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Introduction: Alzheimer’s Disease (AD) is a progressive neurodegenerative

disorder, with Mild Cognitive Impairment (MCI) often serving as a prodromal

stage. Early detection of MCI is critical for timely intervention.

Methods: Dynamic Functional Connectivity analysis reveals temporal dynamics

obscured by static functional connectivity, making it valuable for analyzing and

classifying psychiatric disorders. This study proposes a novel spatio-temporal

approach for analyzing dynamic brain networks using resting-state fMRI. The

method was evaluated on data from 85 subjects (33 healthy controls, 29 Early

Mild Cognitive Impairment (EMCI), 23 AD) from the ADNI dataset.

Results: Our model outperformed existing techniques, achieving 83.9%

accuracy and 83.1% AUC in distinguishing AD from healthy controls.

Discussion: In addition to improved classification performance, key affected

regions such as left hippocampus, the right amygdala, the left inferior

parietal lobe, the left olfactory cortex, the right precuneus, and the insula,

were identified-areas known to be associated with memory function and

early Alzheimer’s pathology. These findings suggest that dynamic connectivity

analysis holds promise for non-invasive and interpretable early-stage diagnosis

of AD.
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1 Introduction

Brain networks and functional connectivity are fundamental to studying brain
disorders, enabling the exploration of complex relationships between brain dysfunction
and behavioral phenotypes (Desikan et al., 2006). Alzheimer’s disease (AD) is the most
prevalent progressive neurodegenerative disorder, accounting for 50%–80% of dementia
cases (Glover, 2011; Gonzalez-Castillo et al., 2021). Despite extensive research, there is
currently no effective treatment, and the disease leads to a marked decline in quality of life.
After the age of 65, its incidence doubles approximately every 5 years, and it is projected
that by 2050, one in 85 individuals will be affected. Mild cognitive impairment (MCI), a
precursor to AD, has an annual conversion rate of 10%–15%, with over 50% progressing
to AD within 5 years. Given the high conversion rate and increasing lifespan, reducing
MCI-to-AD progression through pharmacological and non-pharmacological interventions
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has become a research focus, making early and accurate
MCI identification crucial (Kim et al., 2010; Lam et al.,
2013; Loewenstein et al., 2006; Richards and Berninger, 2008;
Wise and Preston, 2010).

Functional magnetic resonance imaging (fMRI) is a non-
invasive technique that measures blood-oxygen-level-dependent
(BOLD) signals, providing insight into neural activity across
different brain regions. It has been widely used to investigate
functional connectivity abnormalities in patients with MCI,
a transitional stage between normal aging and Alzheimer’s
disease. However, despite utility, significant challenges remain in
accurately constructing dynamic brain networks and capturing
subtle spatiotemporal functional abnormalities from fMRI data
(Richards and Berninger, 2008). Dynamic functional connectivity
(dFC) analysis reveals temporal dynamics obscured by static
functional connectivity (sFC), making it valuable for analyzing
and classifying psychiatric disorders. Studies have highlighted
the potential of dFC in uncovering temporal dynamics and
abnormal connectivity patterns, though limitations such as small
sample sizes and lack of longitudinal analysis persist (Bahrami
et al., 2022; Li et al., 2020; Li et al., 2021; Wang Z. et al.,
2022; Yang et al., 2022). Huang et al. (2022) conducted a
systematic review summarizing the use of dFC in schizophrenia
research. They emphasized its potential for revealing temporal
brain dynamics and detecting abnormal connectivity patterns.
They also highlighted the limitations of current studies and
proposed future directions, including increasing sample sizes and
employing more complex analytical methods. However, their study
focused only on cross-sectional research and did not address the
temporal evolution of dFC during disease progression, such as the
transition of connectivity patterns from early to chronic stages.
Chen et al. (2025) applied graph neural networks (GNNs) to
analyze dFC in patients with schizophrenia, constructing dynamic
brain networks by sliding window technique and extracting
features with GNN models. Their results demonstrated that GNN
models outperformed traditional machine learning methods in
classification accuracy, showcasing the potential of GNNs in dFC
analysis of schizophrenia. Nevertheless, their study used only the
mean of sliding windows to construct dFC, failing to capture
higher-order dynamic characteristics. Chen et al. (2024) employed
a sliding window technique to analyze dFC in schizophrenia
patients, segmenting resting-state fMRI (rs-fMRI) data into
multiple time windows and calculating dFC for each segment. Their
findings revealed significant differences in dFC patterns between
patients and healthy controls, indicating that dFC analysis can
provide valuable insights into the neurobiological mechanisms
of schizophrenia. This further confirmed the importance and
potential of dFC analysis in mental disorder research. However,
their study only reported group-level differences in dFC, which may
lead to weak clinical associations.

