computation parallelism (particularly during

training) on GPUs, we propose retaining the indices of masked

samples while discarding their values. As illustrated in Figure 2B,

both unmasked and masked samples are sequentially arranged

in the corresponding ray-indexed vector, with zeros padded into

the vacant tensor elements. This results in a regular-shaped input

tensor. We refer to this simple approach as the temporal padding

(TP) method.

However, the TP method does not effectively handle masked

samples because the padded zeros still participate in subsequent

computation, causing the membrane potential of the spiking MLP

to decay. This implicitly affects the outcomes of the unmasked

samples in the posterior segment of the ray. What’s worse,

these zeros interspersed among valid data elements increase

the irregular local sparsity of the tensor. Even with advanced

hardware architectures that can skip these zeros, the sparse

data structure still causes computation inefficiency, such as

imbalanced workload (Zhang et al., 2020). To solve these issues,

we propose the temporal condensing-and-padding (TCP) strategy,

as illustrated in Figure 2B. In contrast to TP, the TCP strategy

completely discards the parameters and indices of the masked

samples, rearranging the unmasked sampled points adjacently

in the corresponding ray vector. Thus, the data density can be

locally increased. Additionally, the ray dimension can be sorted

according to the number of valid data points, further increasing

the valid data density. For example, if the ray dimension is

sorted in descending order of valid data, the valid data will be

concentrated in the upper-left part of the tensor. This sorting

trick is also incorporated into our TCP technique to facilitate

more efficient allocation of computation resources, avoiding

redundant computation on invalid data. Therefore, TCP effectively

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

FIGURE 2

The overview of the proposed SpiNeRF. (A) The rendering process of SpiNeRF. The whole 3D volumetric parameters are stored in the voxel grids. The

irrelevant or unimportant samples are masked before the spiking MLP querying. The expected views are rendered with the volumetric information

yielded by the spiking MLP. (B) The proposed time-ray alignment encoding, where the temporal dimension and the pixel-rendering ray are aligned.

The spiking MLP queries each sampled point step-by-step to yield the volumetric information. The proposed temporal padding (TP) method or the

temporal condensing-and-padding (TCP) method can be performed before the spiking MLP querying. For simplification, the channel length of the

volumetric parameters is set to 1.

eliminates the impact of masked samples, making SpiNeRF more

hardware-friendly.

Although the data condensing operation may introduce

additional overhead on hardware, the resulting regular and

condensed data structure commonly yields significantly greater

efficiency gains, outweighing the extra cost of data condensing

(Zhang et al., 2020). These benefits extend beyond DNN hardware

accelerators and GPUs to neuromorphic hardware as well, as

demonstrated in Parallel Time Batching (PTB) (Lee et al., 2022)

and STELLAR (Mao et al., 2024). Therefore, we adopt TCP as the

primary method in the following study.

4.4 Temporal flip

Moreover, aligning the temporal dimension with the pixel-

rendering ray causes the spiking MLP to query the samples

along each ray sequentially rather than in parallel. This raises

an important question: Which querying direction is more

efficient for SpiNeRF, the original pixel-rendering ray direction or

its reverse?

Although some special SNN designs, such as Parallel Spiking

Neuron (PSN) (Fang et al., 2023b), can process the parallel input

data and avoid the querying direction issue, our goal is to find

a general solution that adapts standard, one-directional SNNs to

SpiNeRF. To address this, we propose using empirical experiments

FIGURE 3

Temporal flip. The direction of the temporal dimension is consistent

with the pixel-rendering ray #1 but opposite to ray #2. “P.t.” is the

abbreviation of “point”.

to determine the optimal querying direction. As illustrated in

Figure 3, we introduce a temporal flip operation that reverses

the alignment between the temporal dimension and the pixel-

rendering ray, effectively enabling a direct comparison between

the two directions. Experimental results presented in Section 5.4

consistently indicate that the direction of the pixel-rendering ray

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

yields better performance for SpiNeRF. Therefore, we adopt this

direction as the default in our method.

4.5 Network architecture

As illustrated in the above subsections and Figure 2, the

proposed SpiNeRF integrates three-folded techniques: time-ray

alignment (TRA) encoding, TCP, and the replacement of ANN

with SNN. Together, these techniques enable SpiNeRF to operate

as a plug-in module, improving the potential energy efficiency of

voxel-grid-based NeRF frameworks. As an example, we incorporate

our method into the Direct Voxel Grid Optimization (DVGO)

framework (Sun et al., 2022), resulting in a variant termed

SpiNeRF-D. This subsection introduces an optional spiking

MLP architecture, which serves as the main method used in

our experiments.

The spikingMLP comprises an input projection layer (39→128

channels), a hidden layer (128→128 channels), and an output layer

(128→3 channels). All layers are implemented as bias-free linear

transformations followed by LIF spiking neurons. The network

architecture setting and parameter size remain identical to those

in the original ANN-based model (Sun et al., 2022), with the sole

modification being the replacement of ReLU functions with LIF

spiking neurons. As indicated in the architecture, the output feature

has 3 channels corresponding to the RGB values of c in Equation 2.

After applying Equation 9, the final RGB values for each pixel Ĉ(r)

are produced. The detailed rendering pipeline is described in the

following subsection.

4.6 Overall algorithm

This subsection summarizes the overall SpiNeRF algorithm

within the DVGO framework (Sun et al., 2022), referred to as

SpiNeRF-D. The pseudo code for inference, i.e., the rendering

process, is provided in Algorithm 1, while the training pipeline is

described in Algorithm 2.

As illustrated in Figure 2A, SpiNeRF-D first establishes the

voxel grids filled with learnable volumetric parameters. Two groups

of voxel grids are built as the input of Algorithm 1, which are the

density and the feature voxel grids. Given the N expected pixels to

render, Step 1 is to sampleM points along each pixel-rendering ray

shot from the camera origin to the direction of each pixel. With

the N × M sampled points, Step 2 queries the density grids to

compute the weight coefficients, and Step 3 uses these coefficients

to mask out those irrelevant points. Then, Step 4 queries the feature

grids for the filtered points and returns each point’s volumetric

parameters. Steps 5 and 6 prepare the volumetric parameters into

a receivable data format for Spiking_MLP with TP or TCP. Steps

7 and 8 compute the RGB values for the N pixels. Step 9 returns

these N rendered pixels. Assuming these N pixels all belong to a√
N ×
√
N sized novel view v, this novel view can then be rendered

by putting together all its N pixels.

