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Beyond the label “major 
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Introduction: Major Depressive Disorder (MDD) is a prevalent, multi-faceted 
psychiatric disorder influenced by a plethora of physiological and environmental 
factors. Neuroimaging biomarkers such as diagnosis support systems based on 
electroencephalography (EEG) recordings have the potential to substantially 
improve its diagnostic procedure. Research on these biomarkers, however, 
provides inconsistent findings regarding the robustness of specific markers. One 
potential source of these contradictions that is frequently neglected may arise 
from the variability in study populations.

Methods: This study systematically reviews 66 original studies from the last 
5 years that investigate resting-state EEG-biomarker for MDD detection or 
diagnosis. The study populations are compared regarding demographic 
factors, diagnostic procedures and medication, as well as neuropsychological 
characteristics. Furthermore, we  investigate the impact these factors have on 
the biomarkers, if they were included in the analysis. Finally, we provide further 
insights into the impact of diagnostic choices and the heterogeneity of a study 
population based on exploratory analyses in two publicly available data sets.

Results: We find indeed a large variability in the study populations with respect to 
all factors included in the review. Furthermore, these factors are often neglected 
in analyses even though the studies that include them tend to find effects.

Discussion: In light of the variability in diagnostic procedures and heterogeneity 
in neuropsychological characteristics of the study populations, we  advocate 
for more differentiated target variables in biomarker research then simply MDD 
and healthy control. Furthermore, the study populations need to be  more 
extensively described and analyses need to include this information in order to 
provide comparable findings.
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1 Introduction

Major depressive disorder (MDD) is a global health burden affecting all areas of life 
(WHO, 2017). Lack of interest and reduced drive over a longer period are its key characteristics. 
Beyond this, it is a rather heterogeneous disorder in terms of symptoms and disease 
progression (Bundesärztekammer et  al., 2022). MDD manifests in episodes with high 
recurrence (Marx et al., 2023) and can be accompanied by psychosis, anxiety, or cognitive 
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dysfunction, among other symptom dimensions (Bundesärztekammer 
et al., 2022). All these different manifestations of the disorder are 
summarized under the diagnostic label MDD. Current clinical 
practice is to screen for MDD with neuropsychological questionnaires 
such as the PHQ-9 (Kroenke et  al., 2001; Marx et  al., 2023) and 
diagnose it using semi-structured interviews based on DSM-5 or 
ICD-11 (Bundesärztekammer et  al., 2022; Kołodziej et  al., 2021). 
However, those tools usually only reflect the patients’ current mood 
and diagnoses are influenced by the procedure and clinician’s 
experience, which makes them rather subjective (Cai et al., 2022). In 
order to support the diagnostic procedure with objective tools, 
imaging biomarkers based on recording abnormal brain structure or 
function associated with the disorder are investigated (Marx et al., 
2023; Otte et al., 2016). Such biomarkers can also improve treatment 
decision and monitoring, and development and evaluation of therapies 
(Kupfer et al., 2012).

Electroencephalography (EEG) provides a non-invasive, easy to 
use, and low-cost tool to assess pathological alterations in brain 
physiology and is therefore an attractive choice for clinical application. 
However, recent research provides contradictory findings regarding 
the usefulness of specific EEG biomarkers for MDD (Greco et al., 
2021) and reports problems in reproducibility (Botvinik-Nezer and 
Wager, 2023; Van Dijk et al., 2022). Especially band power markers 
deliver contradictory results (De Aguiar Neto and Rosa, 2019) such as 
the frequently investigated alpha power, which is reported to separate 
MDD and HC groups better than the band power of other frequency 
bands (Hosseinifard et al., 2013; Mohammadi et al., 2015), or the 
opposite (Cai et al., 2016; Shen et al., 2017). Based on alpha power, its 
asymmetry is another controversial biomarker with support for 
distinctive changes in MDD patients (Hosseinifard et al., 2013; Lee 
et al., 2018) vs. the opposite (Cai et al., 2016; Van Der Vinne et al., 
2017). A recent multiverse study on five independent data sets 
replicates these inconsistencies and demonstrates that positive effects 
of this biomarker were rather on chance level (Kołodziej et al., 2021). 
These findings demonstrate that there are gaps that need to be closed 
before those imaging biomarkers can be  applied for diagnostic 
support. On the one hand, a plethora of signal processing and analysis 
choices impedes comparability and reproducibility across studies 
(Niso et al., 2022). Recent reviews focus on the variety of biomarkers 
with potential diagnostic value that can be extracted from the EEG 
signal (Greco et al., 2021; Knociková and Petrásek, 2021) and the 
technical advancements in data processing and analysis algorithms 
(Dev et al., 2022; Yasin et al., 2021). On the other hand, there is the 
problem of small sample sizes that many researchers criticize in the 
light of the heterogeneity of MDD (Malgaroli et  al., 2021). This 
problem is aggravated by the manifold of individual genetic, 
physiological, and environmental factors influencing MDD (Otte 
et  al., 2016) and additionally for EEG biomarker research, the 
manifold of genetic (Bazanova and Vernon, 2014) and physiological 
(Brismar, 2007) factors influencing the EEG signal. These effects on 
the EEG signal might interact with the disorder, or be independent of it.

Demographic factors such as age and gender are known as 
mediating factors in MDD (Marx et al., 2023) as well as affecting the 
EEG signal (Polich, 1997; Polunina and Lefterova, 2012; Shearer et al., 
1984; Tröndle et  al., 2023). Many more demographic, genetic, 
psychological, social, and behavioral factors influence MDD course 
(Marx et al., 2023) and treatment response (Kennis et al., 2020). Further 
factors known to affect the EEG signal include, e.g., handedness 
(Papousek and Schulter, 1999) or current mental state such as fatigue or 

stress (Ismail and Karwowski, 2020; Tran et al., 2020; Vanhollebeke 
et al., 2022). Central decisions in every clinical study are the diagnosis 
or operationalization of the target variable(s), and the definition of 
inclusion criteria for the clinical groups. This introduces another source 
of heterogeneity, since diagnosis of MDD is neither standardized nor 
objective. Even less defined is who qualifies as healthy control (HC) 
participant. Along this line, participants might have different expressions 
of symptoms, co-morbidities/other diseases, or take drugs of any kind. 
All these factors can influence both MDD course as well as EEG signals. 
However, the study populations on which research for EEG-biomarker 
for MDD has been conducted, has been neglected so far in the 
systematic search for the origins of heterogeneity in research findings.