Graph neural networks have shown promise in MCI
classification by automatically learning and integrating features
from adjacent nodes, outperforming traditional machine learning
methods (Wu et al., 2020a). GNNs extend deep learning to non-
Euclidean domains, enhancing feature extraction and aggregation
in graph-structured data. Recent studies have applied GNNs to
multi-modal MRI and EEG data, capturing complex brain network
relationships and improving MCI classification accuracy. However,
challenges such as noise interference, static connectivity analysis,

and high computational complexity remain (Song et al., 2023;
Veličković et al., 2017). Zhang Y. et al. (2023) constructed a
graph structure from multimodal MRI data and analyzed it using
GNNs, precisely capturing the complex relationships within brain
networks and successfully identifying topological abnormalities
in the functional networks of MCI patients. However, their study
did not perform cross-modal feature selection, leading to noise
interference in classification performance due to high-dimensional
inputs. Demir et al. (2021) focused on Electroencephalogram
(EEG) data, using GNNs to build graph structures and explore
functional connections between different brain regions, providing
strong support for the precise identification of MCI. Nevertheless,
their study only constructed static functional connectivity graphs
without leveraging the high temporal resolution of EEG to capture
dynamic interactions. Li et al. (2024) proposed an innovative GNN
model based on multimodal data fusion, integrating structural
MRI, functional MRI, and EEG data to comprehensively capture
structural and functional information of the brain, thereby
further improving the accuracy of MCI classification. However,
their use of decision-level fusion may result in the loss of early
interaction information between modalities, such as structure-
function coupling. An et al. (2020) utilized GNNs to analyze dFC
data in MCI patients, constructing dynamic brain networks to
precisely capture the temporal dynamics of brain activity, offering
a new perspective for MCI classification. However, their study
only used the mean of sliding windows and failed to capture
non-linear temporal patterns of dynamic connectivity. Zhang D.
et al. (2023) applied GNNs to extract key features from fMRI,
constructing graph structures of brain networks to further reveal
functional connections between brain regions, thereby validating
the effectiveness and superiority of GNNs in MCI classification.
However, their study only analyzed static functional connectivity
without utilizing the temporal dimension of fMRI.

Gao and Ji (2019) proposed a Graph U-Net model that employs
graph pooling techniques to hierarchically cluster nodes within
brain networks, effectively extracting features at different levels.
This method demonstrated superior performance in brain network
analysis and the ability to identify abnormal patterns, providing
new tools and approaches for brain network research. However,
despite its excellent feature extraction capabilities, the predefined
pooling layers of the Graph U-Net model cannot adapt to the
modular structures of different brain networks, such as disease-
specific community divisions. Hu et al. (2023) introduced a self-
attention-based graph pooling method that achieved high accuracy
in identifying brain network abnormalities. This approach also
better captured topological features, offering a new perspective
for brain network analysis. Nevertheless, the study effectively
extracted key features, the use of multi-layer attention mechanisms
may increase computational complexity. Additionally, attention
aggregation could homogenize node features, potentially reducing
local specificity. Wu et al. (2024) applied graph pooling techniques
to analyze dynamic brain networks, constructing dynamic brain
networks using a sliding window technique and extracting key
nodes and features with graph pooling methods. This approach
effectively captured the temporal dynamics of brain activity,
providing a new perspective for dynamic brain network analysis.
However, their study only used the mean of sliding windows
to represent dynamics without modeling state transitions (e.g.,
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Markov chains) or temporal dependencies, thereby affecting a
comprehensive understanding of dynamic brain networks.

This study proposes a Dynamic Graph Recurrent Neural
Network (Dynamic-GRNN) model for brain network analysis,
combining sliding windows and Slide Piecewise Aggregation (SPA)
with Pearson Correlation Coefficient (PCC) to construct dynamic
brain networks. The model employs spatiotemporal encoding to
capture dynamic interactions and introduces self-attention graph
pooling (SAGPooling) to select key nodes, addressing issues like
noise sensitivity and static connectivity limitations. Evaluated on
the ADNI dataset, the model achieved an 83.9% accuracy in subjects
with cognition normal (CN)/AD classification, providing a high-
precision, interpretable method for early neurodegenerative disease
diagnosis (Gadgil et al., 2020; Liu et al., 2023; Smith et al., 2012).