In the training pipeline of SpiNeRF-D, we adopt the two-stage

training strategy used in the original DVGO framework: a coarse

Input: The density and the feature voxel grids Vσ

and Vf, the spiking MLP Spiking_MLP(·), the view

directions of the camera v, the pixel-rendering

rays from the camera origin to the directions of

the N expected pixels RN = {r1, r2,..., rN}, and

the number of the sampled points per ray M.

Output: The RGB Ĉ = {Ĉ1, Ĉ2,..., ĈN} of the N expected

pixels.

1: Sampled points’ coordinates

P{N×M} = {p1,1,p1,2,...,pN,M} ← Sampling from RN.

2: α{N×M},w{N×M} ← Input (P,Vσ) to Equations 3, 6

sequentially.

3: Filtered coordinates P′ ← Input (P,α,w) to

Equation 8.

4: InputMLP ← Input (P′,Vf,v) to Equations 2, 7

sequentially.

5: The temporal length T← Record the maximum point

number among the batched rays.

6: InputSpiking_MLP ← The TP or TCP transformation on

InputMLP as described in Equation 15 and

Section 4.3.

7: The RGB values c{N,T} ← Spiking_MLP(InputSpiking_MLP)

8: Ĉ← Input (P′,α,w,c) to Equation 9.

9: Return Ĉ

Algorithm 1. Rendering pipeline of SpiNeRF-D.

training stage followed by a fine training stage. The purpose of the

coarse training stage is to provide better initialization for the two

voxel grids Vσ and Vf. As shown in Algorithm 2, only these two

voxel grids are optimized during the coarse training stage. In Steps

6 and 7, the density σ and color c are directly extracted from the

voxel grids. Step 8 generates the coarse RGB values for the expected

pixels, which are then compared with ground truth in Step 9 to

compute the loss. Finally, Step 10 performs a backward pass to

optimize Vσ and Vf.

After optimizing Vσ and Vf for Iterc iterations during the

coarse training stage, the fine training stage will leverage these

properly initialized voxel grids to accelerate convergence. In this

stage, Step 12 freezes the density voxel grid Vσ , treating it as a

fixed parameter. Step 15 leverages the spikingMLP for refined pixel

rendering, following Algorithm 1. Using the predicted pixel values

and ground truth, the MSE loss is calculated in Step 16, enabling

a backward pass in Step 17. After Iterf iterations of fine training,

SpiNeRF-D achieves high-quality 3D rendering with an optimized

spiking MLP and an enhancedVf. Moreover, the fine training stage

accounts for over 95% of the total training time due to its high

iterations and the additional operations introduced by the spiking

MLP. This substantiates the rationale for employing the proposed

TCP module to maintain training efficiency.

Notably, the proposed methods, which function as a plug-in,

can also be applied to other voxel-grid-based NeRF frameworks,

such as TensoRF (Chen et al., 2022) and NSVF (Liu et al.,

2020). Therefore, we also implement SpiNeRF within the TensoRF

framework (termed SpiNeRF-T) to further verify its generalizability

in Section 5.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

Input: The density and the feature voxel grids Vσ

and Vf, the spiking MLP Spiking_MLP(·), the set

of view directions of the camera vset, the set of

pixel-rendering rays from the camera origin to

the directions of all the Ntot pixels

RNtot = {r1,r2,...,rNtot }, the number of the

sampled points per ray M, the set of ground-truth

RGB Cset = {C1,C2,...,CNtot }, the coarse training

stage’s iteration Iterc, and the fine training

stage’s iteration Iterf.

Output: The density and the feature voxel grids Vσ

and Vf, and the trained spiking MLP Spiking_MLP(·).
1: # The coarse training stage.

2: Initialize Vσ to zero, Vf to random values, and

Spiking_MLP(·) to random weights.

3: for i = 1; i ≤ Iterc; i++ do

4: Sampling a mini-batch (RN,C) from (RNtot,Cset).

5: Sampled points’ coordinates P← Sampling

points from RN.

6: σ ← interp(P,Vσ).

7: c← interp(P,Vf).

8: Ĉ← Input (σ,c) to Equations 3, 4 sequentially.

9: MSE loss L← Input (C, Ĉ) to Equation 5

10: Backward-propagation to optimize Vσ and Vf.

11: # The fine training stage.

12: Freeze the optimized Vσ.

13: for i = 1; i ≤ Iterf; i++ do

14: Sampling a mini-batch (RN,C,v) from

(RNtot,Cset,vset).

15: Ĉ← Input (RN,Vσ,Vf,v,Spiking_MLP) to

Algorithm 1.

16: MSE loss L← Input (C, Ĉ) to Equation 5

17: Backward-propagation to optimize Vf and

Spiking_MLP(·).
18: Return Vσ, Vf, and Spiking_MLP(·).

Note: For simplicity and clarity, some

sophisticated training techniques of DVGO are

hidden.

Algorithm 2. Training pipeline of SpiNeRF-D.

4.7 Method verification setup

4.7.1 Dataset benchmarks
We conduct experiments on four inward-facing datasets:

Synthetic-NeRF (Mildenhall et al., 2021), which contains eight

objects synthesized from realistic images; Synthetic-NSVF (Liu

et al., 2020), containing eight objects generated by NSVF;

BlendedMVS (Yao et al., 2020), which includes authentic ambient

lighting by blending real images; and the real-world dataset

Tanks&Temples (Knapitsch et al., 2017).

4.7.2 Hyper-parameter setting
In SpiNeRF-D, we retain all the hyper-parameters from the

original configuration (Wu et al., 2019), except for increasing the

number of fine training iterations Iterf , from 20,000 to 40,000.

This adjustment helps address the underfitting issue commonly

observed in SNNs, which requires more training iterations to

resolve (Fang et al., 2021a,b). The comparisons between SpiNeRF-

D and DVGO are fair, as we also set the fine training iteration

count to 40,000 for our reproduced DVGO. All other hyper-

parameters remain unchanged, including 5,000 iterations for the

coarse stage training Iterc, 8192 rays per training batch, and a 1603

voxel grid size. For both SpiNeRF-T and our reproduced TensorRF,

we discard the feature embedding to alleviate the first layer’s

computation burden. Aside from this modification, all other hyper-

parameters follow the official TensorRF configurations (Chen et al.,

2022).