This work aims to answer the question of comparability of study 
populations across current studies on EEG biomarker for MDD by 
providing a systematic overview about the variability in participants 
with regard to the aforementioned factors. Furthermore, we  are 
interested whether and how information beyond the labels MDD and 
HC are included in the analysis and if it is, whether this can improve 
EEG biomarker research. Furthermore, in order to demonstrate the 
heterogeneity of study populations and the impact of diagnostic 
procedures, we  complement the review with some exploratory 
analyses on publicly available data sets that are frequently used in 
MDD biomarker research.

2 Article methods

2.1 Systematic review

The systematic review was conducted according to the PRISMA 
guidelines (Page et al., 2021). We focused on finding representative 
original studies on resting-state EEG biomarker research for unipolar 
depression, resp. MDD diagnosis or recognition rather than treatment 
in order to keep the use case concise. The search was conducted in the 
PubMed database on October 3rd 2024 since we  expect clinically 
relevant studies to be published in an outlet indexed in PubMed. The 
search string (‘major depressive disorder’ OR MDD) AND (biomarker 
OR diagnosis OR detection) AND (electroencephalography OR EEG) 
NOT (treatment OR TMS OR ‘transcranial magnetic stimulation’ OR 
sleep) was used with a filter on the last 5 years to include only recent 
research. Papers were excluded if they met at least one of the following 
exclusion criteria: (1) the aim of the paper was not diagnosis or 
detection of MDD; (2) MEG or other image modalities were used; (3) 
task-EEG, event-related potentials, or sleep EEG was recorded; (4) the 
purpose of the study was data augmentation; (5) the study contains 
only bipolar patients or a specific subgroup of MDD; (6) the study 
does not have a HC group; (7) the paper is a review; (8) the paper is 
not published in English or not accessible.

We extracted information about the three categories demographic 
data, diagnosis and medication, and neuropsychological tests to 
characterize the study populations as detailed as possible. 
Demographic data includes the size of the study population, age, 
gender, and ethnicity as smallest set of overlapping information across 
studies. Diagnosis includes the procedures to obtain the labels MDD 
and HC including exclusion criteria for participants. Regarding 
medication, we included all information on drugs available from the 
methods or results of the studies. Neuropsychological tests assess the 
severity of psychiatric diseases, symptom dimension, or cognitive 
function, usually with a (self-administered) questionnaire. They can 
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be  used for screening, complement diagnosis, or provide a more 
detailed description of a study population. For all three categories, 
we also extracted information about the consideration of these factors 
in the analysis and their impact. Since a substantial number of studies 
is based on publicly available data sets, we separate the information of 
studies based on own data from studies based on public data.

2.2 Analysis of publicly available data sets

For further demonstration of the influence of the factors investigated 
in the review and the heterogeneity of a study population when 
considering further data about the participants, we conduct exploratory 
analyses on two publicly available data sets that are also used in some of 
the studies presented in this review (for details see chapter 3.2).

The CAV data set (Cavanagh et al., 2019) provides rich diagnostic 
information, including two different neuropsychological tests for the 
assessment of depression severity, which allows for the comparison of 
different diagnostic scenarios. The MODMA data set (Cai et al., 2022) 
provides six neuropsychological tests, which is well suited for an 
analysis of study population heterogeneity.

Group comparisons are conducted with analyses of variance 
(ANOVA), t-tests, or Fisher’s exact test dependent on the number of 
groups and nature of the data. Significance level is assumed with 
α < 0.05, post-hoc tests are Bonferroni-corrected. Exploratory 
analyses for relationships between variables are investigated with 
Pearson’s correlation or general linear regression models. Exploratory 
patient stratification is conducted with k-means and hierarchical 
clustering with Euclidean distance based on min-max normalized data.

3 Results

Each result chapter from 3.3 onwards first describes the studies 
based on own data and subsequently the publicly available data sets, 
or the studies based on them, respectively. Moreover, first the key 
characteristics are described and summarized, and subsequently their 
consideration in the analysis of studies and their influence are reported.

3.1 Study selection

The initial database search yielded 193 papers. We excluded 91 
papers during title screening and further 25 during abstract screening. 
From the remaining 77 papers, we excluded eleven more during full 
paper review. Reasons for exclusion were: Electrocardiography data 
was used instead of EEG (n = 1), event-related potentials were 
analyzed and not resting-state EEG (n = 3), no HC (n = 2), not 
accessible (n = 3), not in English (n = 1). Additionally, one paper 
reported using the MODMA data set but since the data presented did 
not match this data at all, the study was excluded as well. This left 66 
papers to include in the review, 34 of which collected own data, and 
32 worked with publicly available data sets.

3.2 Publicly available data sets

The 32 studies working exclusively with public data utilized seven 
different data sets. The most frequently used data set was MODMA 

(Cai et al., 2022). Nine studies are based solely on this data (Deng 
et al., 2022; Liu W. et al., 2022; Wang B. et al., 2023; Wu W. et al., 2022; 
Zhang B. et al., 2023; Zhang et al., 2021; Zhang J. et al., 2023; Zhao 
et  al., 2022a; Zhao et  al., 2022b), five more studies additionally 
included other public data sets (Chu et al., 2024; Kabbara et al., 2022; 
Movahed et al., 2022; Sun et al., 2024; Wang et al., 2024c), and another 
study replicated their findings based on own data with this data set 
(Soni et  al., 2022). MODMA is a multi-modal data set for MDD 
research containing two EEG experiments with eyes-closed resting-
state recordings from three or 128 electrodes. Descriptions in the 
subsequent chapter are only for the 128-electrode data (n = 24/29 
MDD/HC), because this set was used by all but one of the studies in 
this review.