The main contributions of this paper can be summarized as
follows:

1) SPA-PCC Joint Modeling: Combining SPA with sliding
windows to enhance node features, suppress noise, and
improve temporal expression.

2) Dynamic-GRNN Spatiotemporal Encoding: Jointly modeling
brain network functionality and time series dynamics.

3) Temporal SAGPooling: Dynamically selecting Top-K
nodes based on cross-temporal attention weights to
identify persistently abnormal brain regions, improving
classification accuracy.

2 Materials and methods

2.1 Core nodes with multiple feature
combinations

In recent years, a large number of researchers have studied
the core nodes of complex networks. Many literatures have also
systematically summarized the related research results and given
three main evaluation indexes for identifying core nodes: including
degree centrality, betweenness centrality and closeness centrality.

The calculation of degree centrality is based on the degree itself,
the degree ki of a node indicates the number of neighboring edges
of the node vi, and a larger value indicates a larger degree, and a
larger degree indicates that the node undertakes more information
transfer and conversion work in the network. Therefore, it is one
of the common indicators for evaluating the importance of a node
and the calculation formula is shown in Eq. (1).

Ki =

N∑
j=1,j6=i

Kij (1)

Where N is the total number of nodes and Kij denotes the number
of connected edges between node i and j.

Median centrality defines the degree of centrality of a node
in terms of information flow. The median centrality of a node vi
is the ratio of the number of shortest paths passing through the
node to the total number of shortest paths of the node pair. It
reveals the importance of the brain area node in the whole process
of information flow transmission in the network. From the view

of the global characteristics of the network, it laterally reflects the
global control ability of this node. The larger the node median
center value, the more likely the node is to be a bridge between
other nodes. Thus it is another common metric for evaluating the
importance of a node, which is calculated by the following formula
is shown in Eq. (2).

bi =
1

(N − 1)(N − 2)

∑
h, j ∈ N
h 6= j, h 6= i, j 6= i

r(i)
hj

rhj
(2)

where N is the total number of nodes, rhj denotes the number of
shortest paths between node h and j, and rhj

(i) is the number of
paths that pass through node i among all shortest paths between
node h and j.

The calculation of closeness centrality is based on the concept of
the shortest path, which is the reciprocal of the sum of the shortest
paths from the node to all other nodes. It focuses on expressing the
degree of difficulty of a node to other nodes. In contrast to the local
nature of degree centrality, proximity centrality reflects the global
structure of the network. The larger its value, the closer the node is
to other nodes, and its calculation formula is as follows:

Ci =
1

N∑
j=1,j6=i

Dij

(3)

where N is the total number of nodes in the network and Dij is the
shortest path distance between nodes i and j.

Degree centrality is the most commonly used method for
identifying key nodes. Median centrality is capable of evaluating the
role of nodes in the information transfer process of brain networks.
Although the application frequency of proximity centrality is lower
than that of degree centrality and median centrality, it is able
to evaluate the contribution of individual nodes to the whole
network from the perspective of network efficiency. In this study,
a composite equation is constructed through degree centrality,
median centrality and proximity centrality, as shown in Eq. (4).

Count =
m∑

i=1

tipi (4)

Where, m is the number of composite parameters selected, ti is
the weight of the parameters and pi is the value of the graph
theory parameters.

2.2 Dynamic functional brain network
study

The sliding window technique is a classical time series
feature extraction method, which is widely used in brain network
construction to solve practical problems in various fields (Wein
et al., 2022). In this study, the sliding window technique is used
to construct node and edge features to fully utilize the temporal
information in fMRI. Assuming that there is a time series of length
K. In order to extract the temporal features, it is necessary to choose
a reasonable window width W and a sliding step size s. By moving
the sliding window over the time series K with a given sliding step
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size s, the whole time series is divided into m time slices. Each time
slice starts at t and ends at t+W. It should be emphasized that t
can only be an integer. The total number of time slices m can be
calculated as follows:

m =
K − w

s
+ 1 (5)

To better process fMRI, this study extends the segmented
aggregation approximation method and proposes the SPA method.
The method applies continuous time series to discrete time series
of fMRI to extract node features, which provide effective inputs for
subsequent GNN analysis. Specifically, for the fMRI signals of each
brain region, the signal values within each time slice are averaged
as shown in Eq. (6).