4.7.3 Energy estimation
For energy computation, we adopt two estimation methods.

The first method is intended for comparison with previous works

and to align our results with the major SNN field. Specifically, we

follow previous works (Zhou et al., 2022; Yao et al., 2023; Kundu

et al., 2021a,b; Horowitz, 2014) by providing a theoretical energy

consumption estimate based on 45 nm technology (Horowitz,

2014) and report the average energy consumption required to

render a novel view. The energy cost of spike-based operations

is defined as follows: EnergySOPs = 0.9pJ × Spike_num ×
Flops, where Spike_num denotes the number of spikes in the

input spike train, and Flops represents the number of floating-

point operations triggered by a single spike. Similarly, the energy

consumption for the floating-point operations is estimated as

follows: EnergyFLOPs = 4.6pJ × FLOPs. The total energy

consumption for rendering a novel view, denoted as Energytot, is

calculated as: Energytot = Pts_num× (EnergySOPs + EnergyFLOPs),

where Pts_num denotes the total number of sampled points.

Unless specified otherwise, this energy estimation method is used

by default.

The second energy estimation method estimates the

effectiveness of our proposed approach on neuromorphic

hardware architecture. Specifically, we adopt the SpikeSim

evaluation with the SpikeFlow architecture (Moitra et al., 2023).

SpikeSim emulates neuromorphic hardware design based on

in-memory-processing technology, while SpikeFlow defines

the default from-software-to-hardware network mapping and

dataflow configuration. In SpikeSim, model parameters are stored

as conductance values in crossbars within each processing unit.

Each crossbar performs a matrix-vector multiplication, and each

processing unit handles multiple such operations in parallel. Since

the spiking MLP in SpiNeRF-Ds is relatively small, we reduce

the crossbar size from the original 64×64 to 32×32, making

the mapping of the spiking MLP to the SpikeFlow architecture

feasible. Additionally, the original SpikeFlow architecture was

designed for image classification tasks and does not consider

dataflow parallelism, as the original model size is large. In our

implementation, we set the parallelism of dataflow to 4, meaning

that four spiking MLPs are stored on-chip and four pixel-rendering

rays in the radiance field can be queried simultaneously by these

spiking MLPs. This setup enables feasible energy evaluation

using SpikeSim.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

5 Results

In this section, we demonstrate the effectiveness of our

proposed SpiNeRF. First, we base our implementation on the

voxel-grid-based DVGO (Sun et al., 2022) as the basic NeRF

framework for our experiments. Second, we then compare the

proposed TRA encoding with existing data encoding methods,

including ANN quantization (Esser et al., 2020), Poisson encoding,

and direct encoding, to demonstrate the effectiveness and

superiority of TRA. Third, we compare our methods with other

NeRF-based methods, including traditional ANN counterparts

and the ANN2SNN-based Spiking-NeRF (Li et al., 2025). To

demonstrate the flexibility of our approach, we also integrate

our methods into the high-performance TensoRF framework

(Chen et al., 2022) and showcase the corresponding results.

In addition, we present rendering views as visual aids for

qualitative analysis. Fourth, the neuromorphic hardware simulator

SpikeSim (Moitra et al., 2023) and an A100 GPU are used

to verify the efficiency of the proposed TCP strategy. The

results collectively demonstrate the hardware compatibility of the

proposed methods. Finally, we discuss the impact of the alignment

direction by applying the temporal flip technique, as described in

Section 4.4.

For clarity, we refer to the DVGO-based implementation of

SpiNeRF as SpiNeRF-D, and the TensoRF-based implementation

as SpiNeRF-T.

5.1 Comparisons with the conventional
data encodings

As described in Section 4.1, we propose two naive versions

of SpiNeRF that employ conventional data encoding schemes:

Poisson-encoding and direct encoding. As shown in Table 1,

Poisson-encoding significantly degrades feature information,

yielding amaximumPSNR of only 24.83 dB across different settings

and datasets, achieving far-from-acceptable synthesis quality. The

corresponding qualitative results of this ineffective encoding are

shown in Figure 4. The primary limitation of the Poisson-encoding

method is that it leads the NeRF model to capture only dominant

color information while discarding much of the finer color

detail, ultimately leading to rendering failures. Notably, increasing

the temporal length does not alleviate this inherent deficiency.

To rule out the possibility that this flaw stems from a low

encoding rate, we also calculated the encoding rate. For example,

with T/S=3 and D=1, the Poisson encoding rates for Synthetic-

NeRF and Synthetic-NSVF are 0.518 and 0.520, respectively

both within a reasonable range. A reasonable explanation for

this drawback is that Poisson-encoding directly converts full-

precision volumetric parameters into binary spikes, bypassing

the spiking MLP encoding layer responsible for transforming

continuous values into binary spikes. Therefore, a significant

part of volumetric information is lost, leading to failure in

RGB rendering.

TABLE 1 Comparisons with di�erent data encodings under di�erent time-steps and sampling density settings.

Method Setting Energy level Synthetic-NeRF Synthetic-NSVF

PSNR↑ SSIM↑ Energy (mJ)↓ PSNR↑ SSIM↑ Energy (mJ)↓
ANN quantization D=1 1 31.24 0.946 167.67 34.13 0.968 78.54

D=2 2 31.43 0.949 290.45 34.50 0.971 135.98

D=3 3 31.50 0.949 506.91 34.53 0.971 239.64

Poisson encoding T/S=1, D=1 1 22.03 0.854 49.61 24.83 0.893 29.64

T/S=2, D=1 2 21.98 0.855 91.97 24.83 0.893 55.58

T/S=3, D=1 3 21.93 0.855 119.04 24.83 0.893 73.04

T/S=1, D=2 2 22.04 0.857 82.32 24.85 0.894 50.22

T/S=1, D=3 3 22.03 0.859 136.69 24.85 0.894 88.01

Direct encoding T/S=1, D=1 1 31.22 0.947 113.03 34.17 0.969 53.73

T/S=2, D=1 2 31.51 0.951 212.20 34.49 0.971 104.05

T/S=3, D=1 3 31.55 0.951 436.32 34.56 0.971 217.86

T/S=1, D=2 2 31.40 0.949 192.81 34.45 0.970 94.58

T/S=1, D=3 3 31.46 0.950 337.98 34.56 0.971 168.10

Time-ray alignment (TRA) T/S=1, D=1 1 31.34 0.949 110.80 34.33 0.970 56.69

T/S=1, D=2 2 31.59 0.951 185.78 34.63 0.972 98.39

T/S=1, D=3 3 31.64 0.952 308.84 34.57 0.972 165.17

T/S abbreviates Time-step/Sample, representing the number of time-steps of each sampled point. D denotes the normalized sampling density of points along each ray. The bold values indicate

better results. Poisson encoding, as a failed study endeavor, is not considered.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

FIGURE 4

Qualitative results of SpiNeRF-D with Poisson-encoding and di�erent time-steps on Chair of Sythetic-NeRF (top) and Steamtrain of Sythetic-NSVF

(bottom). The sampling density is 1.