Nearly as frequently used is the data set collected from Mumtaz 
and colleagues (MUM) (Mumtaz et al., 2017). MUM was used in 
eleven studies alone (Ataei and Wang, 2022; Ellis et al., 2024; Ellis 
et al., 2023; Kang et al., 2020; Khadidos et al., 2023; Mahato and Paul, 
2019; Movahed et al., 2021; Saeedi et al., 2020; Tang et al., 2024; Zhou 
et al., 2024) and in three studies in combination with other data sets 
(Li et al., 2024; Movahed et al., 2022; Sun et al., 2024). The public data 
set contains eyes-closed and eyes-open resting-state EEG data as well 
as task-EEG data with 19 electrodes from 34 MDD patients and 30 HC.

The data set provided by Cavanagh and colleagues (CAV) 
(Cavanagh et al., 2019) was used in four studies alone (Thoduparambil 
et  al., 2020; Trambaiolli and Biazoli, 2020; Yun and Jeong, 2021; 
Zandbagleh et  al., 2024) and together with other data sets in five 
studies (Chu et al., 2024; Kabbara et al., 2022; Li et al., 2024; Sun et al., 
2024; Wang et al., 2024c). The data set includes task as well as resting-
state EEG data with 64 electrodes from 120 participants altogether.

The DRYAD data (Kołodziej et al., 2021) was used in one study in 
combination with other data sets (Chu et al., 2024) and consists of 
three small data sets: Nowowiejska (NOW; n = 55), DiamSar (DIA; 
n = 95), and Wronski (WRO; n = 82). All three data sets contain 
64-channel eyes-closed resting-state EEG data.

The data sets EMBARC (Webb et al., 2016), TDBRAIN (Van Dijk 
et al., 2022), and B-SNIP (Tamminga et al., 2017) were used by one 
study each (Ciarleglio et al., 2022; Gour et al., 2023; Lechner and 
Northoff, 2024). The EEG data of these three data sets are part of 
larger data collections. EMBARC was a multi-site drug study including 
resting-state EEG as well as fMRI data. TDBRAIN was collected over 
20 years, containing EEG data of patients with different diagnoses, 
most frequent were MDD, attention deficit disorder, subjective 
memory complaints, and obsessive-compulsive disorder. B-SNIP 
primarily contains data from schizophrenia, schizoaffective disorder, 
or psychotic bipolar I disorder patients, and their direct relatives. The 
data set includes resting-state and task EEG, fMRI, and blood samples.

3.3 Study information and demographic 
data

More than half of the studies with own data collection were 
conducted in Asia, with more than half of the investigated subjects 
participating at an Asian location (Table 1). This information serves 
as proxy for ethnicity since most studies do not provide explicitly the 
ethnicity of their participants. Since two data sets were used twice each 
and one study did not provide the number of participants, the number 
of participants is based on 31 studies. The publicly available data sets 
were collected in China (MODMA), Malaysia (MUM), Poland (NOW, 
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DIA, WRO), Netherlands (TDBRAIN), and USA (CAV, EMBARC, 
B-SNIP).

Half of the studies are based on overall sample sizes of 80 
participants or fewer (Figure 1A), with the majority having about an 
equal distribution between the clinical groups (Figure 1B, top box). 
Studies tend to include more female than male participants in both 
clinical populations (Figure  1B, bottom boxes) with two studies 
investigating female participants only (Shim et al., 2023; Umemoto 
et al., 2021).

Age distributions of studies vary widely (Figure 2). The older the 
study population average the higher its standard deviation, except for 
one study with a rather old but confined age distribution (Wu Z. et al., 
2022). One study specifically recruited adolescents up to 18 years 
(Umemoto et al., 2021), all other studies targeted adults.

Seven studies based on own data considered gender or age in their 
analysis. Two studies included gender: Lord and Allen (2023) conducted 
additional analyses for gender separately and found differences in EEG 
complexity metrics between those groups. Three studies (Benschop et al., 
2022; Jang et al., 2020; Mitiureva et al., 2024) used age and gender as 
covariates in statistical comparison of clinical groups or regressed them 
out in correlation analyses. Two more studies treat only age as covariate 
(Périard et  al., 2024; Umemoto et  al., 2021); note that the latter one 
included only female participants. One study specifically investigated 
pathological aging processes and found that aging affects the diagnostic 
capability of EEG biomarkers (Sarisik et al., 2024).

The studies using only MODMA, CAV, or MUM data did not 
consider gender, age, or any other demographic information in their 
analysis. One study using both MOD and CAV did not find an age but 
a gender influence in their regression models (Kabbara et al., 2022). 
The two studies using EMBARC (Ciarleglio et al., 2022) and B-SNIP 
(Lechner and Northoff, 2024) used age and gender as covariates in 
statistical comparison of clinical groups.

To summarize, the majority of studies is based on small sample 
sizes (n < 100 per diagnostic group) with a disproportional high ratio 
of Asian participants. Studies are rather variable in their gender ratio 
and age distributions, both for studies based on own data as well as 
public data sets. Only few studies consider gender or age in the 
analysis. Those explicitly investigating the influence of these factors, 
however, tended to find one.

3.4 Diagnostic and medication information

All studies with own data separated their participants into the 
groups MDD and HC. This diagnostic label was used for classification 
in 12 studies, for group comparisons in 17 studies, and for both 
analysis approaches in five studies. Twenty-four of the studies based 
on public data used the diagnostic groups MDD and HC for 
classification, four for group comparisons, and two for both. One 
study based on the CAV data set (Trambaiolli and Biazoli, 2020) did 
not use that dichotomous diagnostic label at all but utilized 
neuropsychological scores as only target variable instead.

3.4.1 Studies based on own data
For inclusion in the MDD group, 21 studies collecting their own 

data report the involvement of a psychiatrist or similarly trained 
clinician, five studies even confirmed the diagnosis with a second 
specialist. For inclusion in the HC group, only seven studies involved 
such a specialist. The use of a structured interview [SCID (First and 
Gibbon, 2004) or MINI (Sheehan et al., 1997)] is mentioned for the 
diagnosis of MDD in ten studies but only in five studies for the 
confirmation of inclusion in the HC group. The MDD diagnoses were 
based either on the Diagnostic and Statistical Manual of Mental 
Disorders (DSM) version 4 (Bell, 1994) or 5 (American Psychiatric 
Association, 2013) (n = 8/11) or on the International Statistical 
Classification of Diseases and Related Health Problems (ICD) version 
10 (World Health Organization, 1992) or 11 (Reed et  al., 2019) 
(n = 4/1). Status of HC was confirmed by the DSM-4 or 5 criteria in 
3/1 studies and by the ICD-10 or 11 criteria in one study each.