BOLDn
=

1
w

w∑
i=1

BOLDn
i (6)

where BOLD denotes the signal value during the nth time, BOLDn

denotes the average signal value during the nth time slice, and W
denotes the width of the time slice which is the number of signal
points contained in each time slice.

Through the above averaging process, BOLD are generated
for each brain region. Each signal corresponds to a time
slice. Concatenating these BOLD signals in the order of time
to form a node feature vector. The feature vectors not only
simplify the data, but also retain the dynamic change information
of the time series, which helps to capture the dynamic
properties of the network and provides an effective input for the
subsequent GNN analysis.

In brain networks, nodes denote brain regions or regions of
interests (ROIs), and edges denote functional connectivity between
nodes. After SPA approach which divides the time series into
multiple time slices, calculate the correlation between nodes from
the data within each time slice. For nodes vi and vj, the PCC is
utilized to calculate their edge feature vectors in the current time
period as shown in Eq. (7).

rvivj

[
k
]
=

w∑
g=1

(
BOLDvi

g − BOLDvi
) (

BOLD
vj
g − BOLDvj

)
√

w∑
g=1

(
BOLDvi

g − BOLDvi
)2
√

w∑
g=1

(
BOLD

vj
g − BOLDvj

)2
(7)

where BOLDvi
g and BOLDvi

g denote the signal values of
node vi and node vj, respectively, at time point g. BOLDvi

and BOLDvj denote the average signal values of vi and vi,
respectively, within the current time slice. w denotes the width
of the time slice.

For the generated PCC values of m time slices, the PCC values
are scaled to the range of 0–1 using Min-Max normalization. The
normalization formula is shown in Eq. (8). After that, these PCC
values are arranged into edge feature vectors L as shown in Eq. (9).

rvivj

[
k
]
=

rvivj

[
k
]
−min

(
rvivj

)
max

(
rvivj

)
−min

(
rvivj

) (8)

L
(
vi, vj

)
= {rvivj [1], rvivj [2], ..., rvivj [m]}T ∈ Rm (9)

The PCC provides a metric to quantify the strength of
connections between nodes, which helps in subsequent network
analysis and machine learning tasks. While the normalization
process makes the PCC value between 0 and 1, which facilitates
comparisons between different time slices and subsequent
processing (Gadgil et al., 2020; Hu et al., 2024).

2.3 Overall analysis framework

Figure 1 illustrates the proposed framework, which is
summarized into: (1) Introduce sliding window algorithm to
divide fMRI into multiple overlapping time segments (Zheng
et al., 2023). Calculating the node features of brain regions within
each time segment using the SPA method, and calculating the
edge features between brain regions using the PCC method to
construct a dynamic functional brain network; (2) Introduce
the Dynamic-GRNN network to deal with time series issues
in graph-structured data, capturing dynamic changes in time
series while maintaining temporal synchronization (Seo et al.,
2018); (3) Introduce the SAGPooling method, which selects
the Top-K most important nodes across the whole brain
based on temporal attention weights, more flexibly capturing
dynamic key brain regions across hemispheres, and reassembling
the pooled nodes to be input into subsequent classifiers
(Gu et al., 2020; Zhu et al., 2022).

2.3.1 Dataset and preprocessing
Table 1 shows the research from public data sets of Alzheimer’s

disease Neuroimaging plan (Alzheimer’s diseases, Neuroimaging
Initiative, ADNI)1 collected 85 cases of the participants. All of them
had multimodal data (fMRI and DTI), including 33 HC subjects,
29 EMCI subjects, and 23 AD subjects. Group classification was
based on ADNI diagnostic labels. Cognitive status was primarily
assessed using the Mini-Mental State Examination (MMSE), a
30-point questionnaire widely used to evaluate global cognitive
function, including orientation, attention, memory, language, and
visuospatial abilities. EMCI participants had subjective memory
complaints and mild objective memory impairment, with preserved
general cognitive function (MMSE ≥ 24). AD participants
exhibited more severe memory and cognitive decline (MMSE
typically ≤ 26). Inclusion criteria required the availability of both
fMRI and DTI data and a confirmed ADNI diagnosis of HC,
EMCI, or AD. Exclusion criteria included major neurological
disorders (e.g., stroke, Parkinson’s disease), psychiatric conditions
(e.g., major depression, schizophrenia), recent substance abuse,
significant head trauma, or unstable medical conditions that could
impact brain function or structure.