Conversely, as listed in Table 1, direct encoding obtains good

synthesis performance even with a single time-step, and its PSNR

improves as the time-step number increases. Building on this

baseline of direct encoding, our proposed TRA encoding shows

superior energy efficiency and rendering quality. In the same

Table 1, we change TRA’s time-step by adjusting the sampling

density to compare with direct encoding of different time-steps

since it is unfeasible to explicitly set TRA’s time-step due to its

dynamic temporal length. To ensure a fair comparison across

different methods, we introduce the energy level metric, defined as:

Energy level ∝ Time-step number of each ray

= Time-steps of each sampled point (T/S)

× sampled point number

∝ Time-steps of each sampled point (T/S)

× Sampling density (D).

(16)

Table 1 shows that TRA achieves better rendering quality under

the same energy levels. For additional fairness, we also compare

TRA with direct encoding under identical sampling densities, and

the outcome consistently supports the superiority of TRA.

To further demonstrate the merits of SpiNeRF over efficient

ANN data encoding methods such as ANN quantization, we

apply the renowned LSQ method (Esser et al., 2020) to quantize

DVGO activations to spike-bit, i.e., 1-bit, and compare the results

with SpiNeRF-D in Table 1. The results show that SpiNeRF-D

outperforms the quantized ANN version on both datasets in terms

of synthesis quality and energy efficiency. This demonstrates the

superiority of SNNs over ANNs in ultra-low-energy computation

scenarios, aligning with findings from previous studies (Deng L.

et al., 2020; He et al., 2020). In conclusion, TRA effectively leverages

the temporal characteristics of SNNs for 3D rendering, proving a

simple yet effective solution.

5.2 Comparisons with the ANN
counterparts and other NeRFs

5.2.1 Comparisons with ANN-based NeRFs
As shown in Table 2, our SpiNeRF-D with TCP achieves

at least 69.82% (56.69 mJ vs. 187.85 mJ, Synthetic-NSVF) and

at most 72.95% (581.04 mJ vs. 2147.86 mJ, Tanks&Temples)

energy savings on these four datasets over the ANN counterpart.

The corresponding PSNR drop is at most 0.78 dB (Synthetic-

NSVF). This trade-off between synthesis quality and energy

consumption is reasonable, as inference in SpiNeRF-D’s spiking

MLP relies on addition operations, replacing the more energy-

intensive multiplication used in the original DVGO. On the one

hand, compared to methods without masking operations, such as

NeRF (Mildenhall et al., 2021), Mip-NeRF (Barron et al., 2021),

and JaxNeRF (Deng B. et al., 2020), SpiNeRF-D can reach orders

of magnitude lower energy consumption. On the other hand,

compared to methods that incorporate masking operations, such

as NSVF (Liu et al., 2020), DIVeR (Wu et al., 2022), DVGO

(Sun et al., 2022), and TensoRF (Chen et al., 2022), SpiNeRF-

D still outperforms them in energy efficiency while maintaining

comparable synthesis quality. Furthermore, even when compared

to KiloNeRF (Reiser et al., 2021), which is optimized for fast

rendering but requires days of training, SpiNeRF-D achieves better

performance with only minutes of training. Moreover, SpiNeRF-

T reduces energy consumption by up to 67.75% (149.98 mJ vs.

465.09 mJ, Synthetic-NSVF) across various datasets. Except for

the Tanks&Temples dataset, SpiNeRF-T consistently outperforms

DVGO in both PSNR and energy cost. Notably, SpiNeRF-T

has only two FC layers, as in TensoRF, one for encoding data

with full precision and the other for binary computation using

spiking neurons. As a result, only half of the computational

workload is handled through addition-based operations, which

explains why SpiNeRF-T achieves less energy reduction than

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

T
A
B
L
E
2

C
o
m
p
a
ri
so

n
s
w
it
h
th
e
A
N
N
c
o
u
n
te
rp
a
rt
a
n
d
o
th
e
r
N
e
R
F
-b

a
se
d
m
e
th
o
d
s.

D
a
ta
se
t

S
y
n
th
e
ti
c
-N

e
R
F

S
y
n
th
e
ti
c
-N

S
V
F

B
le
n
d
e
d
M
V
S

T
a
n
k
s&

te
m
p
le
s

M
e
tr
ic

P
S
N
R
↑

S
S
IM
↑

E
n
e
rg
y
↓
(m

J
)

P
S
N
R
↑

S
S
IM
↑

E
n
e
rg
y
↓
(m

J
)

P
S
N
R
↑

S
S
IM
↑

E
n
e
rg
y
↓
(m

J
)

P
S
N
R
↑

S
S
IM
↑

E
n
e
rg
y
↓
(m

J
)

N
eR

F
(M

il
d
en
h
al
le
t
al
.,
20
21
)

31
.0
1

0.
94
7

4.
5e
5

30
.8
1

0.
95
2

4.
5e
5

24
.1
5

0.
82
8

3.
1e
5

25
.7
8

0.
86
4

1.
4e
6

M
ip
-N

eR
F
(B
ar
ro
n
et
al
.,
20
21
)

33
.0
9

0.
96
1

4.
5e
5

-
-

-
-

-
-

-
-

-

Ja
xN

eR
F
(D

en
g
B
.e
t
al
.,
20
20
)

31
.6
5

0.
95
2

4.
5e
5

-
-

-
-

-
-

27
.9
4

0.
90
4

1.
4e
6

N
SV

F
;L
iu

et
al
.(
20
20
)

31
.7
4

0.
95
3

16
42
7

35
.1
3

0.
97
9

88
64

26
.9
0

0.
89
8

15
14
9

28
.4
0

0.
90
0

10
14
43

D
IV

eR
(W

u
et
al
.,
20
22
)

32
.3
2

0.
96
0

34
3.
96

-
-

-
27
.2
5

0.
91
0

54
8.
65

28
.1
8

0.
91
2

19
30
.6
7

K
il
o
N
eR

F
(R
ei
se
r
et
al
.,
20
21
)

31
.0
0

0.
95

18
5.
12

33
.3
7

0.
97

99
.8
9

27
.3
9

0.
92

17
0.
71

28
.4
1

0.
91

72
3.
79

D
V
G
O
*
(S
u
n
et
al
.,
20
22
)