Five and one studies additionally used the Hamilton Depression 
Scale with 17 items (HAMD-17) (Hamilton, 1960) or Beck 
Depression Inventory Version 2 (BDI-II) scores (Beck et al., 1996) 
(see chapter 3.5), respectively, as inclusion criterion in the MDD 
group. Three of those studies additionally used the Young Mania 
Rating Scale (YMRS) (Young et al., 2000) for exclusion of bipolar 
patients. One study each confirmed HC status based on HAMD-17 
or BDI-II. Two studies did not use their diagnoses but relied on 
BDI-II scores for grouping of participants into MDD and HC 
instead. Two other studies used the HAMD-17 or Self-Rating 
Depression Scale (SDS) scores instead of a diagnostic procedure for 

TABLE 1 Locations of data collection for studies with own data collection.

Location Number of References

Studies 
(n = 34 total)

Participants 
(n = 31 studies)

China 17 1,692 Chen et al. (2024), Hong et al. (2021), Huang Y. et al. (2023), Kang et al. (2024), Lei et al. (2023), Li 

et al. (2022), Lin et al. (2022), Lin et al. (2020), Liu S. et al. (2022), Liu W. et al. (2020), Shao et al. 

(2021), Sun et al. (2023), Teng et al. (2022), Wang et al. (2024b), Wu Z. et al. (2022), Xie et al. (2024), 

Xue et al. (2024)

South Korea 3 272 Choi et al. (2021), Jang et al. (2020), Shim et al. (2023)

Taiwan 3 717 Duncan et al. (2020), Huang M. H. et al. (2023), Wu et al. (2021)

Russia 2 143 Mitiureva et al. (2024), Proshina et al. (2024)

Europea 4 613 Benschop et al. (2022), Périard et al. (2024), Sarisik et al. (2024), Sverdlov et al. (2021)

USA 3 544 Lord and Allen (2023), Murphy et al. (2020), Umemoto et al. (2021)

Australia 1 100 Sharpley et al. (2023)

Unknown 1 33 Soni et al. (2022)

a1x Belgium; 1x Germany; 1x Netherlands; 1x Germany, Austria, & Luxembourg.
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the MDD group, and eight for the HC group with the use of BDI-II 
(n = 4), HAMD-17 (n = 3), or SDS (n = 1). Noteworthy, cutoff 
criteria on the scores for grouping differed across studies, even for 
the same test.

Two studies relied on self-report for inclusion in the MDD group, 
five for inclusion in the HC group. One study did not report any 
assessment criteria for inclusion in the MDD group, eight studies 
neglected this for the HC group.

General exclusion criteria for both groups were in seven studies 
intelligence or education below average, or learning disorder, 
pregnancy in four studies, and non-right-handedness in two studies.

Thirteen studies excluded MDD patients with any axis-I disorder 
co-morbidity except for anxiety disorder in two studies. HC were 
excluded if they had any axis-I disorder in 11 studies, or if they had a 
family history of psychiatric disorders in four studies. Nineteen or 18 
studies excluded MDD patients or HC, respectively, if they had any 
neurological disorder, or some specific neurological disorders. Any 
other disease was an exclusion criterion for MDD or HC in four or five 
studies, respectively. Six or one study excluded MDD patients or HC 

if they had recently electroconvulsive or TMS therapy. One study 
excluded patients that were diagnosed with MDD as a secondary 
disorder next to, e.g., Parkinson’s disease. Finally, four studies included 
only first-episode MDD patients.

In one study, all MDD patients were medicated, in 11 studies some 
of the patients were medicated. Details about the medication varied 
from frequencies of specific drugs taken, descriptive group statistics 
about the active substances to simply the mention of patients taking 
anti-depressants. One study each excluded patients on lithium or 
tricyclic anti-depressants even if they allowed medication of patients 
otherwise. In nine studies, the MDD patients were drug-naïve or 
drug-free, in the latter case three studies mentioned since when they 
were at least drug-free. For the HC group, 12 studies report drug-free 
participants with one study confirming this with a drug test. 
Furthermore, 12 or 14 studies excluded MDD patients or HC, 
respectively, when they had a history of alcohol or drug abuse.

3.4.2 Publicly available data sets
For the MODMA data set, MDD patients were diagnosed with the 

MINI based on DSM-4 criteria and had to have a PHQ-9 (Patient 
Health Questionnaire, chapter 3.5) score above five. Any participant 
without higher education or pregnant was excluded. MDD patients 
were excluded when they had any other axis-I disorder, were suicidal, 
or had brain damage. HC were excluded when they had a family 
history of psychiatric disorders. MDD patients were medication free 
for at least 2 weeks and an exclusion criterion for all participants was 
any other drug or psychotropic substance use.

For the MUM data set, MDD patients were diagnosed based on 
DSM-4 criteria, and had to have no other psychiatric or cognitive 
disorders, no epilepsy, and were not pregnant. HC were excluded 
when they had any axis-I disorder. MDD patients had to be medication 
free for at least 2 weeks and not abuse any drugs.

For the CAV data set, participants were first administered the BDI 
test and only participants with a score ≥13 were subsequently 

FIGURE 1

Basic characteristics of the studies. (A) Overall number of participants 
for studies with own data (boxplot: n = 31) and overlaid the 
population sizes of the public data sets. (B) Percentages of MDD 
patients relative to the sum of MDD patients and HC (boxplot: n = 31) 
and the percentages of female participants in the two clinical sub-
groups (boxplots: n = 27) for the studies with own data. Overlaid are 
the respective information for the public data sets. Note that for CAV 
the diagnostic label is based on BDI score, for NOW based on 
diagnosis, for DIA all participants are included in (A) but the 
diagnostic label in (B) is based on diagnosis and BDI score (n = 50), 
and for WRO all participants are included in (A) but the diagnostic 
label in (B) is based on BDI score (n = 86) The information about 
MODMA, CAV, MUMTAZ, NOW, DIA, and WRO is based on the public 
data itself, the information about other three data sets is based on 
the studies included in the review. Note that information about 
gender was missing in four studies with own data and in the study 
using TDBRAIN.