Quality control was performed on the data of these subjects,
and experiments were conducted using the data after quality
control. All neuroimaging data were obtained using the SIEMENS
3T MRI scanner. After T-test, Gender, Age, Apolipoprotein E4
(APOE4), MMSE and Education level (Edu) among the three
different levels of MCI met p < 0.001, indicating that the differences
were statistically significant.

1 https://adni.loni.usc.edu/
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FIGURE 1

Dynamic Graph Recurrent Neural Network (Dynamic-GRNN) framework for dynamic brain network analysis.

TABLE 1 Basic information on collected data.

Subject HC EMCI AD P

Number 33 29 23 –

Gender (M/F) 12/21 14/15 9/14 < 0.001

Age (Mean± sd) 73.88± 7.15 74.52± 7.30 74.34± 8.14 < 0.001

APOE4 (0/1/2) 19/13/1 20/9/0 13/7/3 < 0.001

MMSE (mean± sd) 29.15± 1.13 28.52± 1.45 21.78± 1.89 < 0.001

Edu (mean± sd) 16.55± 2.34 16.31± 2.56 14.96± 1.90 < 0.001

M, male; F, female; 0/1/2, number of APOE ε4 alleles; Mean± sd, mean and standard deviation.

Each participant contributed 198 imaging scans. Ultimately, a
total of 16,830 scans were allocated into training, validation, and
test sets following a 6:2:2 ratio.

Functional magnetic resonance imaging data were
preprocessed by SPM12 (Statistical Parametric Mapping, a
widely used neuroimaging software for spatial normalization
and statistical analysis) (Penny et al., 2007) and DPARSF
(Data Processing Assistant for Resting-State fMRI, a
user-friendly toolbox that integrates SPM functions with
specific preprocessing pipelines for resting-state analysis)
(Chao-Gan and Yu-Feng, 2010) tools.

The key processes were the following steps: (1) The image data
in the original DICOM format were converted to NIFTI format; (2)
The images of the first 10 time points of each subject were manually
removed; (3) The scanning time of all the slices was corrected for
slice time consistency; (4) The images with head movement of more
than 2.5 mm or rotation of more than 2.5 degrees were removed
to correct for head movement during scanning; (5) White matter
signals and cerebrospinal fluid signals of head movement were set
as the main noise covariates to reduce the effect of noise on the
scanning results and to minimize the effect of biological artifacts

at the same time; (6) Brain images with different morphologies
were aligned to a standard template and matched with T1-weighted
images; (7) A Gaussian kernel of 4 × 4 × 4 mm was applied to the
images for spatial smoothing; (8) The linear trend of the data was
removed, and filters ranging from 0.01 to 0.1 Hz were applied to
eliminate the interference of low and high frequency noise. The
brain was divided into 90 functional areas using an Anatomical
Automatic Labeling template. The BOLD signal time series and
Pearson correlation matrix were extracted from these regions.

2.3.2 Updating node states
After getting the nodes and their features by the slice window

method, the node matrix N obtained by processing using the SPA
method, and the edge features obtained by the PCC method. This
study obtains the input data of the GRNN which called the node
features and the dynamic edge features. Specifically, the feature
vectors of each node in each time window form the node feature
matrix X ∈ Rn × m × d, where n is the number of nodes, m is the
number of time windows, and d is the feature dimension in each
time window. The feature vectors of each edge in each time window
form the edge feature matrix E ∈ Re × m × f , where e is the number
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of edges and f is the feature dimension in each time window.
Then the node and edge features are aggregated and updated in
chronological order, which is explained as follows: at each time step
t, the state h(t)

i of node i is jointly determined by its state h(t−1)
i at

the previous time step t–1 and the state h(t−1)
j of its neighbor nodes,

and the update equation as follows:

hi
(t)
= σ

W ·

hi
(t−1)
+

∑
j∈N(i)

Eij
(t−1)
· hj

(t−1)

+ b

 (10)

where h(t)
i is the state of node i at time t, h(t−1)

i is the state of node i
at time step t–1, h(t−1)

j is the state of node j at time step t–1, j is the

neighbor of node i, E(t−1)
ij is the feature of the edges between node

i and j at time step t–1. W is the learned weight parameter, b is the
bias vector, and σ is the ReLU activation function.