31
.9
8

0.
95
7

37
4.
72

35
.1
2

0.
97
6

18
7.
85

2
8
.1
5

0
.9
2
2

32
0.
66

28
.4
2

0.
91
2

21
47
.8
6

T
en
so
R
F
*
(C

h
en

et
al
.,
20
22
)

3
3
.1
4

0
.9
6
3

64
1.
17

3
6
.7
4

0
.9
8
2

46
5.
09

-
-

-
2
8
.5
0

0
.9
2
0

27
90
.0
3

Sp
ik
in
g-
N
eR

F
(L
i
et
al
.,
20
25
)

30
.4
1

-
3.
7e
4†

-
-

-
-

-
-

-
-

-

Sp
iN

eR
F
-D

w
/
T
P

31
.3
4

0.
94
9

11
1.
59

34
.3
4

0.
97
0

57
.5
7

27
.8
0

0.
91
2

97
.3
8

28
.0
0

0.
89
2

4
8
3
.4
8

Sp
iN

eR
F
-D

w
/
T
C
P

31
.3
4

0.
94
9

1
1
0
.8
0

34
.3
4

0.
97
0

5
6
.6
9

27
.8
0

0.
91
2

9
6
.3
7

28
.0
9

0.
89
6

58
1.
04

Sp
iN

eR
F
-T

w
/
T
C
P

32
.4
5

0.
95
6

24
0.
81

35
.7
6

0.
97
8

14
9.
98

-
-

-
28
.0
9

0.
90
4

11
65
.9
0

*D
en
o
te
s
an

A
N
N
co
u
n
te
rp
ar
t
im

p
le
m
en
te
d
b
y
th
e
o
ffi
ci
al
co
d
es
.†
D
en
o
te
s
a
b
et
te
r
h
ar
d
w
ar
e
te
ch
n
o
lo
gy
.T

h
ey

u
se

3.
2
p
J/
M
A
C
an
d
0.
1
p
J/
A
C
,w

h
il
e
w
e
u
se

4.
6
p
J/
M
A
C
an
d
0.
9
p
J/
A
C
.B

o
ld

va
lu
es

in
d
ic
at
e
b
et
te
r
re
su
lt
s.

SpiNeRF-D. Overall, these results demonstrate the effectiveness

of SpiNeRF in improving energy efficiency across different

NeRF frameworks.

Figure 5, which serves as visual aids, demonstrates the

effectiveness of our proposed SpiNeRF. Overall, our methods

produce comparable rendering quality to their ANN counterparts,

as shown in Figure 5A. Figure 5B further compares SpiNeRF-

D with its ANN counterpart in six different challenging parts.

SpiNeRF-D exhibits similar issues to its ANN counterpart

regarding texture distortion and blurring effects.

5.2.2 Comparisons with the SNN-based NeRF
Spiking-NeRF (Li et al., 2025) follows the ANN2SNN

conversion strategy and uses direct encoding, to convert an ANN-

based NeRF into an SNN version. The ANN2SNN conversion

(Diehl et al., 2016; Rueckauer et al., 2017) is built upon the logic

that a real-valued activation of ANN can be equivalently converted

to a corresponding firing rate of SNN. Therefore, an x-bit activation

will cost 2x time-steps to realize lossless value conversion. One

of the inherent limitations of Spiking-NeRF is excessive time-

step requirements. As shown in Table 3, Spiking-NeRF requires

256 time-steps per sampled point to achieve comparable PSNR.

Another inherent limitation is an inability to leverage SNN’s

sequential processing capability, as Spiking-NeRF only uses the

conventional direct encoding strategy.

In contrast, our SpiNeRF adopts a direct-training strategy

and leverages TRA, achieving an extremely low number of time-

steps per sampled point and generally better rendering quality. As

shown in Table 3, SpiNeRF’s energy consumption remains orders

of magnitude lower than that of Spiking-NeRF, despite employing

less advanced hardware technology. Another factor contributing

to this significant energy efficiency advantage is the use of a

hybrid volumetric representation, as described in Section 3.2 and

Algorithm 1. This approach significantly reduces the number of

sampled points per rendering ray, thereby minimizing the number

of spiking MLP queries needed per view.

Additionally, as shown by comparing Tables 2, 3, Spiking-NeRF

also fails to surpass certain ANN-based NeRF works in terms of

energy efficiency. This is also due to the excessively large number of

time-steps discussed above.

5.3 Advantages of temporal condensing on
hardware architecture

To demonstrate the advantages of the proposed temporal

condensing on hardware architecture, as described in Section 4.3,

we evaluate SpiNeRF-D with TCP and TP using SpikeSim on

the SpikeFlow architecture. As listed in Table 4, TCP consistently

outperforms TP in both inference latency and energy overhead

across the two datasets. Specifically, TCP demonstrates an order-

of-magnitude advantage over TP in both inference speed and

energy consumption. These results indicate that TCP achieves

efficient inference through a simple mechanism. Comparing results

on SpikeSim (65 nm technology, Table 4) with those on 45

nm technology general hardware (Table 2) further demonstrates

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

FIGURE 5

Qualitative results of SpiNeRF-D and the ANN counterpart. (A) Qualitative results of six di�erent scenes from synthetic and real datasets. Each row

displays two scenes from the same dataset. BlendedMVS, Synthetic-NeRF, and Tanks&Temples are placed from top to bottom by order. (B)

Zoomed-in images of six challenging parts. Qualitative comparisons on the di�erent challenging parts. Top: On Character from BlendedMVS, where

the color changes densely and intensely. Middle: On Ignatius from Tanks&Temples, where the textures are distinct and dense. Bottom: On Truck from

Tanks&Temples, where detailed information is explicitly displayed.

that the proposed SpiNeRF-D can substantially benefit from its

neuromorphic computing nature on neuromorphic hardware,

outperforming ANN baselines in energy efficiency. Additionally,

temporal condensing will not critically compromise the rendering

quality as shown in Table 2. In the SpikeSim evaluation, the

temporal condensing operation is done off-chip. This allows

on-chip computation to fully benefit from dense data, thereby

explaining the significant performance gap between TCP and TP.

Note that owing to the pipeline mechanism, the latency of such

off-chip operation can be easily covered.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

TABLE 3 Comparisons with Spiking-NeRF on each scene.