FIGURE 2

Age distributions of participants in studies with own data collection 
(n = 26) and in public data sets. Color coding for the publicly 
available data sets: reddish colors mark MDD patients, blueish colors 
mark HC. Diagnosis is defined analogue to Figure 1B. For study 
abbreviations see chapter 3.3. Note that information about age was 
missing in five studies with own data and in the study using 
TDBRAIN.
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diagnosed with the SCID based on DSM-4 criteria. Based on the 
diagnosis, four groups were identified: current MDD, past MDD, no 
MDD, and not interviewed. HC had to have a BDI score below seven 
and no self-reported history of any axis-I disorder. Exclusion criteria 
for all participants was a history of trauma or seizure, or use of any 
psychoactive medication.

For the three DRYAD data sets, common diagnostic 
classifications and exclusion criteria were used. The MDD groups 
were diagnosed with the MINI based on ICD-10 criteria (NOW, 
DIA), all other groups were solely based on the BDI. HC needed to 
have a BDI-score ≤5 (NOW, DIA, WRO), subclinical participants 
were not formally diagnosed but had a score ≥10 (DIA, WRO), and 
the unclassified group had a BDI-score between 5 and 10. All 
participants were without neurological disorders or head injuries, 
and medication free.

3.4.3 Consideration in analysis
Apart from the diagnostic labels MDD and HC, five studies with 

own data used additional diagnostic information to stratify the patient 
group, or characterize it further. Inclusion of the differentiation 
between current and remitted MDD showed that microstates between 
the two MDD groups are more similar to each other than to the HC 
group, but that small differences are also identifiable between the two 
MDD groups (Murphy et al., 2020). However, Lord and Allen (2023) 
did not find the expected differences between those two MDD groups 
in complexity metrics. In contrast, psychotic and non-psychotic MDD 
patients exhibit differential functional connectivity (Chen et al., 2024; 
Lei et al., 2023). Finally, Benschop et al. (2022) correlated age of onset, 
duration of the current episode, and number of total episodes with 
functional connectivity markers and found a substantial influence of 
the latter on some of their markers. Two studies investigated whether 
medicated and un-medicated patients differ in their EEG-markers but 
did not find differences (Sarisik et al., 2024; Umemoto et al., 2021). In 
contrast, the study based on the B-SNIP data set found a sign. 
correlation between medication load and their phase dynamic marker, 
and therefore used medication as covariate in their analysis (Lechner 
and Northoff, 2024).

To summarize, most studies base the inclusion in the MDD group 
on clinical standard diagnoses. However, procedures vary. Inclusion 
in the HC group was much less controlled. Neuropsychological tests 
sometimes supplemented the diagnosis or infrequently determined 

the diagnostic label. Most common exclusion criterion was the 
presence of a neurological disorder for both groups. Other exclusion 
criteria varied widely from none to a long list. The use of medication 
was also handled very differently. In the case of MDD, patients were 
most frequently either medication-free or the medication was 
reported. For HC, this information was rarely reported. Very few 
studies used additional diagnostic information in their analysis but 
those who did, found effects. The three studies that have examined 
medication report contradictory results.

3.5 Neuropsychological tests

Neuropsychological tests assess the severity of psychiatric 
diseases, symptom dimension, or cognitive function, usually with a 
(self-administered) questionnaire. They can be used for screening, 
complement diagnosis, and provide a more detailed description of a 
study population.

Five neuropsychological tests that operationalize depression 
severity are administered most frequently (Table  2): Hamilton 
Depression Scale with 17 items (HAMD-17) (Hamilton, 1960), 
Beck Depression Inventory (BDI) (Beck et al., 1961), currently most 
frequently used in version 2 (BDI-II) (Beck et al., 1996), 9-item 
subscale for depression from the Patient Health Questionnaire 
(PHQ-9) (Kroenke et al., 2001), Self-Rating Depression Scale (SDS) 
(Zung, 1965), and Montgomery-Åsberg Depression Rating Scale 
(MADRS) (Montgomery and Åsberg, 1979). Note that a clinician 
administers the HAMD-17 and MADRS while the other three tests 
are usually self-administered. Tests that operationalize anxiety 
sometimes complement the depression score, most frequently the 
Hamilton Anxiety Rating Scale (HAM-A) (Hamilton, 1969), and 
the State–Trait Anxiety Inventory (STAI) (Spielberger et al., 1971) 
used in four and one study, respectively, the latter also in the CAV 
data set. Further neuropsychological tests that occurred more than 
once were the Young Mania Rating Scale (YMRS) (Young et al., 
2000) and the Mini Mental State Examination (MMSE) (Folstein 
et  al., 1975) with four and two studies administering them, 
respectively.

Distributions of the two most frequently used tests demonstrate a 
high variability across study populations (Figure 3) with distinctive 
differences between diagnostic groups. Noteworthy, sometimes the 

TABLE 2 Most frequently administered neuropsychological tests for depression severity rating with their frequency in included studies and their 
severity rating ranges.

Test Number (public) None / Minimal Mild Moderate Severe

HAMD-17 15 (1) 0-8aa

0–9

9–16

10–20

17–24

21–30

25–51

30–51

BDI 1b (3b) 0–9 10–19 20-30 30–63

BDI-II 9 (2) 0-12a

0–8 / 9–13

13–19

14–19

20–28

20–28

29–63

29–63

PHQ-9 4 (1) 0–4 / 5–9 10–14 15–19 20–27

SDS 4 25–49 50–59 60–69 70–100

MADRS 2 0–12 13–21 22–28 29–60

Public data sets are only counted when they provide these scores with their data sets. For abbreviations see text.
aFirst row based on (Bundesärztekammer et al., 2022), second on values commonly used in research studies.
bFor one study each, the version of the BDI is unknown.
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tests are only administered to the MDD but not the HC group, as 
apparent for the HAMD-17 (Figure 3A).