By multiplying h(t−1)
i with the weight matrix W, h(t−1)

i could
be adjusted by the effect of the node’s own state on the current
state. The state of node j, which is a neighbor of node i at the
previous time step t−1, denoted as h(t−1)

j , is also an important
part of the node state update. It reflects the dynamic information
of the neighboring nodes of node i at the previous time step.
The Et

ij reflects the strength of the relationship between node i
and j which is also used to adjust the neighbor node states. By
multiplying h(t−1)

j with the edge feature Et−1
ij , the influence of

neighbor node states on the current state could be adjusted. By
multiplying the states of all neighboring nodes h(t−1)

j with their

respective edge features E(t−1)
ij and then summing them up, the

state information of the neighboring nodes can be aggregated. This
aggregation process captures the dynamic changes of node i and
its neighboring nodes from the previous time step, further knows
the impact of these changes on node i. For example, if E(t−1)

ij is
heavier, it means that the relationship between node i and j is
stronger, the state of neighbor node j has a greater impact on node i.
While maintaining time-synchronous relationships, GRNN utilizes
node features and edge features to capture dynamic changes in the
time series through recursive joins and node state updating. By
performing recursive connections and node state updates in all time
windows, GRNN eventually synthesizes a complete graph structure.
This graph structure contains node states and edge features for all
time windows and is capable of capturing dynamic changes in the
entire time series (Yu et al., 2018). The final graph structure is used
for subsequent classification tasks (Wu et al., 2020b).

2.3.3 SAGPooling layer
The high dimensionality of node features in the original

graph leads to increased difficulty in extracting global information,
whereas introducing a node pooling layer between graph
convolution layers to obtain subgraphs with fewer nodes and
features can improve the generalization ability of the model. Recent
research (Lee et al., 2019; Zhang et al., 2020) results have shown that
some brain regions are more important than others in predicting
brain diseases, and the use of node pooling layers to reduce the
size of the graph and retain only some important nodes is crucial.
In addition, the pooling layer reduces the size of the network
parameters. Thus, coarsening the node representation on the
graph provides a better graph-level representation. We propose a
topology-based attention pooling module, which adaptively learns
the importance of nodes. The Top-K mechanism is used to select a

group of nodes dynamically for pooling, which not only considers
the node characteristics, but also preserves the graph topology. In
such a way that node characteristics are taken into account and the
graph topology is preserved.

The representation of the introduced attention pooling
operation can be described as Eq. (11). For a given node feature
X(2)∈Rn × c, use a GraphConv layer with only one output channel
to calculate the attention score z∈Rn × 1 that encodes the graph
topology information. Attention scores are then processed using
the tanh function to obtain the final attention weights. A fraction
of the nodes of the regional brain graph are retained using the Top-
K node selection strategy, where K is the proportion of nodes in
the new graph. Among the selected K nodes, the idx values of the K
largest taken values of the output ordering of the nodes are obtained
based on the calculation result z. Next, element-wise multiplication
of the indexed features X(2) and z are multiplied element-by-
element to capture the pool node features X̂(2). Finally, a row-by-
element multiplication of A(idx, idx) row and column extraction is
performed to form a new adjacency matrix Ã. In summary, through
the graph pooling layer, the input graph (V(k), E(k)) is updated,
and the output graph is (V(k+1), E(k+1)). Attention to the graph
pooling layer reduces the number of parameters and selects the
nodes that are important for classification, which is crucial for
discovering brain regions associated with diseases, while making
the classification results more interpretable.

z = GraphConv(X(2), A),

a = softmax(z)
z̃ = tanh(a),

idx = topk(z̃, k),
X̂(2)
= X(2)(idx, :),

X̃(2)
= X̂(2)

� z̃,
Ã = A(idx, idx).

(11)

3 Results

3.1 Experimental implementation and
setting

The experiments in this study were performed on a computer
equipped with a single RXT4080super GPU. Model construction
and algorithm training and testing were conducted using the
PyTorch deep learning framework. The labels of all subjects
were shuffled, and parameters were determined via the optuna
algorithm. The experimental design employed a leave-one-out
cross-validation approach, with 10 iterations of leave-one-out
averaging and 100 iterations per round. The batch size was set to
32. All models were optimized using the Adam optimizer with a
learning rate of 0.001. For the network models, ReLU was selected
as the activation function in the two-layer perceptron. Dropout
regularization was applied to the graph pooling layer to prevent
overfitting, with nodes randomly dropped at an optimal probability
during training. An early stopping strategy was implemented
to avoid overfitting during training, with a patience level of
50. Specifically, the early stopping was triggered when the loss
value remained within a set threshold for 50 consecutive counts
(Prechelt, 2002).
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3.2 Evaluation metrics