Scene Spiking-NeRF (Li et al., 2025) (ANN2SNN
conversion)

Our SpiNeRF (SNN direct training)

T/S PSNR↑ Energy† (mJ) ↓ T/S PSNR↑ Energy (mJ)↓
Mic 256 32.37 3.56e4 1 32.47 26.48

Lego 256 30.98 4.41e4 1 33.82 93.20

Ship 256 28.77 3.42e4 1 28.63 283.45

Chair 256 32.84 4.10e4 1 33.36 53.67

Drums 256 25.23 3.04e4 1 25.21 66.99

Ficus 256 28.91 2.67e4 1 32.04 47.24

Hotdog 256 35.83 4.83e4 1 36.00 148.49

Materials 256 28.36 3.64e4 1 29.15 166.88

T/S abbreviates Time-step/sample, representing the time-step number of each sampled point. †Denotes a better hardware technology. They use 3.2 pJ/MAC and 0.1 pJ/AC, while we use 4.6

pJ/MAC and 0.9 pJ/AC. Bold values indicate better results.

TABLE 4 Comparisons between TCP and TP on SpikeSim using SpiNeRF-D.

Dataset Synthetic-NeRF Synthetic-NSVF BlendedMVS Tanks&temples

SpiNeRF-D w/ TCP w/ TP w/ TCP w/ TP w/ TCP w/ TP w/ TCP w/ TP

Latency(s)↓ 26.12 222.22 13.37 164.61 22.70 243.93 138.98 980.28

Energy+(mJ)↓ 65.78 559.45 33.68 414.37 57.16 614.13 350.03 2468.16

+Denotes the energy result particularly produced by SpikeSim. Bold values indicate better results.

FIGURE 6

Normalized time consumption of training and inference. Values in

the figure represent the average training minutes or inference

seconds across each scene. The orange bar is the time

consumption of TP, while the blue one is that of TCP.

To evaluate the computational overhead and merits introduced

by temporal condensing on general-purpose computing platforms,

we showcase the training and inference times on Synthetic-NeRF

using a single A100 GPU. As shown in Figure 6, the PyTorch

(Imambi et al., 2021) implementation of temporal condensing, even

without optimized CUDA kernels, can still achieve significant time

reduction for both training and inference on GPU. On average,

training time is reduced by 72.68% (16.74 min vs. 61.28 min) and

inference time is reduced by 63.93% (0.44 s vs. 1.22 s).

In conclusion, the proposed temporal condensing enhances

SpiNeRF’s computational efficiency on both neuromorphic and

general-purpose hardware architectures.

5.4 Discussion of the alignment direction

As described in Section 4.4, we propose the temporal flip to

empirically determine the alignment direction, as the querying

direction of the spiking MLP along the pixel-rendering ray can

affect the inference outcome. Table 5 presents experimental results

of SpiNeRF-D with and without temporal flip, i.e., with consistent

versus reversed directions. Aligning the temporal dimension with

the pixel-rendering ray yields better synthesis performance and

energy efficiency across both datasets. This observation is further

supported by results shown in Table 6 for the TP-based SpiNeRF-

D. Although the temporal flip slightly improves the synthesis

quality on Tanks&Temples in the TP-based case, it also causes

a significant increase in energy consumption. In most cases, the

temporal flip negatively impacts both synthesis quality and energy

cost. Therefore, maintaining a consistent alignment direction is

important for SpiNeRF.

6 Conclusion

In this study, we propose SpiNeRF, a framework that leverages

directly trained SNNs to achieve energy efficiency RGB 3D

scene rendering. SpiNeRF directly inputs volumetric parameters

into SNNs and aligns the temporal dimension with pixel-

rendering rays in a consistent direction, establishing a novel

and effective integration of SNNs with NeRF-based rendering.

To solve the challenge of irregular tensor, we introduce TP

and TCP, which enhance data compactness and computational

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

TABLE 5 Comparisons with temporal flip on TCP-based SpiNeRF-D.

Dataset Synthetic-NeRF Synthetic-NSVF BlendedMVS Tanks&Temples

SpiNeRF-D w/o TF w/ TF w/o TF w/ TF w/o TF w/ TF w/o TF w/ TF

PSNR↑ 31.34 31.25 34.34 34.15 27.80 27.79 28.09 28.05

SSIM↑ 0.949 0.947 0.970 0.967 0.912 0.910 0.896 0.894

Energy (mJ)↓ 110.80 116.91 56.69 61.08 96.37 104.75 581.04 612.66

TF, temporal flip. Bold values indicate better results.

TABLE 6 Comparisons with temporal flip on TP-based SpiNeRF-D.

Dataset Synthetic-NeRF Synthetic-NSVF BlendedMVS Tanks&temples

SpiNeRF-D w/o TF w/ TF w/o TF w/ TF w/o TF w/ TF w/o TF w/ TF

PSNR↑ 31.34 31.24 34.34 34.06 27.80 27.79 28.01 28.06

SSIM↑ 0.949 0.947 0.970 0.967 0.912 0.909 0.892 0.894

Energy (mJ)↓ 111.59 117.43 57.57 56.75 97.38 105.51 483.48 617.57

TF, temporal flip. Bold values indicate better results.

efficiency. Finally, we validate SpiNeRF across various 3D datasets

and a hardware simulator and extend it to an alternative NeRF-

based framework, demonstrating the effectiveness of our proposed

methods. Compared to previous efficient SNN data encodings and

ANN quantization, our proposed method consistently achieves

superior rendering quality while consuming less energy. In

comparison to the previous SNN-based NeRF work, SpiNeRF not

only delivers improved rendering results but also reduces energy

consumption by orders of magnitude. Despite these substantial

gains in energy efficiency, spike-based computation still results in

a reduction in rendering performance, which remains an open

challenge for future work.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

XY: Writing – review & editing, Writing – original draft,

Resources, Formal analysis, Software, Conceptualization,

Methodology, Visualization, Data curation, Investigation. QH:

Writing – review & editing, Writing – original draft, Supervision,

Methodology, Formal analysis. FZ: Funding acquisition, Writing –

review & editing. TL: Formal analysis, Writing – review & editing.

ZM:Writing – review & editing. ZZhu: Writing – review & editing,

Formal analysis. ZZhug: Software, Writing – review & editing. JC:

Writing – review & editing, Funding acquisition.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the State Grid Corporation of China through the Science and

Technology Project (Grant No. 5700-202358838A-4-3-WL).

Acknowledgments

We would like to thank Editage (https://www.editage.cn) for

English language editing.

Conflict of interest

FZ was employed by China Electric Power Research Institute

Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2025.