Half of the studies using own data included the test scores from at 
least one neuropsychological test in their analysis (Table 3). From the 
studies pooling data across both groups, five used the BDI-II score to 
operationalize the severity of depression, the PHQ-9, SRS, and 
MADRS were used once each. From the studies conducting the 
analysis on the MDD group only, six used the HAMD-17 and two the 
BDI-II. Six studies that use public data included the test score of at 
least one neuropsychological test (Table 3, marked with *). One of 
these studies, however, shows PHQ-9 values in their graphs that are 
actually not contained in the public data set (Zhang et al., 2021). The 
spectral markers seem to be rather contradictory in correlation with 
depression severity or other neuropsychological test scores. 
Connectivity markers, however, seem to be better correlated.

In summary, the studies employed a variety of neuropsychological 
questionnaires, the most commonly used being the BDI and HAMD-17. 
These questionnaires categorize MDD into different levels of severity. 
However, the distribution of these scores varies greatly across studies. 
About half of the studies with own data also use the scores of 
neuropsychological questionnaires in their analysis, studies based on 
public data employ this practice less frequently. The results of the studies 
are partially inconsistent, especially regarding spectral markers.

3.6 Additional analyses on public data sets

The participants of the CAV data set can be divided into five 
groups based on their diagnostic procedure (Figure  4A): (1) 
MDDcurrent: diagnosis & BDI ≥ 13 (n = 11; 54.5% female); (2) 
MDDremitted: diagnosis & BDI ≥ 13 (n = 12; 75.0% female); (3) 
highBDInoMDD: diagnosis & BDI ≥ 13 (n = 9; 66.7% female); (4) 

highBDIundiag: no diagnosis & BDI ≥ 13 (n = 14; 92.9% female); (5) 
lowBDI: BDI ≤ 7 (n = 75; 53.3% female).

The first four groups have on average a moderate BDI-score 
(Figure  4A; 22.2 ± 4.9) without sign. differences between groups 
(F3,42 = 0.398; p = 0.775). The HAMD-17 score, however, differs sign. 
between the first three groups (Figure 4B; F2,29 = 5.169; p = 0.012), 
with the MDDcurrent group (13.1 ± 5.3) exceeding sign. both the 
MDDremitted (7.3 ± 5.3; t21 = 2.637; p = 0.015; corr. p = 0.045) and the 
highBDInoMDD group (6.8 ± 4.4; t18 = 2.852; p = 0.011; corr. p = 0.033). 
Note that only diagnosed participants were assessed with the 
HAMD-17 test.

Several dichotomous diagnosis groups (MDD/HC) can 
be  formed from these five groups, depending on the research 
question. This practice has been used in the studies based on this 
data set. (1) The strictest separation includes only MDDcurrent for the 
MDD group (n = 11) and lowBDI for the HC group (n = 75). (2) The 
second approach expands the MDD group by the MDDremitted group 
(n = 23) and keeps the HC group the same. (3) The diagnosis-
agnostic approach groups participants solely based on BDI, e.g., 
BDI ≥ 13 for the MDD group (n = 46) and BDI ≤ 7 for the HC 
group (n = 75). The cutoff value, however, is of minor importance in 
this data set since there is a gap in the scores between eight and 
twelve. For a data set with continuous BDI scores, however, different 
cutoff values might be used and are used, e.g., group splits at BDI 
scores of nine or 13. (4) Only diagnosed MDD (current & remitted; 
n = 23) are included in the MDD group while the HC group 
comprises all other participants (n = 98). The last approach seems 
counterintuitive for the given data set. However, since a substantial 
amount of studies comprises ill-defined HC groups, this approach 
mirrors this practice.

Obviously, the distribution of BDI scores differs slightly between 
groups of these different “diagnosis” approaches. Furthermore, we find 
a sign. difference for gender between diagnostic groups in approach 
three only (odds ratio = 2.479; p = 0.034). This means that here either 
gender needs to be considered as a potential confound in the analysis, 
or, e.g., the HC group is subsampled to match the MDD group – an 
approach that is possible here since the HC group is substantial larger 
than the MDD group. For none of the approaches we find a sign. age 
difference between groups (all p ≥ 0.3).

The participants of the MODMA data set are usually grouped 
based on the diagnostic label given, which leads to a MDD group with 
24 participants (45.8% female) and a HC group with 29 participants 
(31.0% female). Neither age nor gender differs sign. between these 
groups (both p > 0.3). The education, however, is a potential confound 
with a sign. difference between groups (t51 = −3.209; p = 0.002), 
confirmed by a moderate but highly sign. correlation between 
education and PHQ-9 score (r = −0.45; p < 0.001).

The exploratory stratification analysis on the MODMA data set is 
restricted to three scores, since more than three dimensions are not as 
intuitively to visualize. We chose the depression severity (PHQ-9) 
along with the anxiety (7-item Generalized Anxiety Disorder scale: 
GAD-7) (Spitzer et al., 2006) and sleep score (Pittsburgh Sleep Quality 
Index: PSQI) (Buysse et al., 1989) because these two correspond to 
possible symptoms of depression (American Psychiatric Association, 
2013; Malgaroli et al., 2021) as well as to disorders on their own right 
that can be co-morbid with MDD (Liu et al., 2007; Meng and Wang, 
2023; Sevillano-Garcia et al., 2007; Staner, 2010; Thaipisuttikul et al., 
2014; Zimmerman et al., 2002).

FIGURE 3

Distributions of the two most frequently used neuropsychological 
tests. (A) HAMD-17 (n = 11/4 for MDD/HC) (B) BDI (n = 9/9 for own 
data), both versions of the test. The dashed lines demarcate the cut-
offs between severity categories for each of the tests. Color-coding 
and definition of diagnosis groups analogue to Figure 2.
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Visual exploration of the clustering hierarchy revealed four clusters 
that adequately separate the participants in one HC group and three 
MDD groups (Figures 5A,B). For the latter, a small group of patients with 
low anxiety but sleep problems (magenta markers) stands out. The 
separation of the remaining MDD patients (red and orange markers) 
seems to be based on all three scores in a similar fashion. Based on the 
four clusters found in the hierarchical approach, the k-means algorithm 
was parametrized with four clusters as well. This algorithm separates the 
HC and MDD groups as well but also sub-divides the healthy group 
(Figures 5C,D). Especially for the HC, it seems to be mainly driven by 
the PSQI/GAD-7 combination (blueish markers in Figure 5D) rather 
than by the PHQ-9 score (Figure 5C).