To thoroughly investigate the core issues addressed in this
study, when dealing with labeled data, category 1 and category
0 in the binary classification task were defined as the positive
class and negative class. In evaluating model performance using
the test dataset, the following four key classification scenarios
were considered: True Positive (TP): The number of samples that
actually belong to the positive class and are correctly predicted
by the model as positive; False Negative (FN): The number of
samples that actually belong to the positive class but are incorrectly
predicted by the model as negative; False Positive (FP): The number
of samples that actually belong to the negative class but are
incorrectly predicted by the model as positive; True Negative (TN):
The number of samples that actually belong to the negative class
and are correctly predicted by the model as negative.

These four classification scenarios were carefully examined
to comprehensively assess the model’s classification effectiveness.
The counts of true positives and true negatives directly reflect
the model’s accuracy, while the counts of false positives and false
negatives reveal the model’s misclassifications. The introduction
of these metrics provides a solid foundation for the quantitative
evaluation of model performance, enhancing the objectivity and
reliability of the results. In subsequent tests and analyses, the
proposed model in this study demonstrated superior performance
in handling labeled data based on these evaluation criteria.
Accuracy, a commonly used evaluation metric for classification
problems, reflects the ratio of correctly classified samples to the
total number of samples. For traditional balanced classification
problems, accuracy is a good measure of classification algorithm
performance. It is calculated as the ratio of correctly classified data
points to the total number of data points, with values ranging from
0 to 1. The closer the value is to 1, the better the model performs.
The calculation formula is given in Eq. (12).

Accuracy =
TP + TN

TP + FP + FN + TN
(12)

Sensitivity indicates the proportion of all people with the
disease who are correctly classified by the model, the higher the
sensitivity the lower the probability of missing the diagnosis;
Precision is the proportion of samples predicted to be positive by
the model that are actually positive; Recall is the proportion of all
actual positive samples that are correctly predicted to be positive
by the model; F1-score denotes the precision and Recall; AUC
denotes the area under the ROC curve, which provides a numerical
assessment of the overall performance of the model. In this study,
ACC was mainly used as a reference index.

3.3 Network topology attribute validation

To address the differences in node importance values described
by the three single-feature core node identification methods, a
threshold was established for each method. A node was considered
a core node under a specific evaluation metric if its importance
value exceeded the sum of the mean and variance of the importance
values of all nodes for that method. For instance, under the degree
centrality metric, a core node was defined as one with a degree value

greater than the sum of the mean degree value and the variance of
degree values across all nodes. Based on this logic, the results of the
experiment and the number of core nodes selected are shown in
Table 2.

The variation curves of these three single-feature core node
metrics are illustrated in Figure 2.

The constructed composite equation is expressed as follows:

Count = k1P1 + k2P2 + k3P3 (13)

Where P1 represents the normalized value of degree centrality, P2
represents the normalized value of betweenness centrality, and P3
represents the normalized value of closeness centrality. k1, k2, k3
are the absolute values of the mean slopes of the degree centrality
curve, betweenness centrality curve, and closeness centrality curve,
respectively. The importance of nodes was re-ranked using the
above composite equation. The variation of node importance based
on the composite equation is illustrated in Figure 3.

3.4 Model comparison

This study proposes a Dynamic-GRNN model based on
dynamic dFC and attention pooling layer for the early identification
of MCI. Its classification performance was systematically evaluated
on the ADNI dataset. The results of the comparative experiments
were divided into three groups, and the respective experimental
results are shown in Tables 3–5. The results demonstrate that the
model outperforms existing methods in several key metrics, thereby
validating the effectiveness of dynamic brain network analysis and
spatiotemporal attention modeling. Specifically, under the same
experimental conditions, the classification accuracy (ACC) of this
paper’s model reaches 83.9%, which is a 2.0% improvement over
the suboptimal model Temporal-BCGCN (81.9%). It is improved
by 4.1% and 7.5% over traditional support vector machine (SVM,
79.8%) and brain graph neural network (BrainGNN, 76.4%),
respectively. This result highlights the superiority of dFC over sFC
in capturing changing temporal signals, suggesting that temporal
dynamic features play a key role in capturing early pathological
patterns of neurodegenerative diseases (Zhu et al., 2024).