1593580/full#supplementary-material

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://www.editage.cn/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1593580/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

References

Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., and
Srinivasan, P. P. (2021). “Mip-nerf: A multiscale representation for anti-aliasing
neural radiance fields,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (Piscataway, NJ: IEEE), 5855–5864. doi: 10.1109/ICCV48922.2021.
00580

Chen, A., Xu, Z., Geiger, A., Yu, J., and Su, H. (2022). “Tensorf: tensorial radiance
fields,” in European Conference on Computer Vision (Cham: Springer), 333–350.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, B., Barron, J. T., and Srinivasan, P. P. (2020). JaxNerf: An Efficient Jax
Implementation of Nerf. Available online at: http://github.com/googleresearch/google-
research/tree/master/jaxnerf (Accessed 7, 2023)

Deng, K., Liu, A., Zhu, J.-Y., and Ramanan, D. (2022). “Depth-supervised nerf:
Fewer views and faster training for free,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 12882–12891.

Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., et al. (2020). Rethinking
the performance comparison between snns and anns. Neural Netw. 121, 294–307.
doi: 10.1016/j.neunet.2019.09.005

Deng, S., Li, Y., Zhang, S., and Gu, S. (2021). “Temporal efficient training of spiking
neural network via gradient re-weighting,” in International Conference on Learning
Representations (San Diego, CA: OpenReview.net).

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Computat. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016).
“Conversion of artificial recurrent neural networks to spiking neural networks for low-
power neuromorphic hardware,” in 2016 IEEE International Conference on Rebooting
Computing (ICRC) (Arlington, VA: IEEE).

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S.
(2020). “Learned step size quantization,” in International Conference on Learning
Representations (San Diego, CA: OpenReview.net).

Fang, W., Chen, Y., Ding, J., Yu, Z., Masquelier, T., Chen, D., et al. (2023a).
Spikingjelly: an open-source machine learning infrastructure platform for spike-based
intelligence. Sci. Adv. 9:eadi1480. doi: 10.1126/sciadv.adi1480

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021a). “Deep
residual learning in spiking neural networks,” in Advances in Neural Information
Processing Systems (Cambridge, MA: MIP Press), 34.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021b).
“Incorporating learnable membrane time constant to enhance learning of spiking
neural networks,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2661–2671.

Fang,W., Yu, Z., Zhou, Z., Chen, D., Chen, Y., Ma, Z., et al. (2023b). Parallel spiking
neurons with high efficiency and ability to learn long-term dependencies. Adv. Neural
Inform. Proc. Syst. 36, 53674–53687.

Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., and Kanazawa, A. (2022).
“Plenoxels: Radiance fields without neural networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Cambridge, MA: MIP Press),
5501–5510. doi: 10.1109/CVPR52688.2022.00542

Garbin, S. J., Kowalski, M., Johnson, M., Shotton, J., and Valentin, J. (2021).
“Fastnerf: High-fidelity neural rendering at 200fps,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (Montreal, QC: IEEE), 14346–14355.

Garg, I., Chowdhury, S. S., and Roy, K. (2021). “Dct-snn: using dct to distribute
spatial information over time for low-latency spiking neural networks,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision (Montreal, QC: IEEE),
4671–4680.

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., et al. (2020). Comparing snns
and rnns on neuromorphic vision datasets: similarities and differences. Neural Netw.
132, 108–120. doi: 10.1016/j.neunet.2020.08.001

Hedman, P., Srinivasan, P. P., Mildenhall, B., Barron, J. T., and Debevec, P.
(2021). “Baking neural radiance fields for real-time view synthesis,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (Montreal, QC: IEEE),
5875–5884.

Horowitz, M. (2014). “1.1 computing’s energy problem (and what we can do about
it),” in 2014 IEEE international solid-state circuits conference digest of technical papers
(ISSCC) (San Francisco, CA: IEEE), 10–14.

Imambi, S., Prakash, K. B., and Kanagachidambaresan, G. (2021). “Pytorch,” in
Programming with TensorFlow: Solution for Edge Computing Applications, 87–104.

Kajiya, J. T., and Von Herzen, B. P. (1984). Ray tracing volume
densities. ACM SIGGRAPH Comp. Graph. 18:165–174. doi: 10.1145/964965.
808594

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. (2017). Tanks and temples:
Benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36, 1–13.
doi: 10.1145/3072959.3073599

Kundu, S., Datta, G., Pedram, M., and Beerel, P. A. (2021a). “Spike-thrift:
Towards energy-efficient deep spiking neural networks by limiting spiking activity via
attention-guided compression,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (San Francisco, CA: IEEE), 3953–3962.

Kundu, S., Pedram, M., and Beerel, P. A. (2021b). “Hire-snn: Harnessing the
inherent robustness of energy-efficient deep spiking neural networks by training with
crafted input noise,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (Montreal, QC: IEEE), 5209–5218.

Lee, J.-J., Zhang, W., and Li, P. (2022). “Parallel time batching: Systolic-array
acceleration of sparse spiking neural computation,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA) (Seoul: IEEE),
317–330.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. (2021). “Differentiable
spike: Rethinking gradient-descent for training spiking neural networks,” in Advances
in Neural Information Processing Systems (Cambridge, MA: MIP Press), 34.

Li, Z., Ma, Y., Zhou, J., and Zhou, P. (2025). Spiking-nerf: Spiking neural network
for energy-efficient neural rendering. ACM J. Emerg. Technol. Comp. Syst. 20, 1–23.
doi: 10.1145/3675808

Li, Z., Yan, B., and Li, H. (2020). “Resipe: Reram-based single-spiking processing-in-
memory engine,” in 2020 57th ACM/IEEE Design Automation Conference (DAC) (San
Francisco: IEEE), 1–6.

Liao, Z., Zheng, Q., Liu, Y., and Pan, G. (2023). Spiking nerf: Representing the real-
world geometry by a discontinuous representation. arXiv [preprint] arXiv:2311.09077.
doi: 10.1609/aaai.v38i12.29285

Lindell, D. B., Martel, J. N., and Wetzstein, G. (2021). “Autoint: Automatic
integration for fast neural volume rendering,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Nashville, TN: IEEE),
14556–14565.

Liu, L., Gu, J., Zaw Lin, K., Chua, T.-S., and Theobalt, C. (2020). Neural sparse voxel
fields. Adv. Neural Inform. Proc. Syst. 33, 15651–15663.

Liu, Y., Peng, S., Liu, L., Wang, Q., Wang, P., Theobalt, C., et al. (2022). “Neural
rays for occlusion-aware image-based rendering,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Cambridge, MA: MIP Press),
7824–7833.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Mao, R., Tang, L., Yuan, X., Liu, Y., and Zhou, J. (2024). “Stellar: energy-efficient and
low-latency snn algorithm and hardware co-design with spatiotemporal computation,”
in 2024 IEEE International Symposium on High-Performance Computer Architecture
(HPCA) (Edinburgh: IEEE), 172–185.