To summarize, grouping MDD and HC according to different 
criteria demonstrates that apart from a change in the distribution of 
MDD severity rating in the diagnostic groups, also the distribution of 
other variables like demographic information may shift, which might 
lead to potential confounders dependent on grouping. We  also 

demonstrate that different neuropsychological tests like HAMD-17 
and BDI can have different capabilities of separating between 
diagnostic subgroups. Moreover, adding further neuropsychological 
tests related to symptoms or co-morbidities such as sleep problems or 
anxiety, we show that already rather small and confined samples might 
contain clinically relevant subgroups.

4 Discussion

In a set of 66 original papers on EEG-biomarker research for 
MDD diagnosis from the last 5 years, we find a rather large diversity 
in population characteristics and differences in the definition of 
diagnostic groups across studies. This variety is a factor that 
contributes to the conflicting findings across studies are not surprising 
and characteristics of the study population needs to be taken into 
account when comparing study results or compiling meta-analyses, 

TABLE 3 Summary of correlations with or regressions on neuropsychological test scores for different types of EEG markers.

All participants MDD group only

General depression scores

Spectral marker + α-asymmetry (Périard et al., 2024; Umemoto et al., 2021)

+ α-power (Umemoto et al., 2021) *(Zandbagleh et al., 2024)

+ ϑ-power *(Zandbagleh et al., 2024)

- α-asymmetry (Sharpley et al., 2023)

- power of any band *(Yun and Jeong, 2021)

+ ß/α-ratio (Li et al., 2022)

- α-asymmetry (Jang et al., 2020)

- α-and δ-power (Huang Y. et al., 2023)

- ß-power (Wu Z. et al., 2022)

Functional connectivity + (Mitiureva et al., 2024; Sun et al., 2023) *(Zhang et al., 2021) + (Huang M. H. et al., 2023; Mitiureva et al., 2024; Teng et al., 

2022) *(Chu et al., 2024; Kabbara et al., 2022)

+ microstate metrics (Murphy et al., 2020)

- (Wang et al., 2024a)

Other + DFA ß (Duncan et al., 2020)

+ global connectivity *(Trambaiolli and Biazoli, 2020)

+ signal variability *(Yun and Jeong, 2021)

+ other (Sverdlov et al., 2021)

- complexity (Lord and Allen, 2023)

Depression sub-scores and other (sub-)scores

Spectral marker + α-asymmetry

++ melancholia sub (Sharpley et al., 2023)

++ anhedonia (Umemoto et al., 2021)

++ rumination (Umemoto et al., 2021)

++ stress sub (Périard et al., 2024)

+ α- & ϑ-power

++ melancholia *(Zandbagleh et al., 2024)

++ anhedonia *(Zandbagleh et al., 2024)

- α-asymmetry

-- anxiety (Périard et al., 2024; Umemoto et al., 2021)

-- melancholia (Sharpley et al., 2023)

- α-power

-- anxiety (Umemoto et al., 2021)

-- several others (Umemoto et al., 2021)

+ α-asymmetry

++ melancholia (Sharpley et al., 2023)

+ α-power

++ cognitive function (Xie et al., 2024)

- α-asymmetry

-- anxiety (Jang et al., 2020)

Other + DFA ß

++ rumination sub (Duncan et al., 2020)

+ global connectivity

++ anxiety *(Trambaiolli and Biazoli, 2020)

The studies are pooled across individual tests. + denotes sign. correlation; - denotes reported n.s. correlation (note that not all n.s. correlations are listed due to publication bias). * denotes 
studies based on public data. DFA: detrended fluctuation analysis.
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which is often overlooked. Our complementary exploratory analyses 
further demonstrate exemplary the influence of diagnostic procedure 
and choice of testing, as well as the heterogeneity in study samples.

A re-occurring criticism in clinical neuroimaging research is that 
findings are often based on rather small sample sizes (Botvinik-Nezer 
and Wager, 2023; Dev et al., 2022; Rakic et al., 2020). Our results 
confirm this shortcoming in recent research. We find only five studies 
collecting own data that have more than 300 participants, plus the 
EMBARC data as public data set. In contrast, 75% of the studies with 
own data included less than 160 participants. The two most frequently 
used public data sets that are used solo by 20 studies are rather small 
with 53 and 64 participants. While six studies replicate their findings 
across several public data sets, none of them pools the data together, 
and from the studies collecting own data, only one replicates their 
findings with public data. The latter one is a practice that can at least 
partially overcome the problem of developing a diagnostic procedure 
tailored only to a small, specific data set (Botvinik-Nezer and 
Wager, 2023).

The studies include on average a higher proportion of female 
participants, which mirrors the higher prevalence of MDD in women 
than men (Seedat et  al., 2009). Even though female gender is 
considered a risk factor for MDD (Marx et al., 2023), and gender 
influences EEG signals (Polunina and Lefterova, 2012; Shearer et al., 
1984), it was rarely included in the analyses. The two studies explicitly 
investigating a gender effect found one. Except for one study targeting 

adolescents, all studies collected data from adults, with a rather high 
variability in mean age and variance. Age is known to influence the 
EEG signal (Polich, 1997; Tröndle et al., 2023) and one study that 
specifically investigated the effect of age on EEG-biomarker for MDD 
found that MDD is diagnosed better in younger participants. Most 
patients experience their first episode in early adulthood (Kessler and 
Bromet, 2013), therefore this age group should be the main target for 
a diagnostic use case. However, due to the still prevalent social stigma 
the disorder is afflicted with (Stuart, 2016), there is likely a substantial 
number of older people still undiagnosed, who should also not 
be neglected in a diagnostic scenario.