Masland, R. H. (2012). The neuronal organization of the retina.Neuron 76, 266–280.
doi: 10.1016/j.neuron.2012.10.002

Max, N. (1995). Optical models for direct volume rendering. IEEE Trans. Visualizat.
Comp. Graph. 1, 99–108. doi: 10.1109/2945.468400

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and
Ng, R. (2021). Nerf: Representing scenes as neural radiance fields for view synthesis.
Commun. ACM 65, 99–106. doi: 10.1145/3503250

Moitra, A., Bhattacharjee, A., Kuang, R., Krishnan, G., Cao, Y., and Panda, P.
(2023). SpikeSim: an end-to-end compute-in-memory hardware evaluation tool for
benchmarking spiking neural networks. IEEE Trans. Comp.-Aided Design Integrat.
Circuits Syst. 42, 3815–3828. doi: 10.1109/TCAD.2023.3274918

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Proc. Magazine 36, 51–63.
doi: 10.1109/MSP.2019.2931595

Reiser, C., Peng, S., Liao, Y., and Geiger, A. (2021). “KiloNeRF: Speeding up
neural radiance fields with thousands of tiny MLPs,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (Piscataway, NJ: IEEE), 14335–14345.
doi: 10.1109/ICCV48922.2021.01407

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-basedmachine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-1677-2

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Sun, C., Sun, M., and Chen, H.-T. (2022). “Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (New Orleans, LA: IEEE),
5459–5469.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1109/MM.2018.112130359
http://github.com/googleresearch/google-research/tree/master/jaxnerf
http://github.com/googleresearch/google-research/tree/master/jaxnerf
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1126/sciadv.adi1480
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.1016/j.neunet.2020.08.001
https://doi.org/10.1145/964965.808594
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1145/3675808
https://doi.org/10.1609/aaai.v38i12.29285
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/j.neuron.2012.10.002
https://doi.org/10.1109/2945.468400
https://doi.org/10.1145/3503250
https://doi.org/10.1109/TCAD.2023.3274918
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/ICCV48922.2021.01407
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yao et al. 10.3389/fnins.2025.1593580

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal,
U., et al. (2020). Fourier features let networks learn high frequency functions in low
dimensional domains. Adv. Neural Inform. Proc. Syst. 33, 7537 –7547.

Wässle, H. (2004). Parallel processing in the mammalian retina. Nat. Rev. Neurosci.
5, 747–757. doi: 10.1038/nrn1497

Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., and Suwajanakorn, S. (2021).
“Nex: Real-time view synthesis with neural basis expansion,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Nashville, TN:
IEEE), 8534–8543.

Wu, L., Lee, J. Y., Bhattad, A., Wang, Y.-X., and Forsyth, D. (2022). “Diver: Real-
time and accurate neural radiance fields with deterministic integration for volume
rendering,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 16200–16209.

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). Direct training for spiking
neural networks: Faster, larger, better. Proc. AAAI Conf. Artif. Intelligen. 33, 1311–1318.
doi: 10.1609/aaai.v33i01.33011311

Yao, M., Zhao, G., Zhang, H., Hu, Y., Deng, L., Tian, Y., et al. (2023). Attention
spiking neural networks. IEEE Trans. Pattern Analy. Mach. Intellig. 45, 9393–9410.
doi: 10.1109/TPAMI.2023.3241201

Yao, Y., Luo, Z., Li, S., Zhang, J., Ren, Y., Zhou, L., et al. (2020). “BlendedMVS:
A large-scale dataset for generalized multi-view stereo networks,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (Seattle, WA:
IEEE), 1790–1799.

Yu, A., Li, R., Tancik, M., Li, H., Ng, R., and Kanazawa, A. (2021).
“PlenOctrees for real-time rendering of neural radiance fields,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision,
5752–5761.

Zhang, Z., Wang, H., Han, S., and Dally, W. J. (2020). “Sparch: efficient architecture
for sparse matrix multiplication,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA) (IEEE), 261–274.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). Going deeper with
directly-trained larger spiking neural networks. Proc. AAAI Conf. Artif. Intellig. 35,
11062–11070. doi: 10.1609/aaai.v35i12.17320

Zhou, Z., Zhu, Y., He, C., Wang, Y., Yan, S., Tian, Y., et al. (2022). Spikformer:
When spiking neural network meets transformer. arXiv [preprint] arXiv:2209.15425.
doi: 10.48550/arXiv.2209.15425

Zhu, R.-J., Zhao, Q., and Eshraghian, J. K. (2023). SpikeGPT: Generative pre-trained
language model with spiking neural networks. arXiv [preprint] arXiv:2302.13939.
doi: 10.48550/arXiv.2302.13939

Zhu, Z., Peng, J., Li, J., Chen, L., Yu, Q., and Luo, S. (2022).
Spiking graph convolutional networks. arXiv [preprint] arXiv:2205.02767.
doi: 10.24963/ijcai.2022/338

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2025.1593580
https://doi.org/10.1038/nrn1497
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1109/TPAMI.2023.3241201
https://doi.org/10.1609/aaai.v35i12.17320
https://doi.org/10.48550/arXiv.2209.15425
https://doi.org/10.48550/arXiv.2302.13939
https://doi.org/10.24963/ijcai.2022/338
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	SpiNeRF: direct-trained spiking neural networks for efficient neural radiance field rendering
	1 Introduction
	2 Related work
	2.1 NeRF-based 3D rendering
	2.2 Fast NeRF synthesis
	2.3 Spiking neural networks
	2.4 SNNs in 3D reconstruction

	3 Preliminaries
	3.1 Neural radiance field
	3.2 Hybrid volumetric representation
	3.3 Spiking neuron

	4 Methods
	4.1 Data encoding
	4.2 Time-ray alignment encoding
	4.3 TCP
	4.4 Temporal flip
	4.5 Network architecture
	4.6 Overall algorithm
	4.7 Method verification setup
	4.7.1 Dataset benchmarks
	4.7.2 Hyper-parameter setting
	4.7.3 Energy estimation

	5 Results
	5.1 Comparisons with the conventional data encodings
	5.2 Comparisons with the ANN counterparts and other NeRFs
	5.2.1 Comparisons with ANN-based NeRFs
	5.2.2 Comparisons with the SNN-based NeRF

	5.3 Advantages of temporal condensing on hardware architecture
	5.4 Discussion of the alignment direction

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