Gender and age are only the most commonly reported variables 
describing the participants. Many more are known to influence MDD 
[see, e.g., Marx et al. (2023)]. Some of the studies assessed, e.g., ethnicity, 
intelligence, or education. We found that education is a possible confound 
in the MODMA data set. None of the studies using this data, however, did 
mention the consideration of this variable in any analysis. Other studies 
used factors such as (low) intelligence and education, pregnancy, or (left-)
handedness as exclusion criteria. Our results demonstrate that collecting 
additional information about the research participants and including 
them into analyses can improve the preciseness of the results and 
contribute towards resolving conflicting findings. This practice should 
therefore be increasingly used in biomarker studies.

All studies but one rely on the diagnostic labels MDD and HC for 
their main analysis. However, the definition of neither group is 
consistent across studies. A number of rather obvious reasons 
contribute to the element that the labels cannot be correct or clean. 
Any diagnostic procedure is subjective and diagnostic criteria changed 
over the years (American Psychiatric Association, 2013; Bell, 1994; 
World Health Organization, 1992; Reed et  al., 2019), MDD is a 
multifaceted disorder with several dimensions that can vary inter-
individually in severity and current status (Malgaroli et al., 2021), and 
HC is per se an ill-defined group. There are also a number of less 
obvious reasons, such as the variability in operationalization of MDD 
severity by using different neuropsychological tests, or even when the 
same test is applied, different cut-off criteria are utilized. Our analysis 
on the CAV data demonstrates some possible definitions of diagnostic 
groups and the impact the groupings have. This suggests that instead 
of artificially creating two groups, the target variable for analysis 
should rather be continuous. However, we also show that dependent 
on whether the BDI or HAMD-17 score is considered, participants fall 
into different severity classes. Taken together with the exploratory 
analysis on the MODMA data where subgroups emerge when 
additional test scores are added, we  rather recommend a multi-
dimensional target variable rather than a one-dimensional severity 
scale. Scores of neuropsychological tests have indeed been used in 
additional analyses more than any other information, either 
depression severity rating, sub-scores of those scales, anxiety, or 
cognitive scores. The findings were mixed. However, given the design 
of the data collection in most studies, an artificial gap in MDD severity 
is introduced with rather high scores for the MDD group and rather 
low scores for the HC group. Data collection for continuous target 
variables should take care to obtain a more evenly distribution of this 
variable. In line with the recommendation for collecting and using 
more demographic information, the same applies to information 
about disease details and more meticulous description via 
neuropsychological tests.

Most variability across studies is introduced with the exclusion 
criteria and the drug status of participants. Some studies took great care 

FIGURE 4

Relationship between the BDI and the STAI (A) and the BDI and the 
HAMD-17 scores (B) for the CAV data set. Grouping of participants is 
based on the diagnostic procedure (see text).
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to isolate the MDD diagnosis as tightly as possible in patients and exclude 
the possibility of any (psychiatric) disorders in the HC participants 
including genetic disposition. Other studies were completely oblivious 
about constraints for their participants, and anything in between. A 
similar picture is apparent regarding medication and drug use. Some 
studies take great care to establish that their participants, including the 
HC, are drug-free, or they report detailed medication-use. Other studies 
do not report anything about drug status. Very few studies consider 
details like (recent) nicotine or coffee consumption, even though these 
substances also affect the EEG signal (Conrin, 1980; Edwards and 
Warburton, 1982; Hammond, 2003; Norton et al., 1992). In a diagnostic 
scenario, a person would possibly also have an additional disease 
unrelated to MDD or be on regular medication due to some other disease. 
Furthermore, the chance of co-morbidities is rather high in psychiatric 
disorders (Thaipisuttikul et al., 2014; Zimmerman et al., 2002), therefore 
co-morbidities be need to be considered and included at some point, 
another argument for the multi-dimensionality in the target variable for 
research. However, to capture the variability introduced when taking all 
these possibilities into account, much larger data sets are needed. The 
TDBRAIN and B-SNIP collections are data sets that aim in this direction 
by including several psychiatric diseases by design. At least, instead of 
neglecting additional diagnostic information, those should be thoroughly 
recorded like, e.g., in the CAV data set.

Providing a detailed description about the research sample is 
necessary to enable replicability of the research, a cornerstone of 

good scientific practice. While there are limits to the level of detail 
that can reasonably be provided about the participants, some papers 
do not provide the bare minimum. We  found one paper where 
we  could not determine the overall sample size and four more 
without information about the gender ratio. Statistics about age was 
missing in five studies. One study was missing the inclusion criteria 
for the MDD group and eight studies for the inclusion in the HC 
group. Finally, ten studies did not provide any information about 
drug-status of any of their participants. Given the influence these 
factors have on EEG-biomarker for MDD, these studies do not add 
useful findings to the research topic.

5 Conclusion

Detailed demographic, diagnostic, psychological, social, and 
behavioral characteristics of the study population should be collected 
and reported, as well as considered in the analyses. Moreover, the 
variability in study population should be taken into account when 
conducting reviews or meta-analyses.

Larger data sets that are more diverse by design are needed, ideally 
publicly available. The size of the data set comprises on the one hand 
the number of participants but also the information gathered about 
the participants. This review shows that there are already several well-
curated data sets publicly available, and used in studies. However, the 

FIGURE 5

Clustering the MODMA data set based on depression (PHQ-9), anxiety (GAD-7), and sleep (PSQI) scores with hierarchical clustering (A, B) and k-means 
clustering (C, D). Colors in each row correspond to the same groups but colors across rows cannot be interpreted. Note that the light blue circles are 
intentionally drawn smaller in order to show the overlap to the dark blue circles.
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possibilities given with these sets to replicate results based on one’s 
own data and therefore strengthen the generalizability of the research 
findings are still widely neglected.

Rather than a dichotomous separation in MDD and HC groups, the 
target variable should be  either a continuous metric of depression 
severity or even better a multi-dimensional characterization of different 
(patho-)psychological dimensions. These target variables should ideally 
cover the whole spectrum without gaps or missing extrema.

Considering all these issues should bring clinical researchers a 
step closer to enable robust decision support for MDD diagnostics. 
The support procedure might then provide a fine-grained, multi-
dimensional characterization of the patient beyond the label MDD. It 
enables the discovery of co-morbidities and provide a better 
demarcation to other psychiatric disorders. Furthermore, this patient 
stratification might help in increasing treatment success. Finally, this 
approach is well-suited to shed light the physiological underpinnings 
of the disorder.
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