Further analysis of the model’s robustness to class imbalance
revealed a recall rate of 81.6% and an F1-score of 81.0%, both
of which significantly outperformed comparison methods. For
instance, Temporal-BCGCN achieved a recall rate of 73.4% and an
F1-score of 76.2%. These results demonstrate the model’s enhanced
ability to accurately identify the small number of MCI patients in
the dataset. Additionally, the leading performance in AUC metrics
indicates that the model excels in distinguishing the decision
boundary between MCI and healthy individuals, thus offering
greater clinical applicability.

3.5 Ablation study

Systematic ablation experiments were conducted in this study
to verify the necessity of the dFC, GRNN, and SAGPooling
modules, as well as their synergistic effects in the AD/CN
classification task. The experimental design included three sets of
comparison models: (1) GRNN with input sFC; (2) dFC combined
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TABLE 2 Number of core nodes selected under different graph theoretic approaches.

Methods Mean Variance Threshold Number of nodes

Degree centrality 14.22 6.36 20.58 13

Betweenness centrality 104.73 99.34 204.27 10

Closeness centrality 0.53 0.06 0.59 13

FIGURE 2

Changes in core node metrics for three single features: (a) Degree centrality. (b) Betweenness centrality. (c) Closeness centrality.

with GRNN without pooling; and (3) the complete model. As
shown in the Table 6, on the ADNI dataset, the complete model
achieved an ACC of 83.9%, representing an 8.7% improvement over
the 75.2% of the GRNN-only model and a 3.8% improvement over
the 80.1% of the dFC-GRNN model without pooling. These results
demonstrate the incremental contributions of each module.

Compared to sFC, dFC captured the temporal dynamics of the
brain network through a sliding window, significantly enhancing
the model’s sensitivity to AD pathological features. The ACC
increased from 75.2% to 80.1% after incorporating dFC. GRNN
achieved deep integration of spatiotemporal features through the
joint design of spatial encoding and temporal recursive layers.
Experiments showed that the ACC fluctuation range of GRNN
was significantly smaller than that of non-temporal models,
verifying its ability to suppress transient noise. Additionally,
GRNN’s capacity to model long-range dependencies, such as the
progressive degradation of hippocampus-prefrontal connections,
was enhanced under dFC conditions, as evidenced by an increase
in Recall. This indicates that temporal modeling is crucial for
identifying the minority class samples, i.e., AD patients.

After introducing SAGPooling, the model filtered key
nodes across hemispheres (posterior cingulate gyrus, medial
temporal lobe) based on global importance scores. The ACC
further improved to 83.9% while reducing computational effort,
highlighting the module’s ability to focus on pathologically relevant
regions. Statistical validation of the ablation experiments further
confirmed the significance and effect size of the performance
improvements attributed to each module.

4 Discussion

4.1 Discussion on improved GRNNs

Traditional Graph Recurrent Neural Networks (GRNNs)
commonly use sFC as the foundational framework for brain
network modeling. For instance, the approach proposed by Lee
et al. (2024) calculates the PCC using the average BOLD signal
over the entire time period to construct a fixed adjacency
matrix. A GCN is then employed to extract spatial topological

FIGURE 3

Importance of nodes in composite equations.

features, followed by feeding node time series into an LSTM
for classification. While this method achieves a baseline accuracy
(ACC = 97.3%) in AD classification tasks, it reveals inherent
limitations of static models: sFC cannot capture the temporal
dynamics of functional connectivity between brain regions, leading
to decoupled optimization of spatial feature extraction and time
series modeling, thereby ignoring the time-varying patterns of
node features.

The proposed Dynamic Graph Recurrent Neural Network
(dynamic-GRNN) overcomes these limitations through a dual
optimization mechanism. In the spatial dimension, it introduces
dynamic PCC connection strength as an adaptive weight regulator
[in Eq. (14)], enabling real-time updates of neighbor node
information propagation weights:

hi
(t)
= σ

Wself · hi
(t−1)
+

∑
j∈N(i)

Wneigh(eij
(t−1)
· hj

(t−1))+ b


(14)

In the temporal dimension, a hidden state recurrence
equation hi

(t)
= f (hi

(t), xi
(t)) is constructed to model the slow

evolution of brain networks through historical state dependencies.
This spatiotemporal joint optimization mechanism effectively
addresses the decoupling of spatial and temporal processing
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TABLE 3 Compare with state-of-the art methods on Alzheimer’s disease (AD)/CN subjects.

Classifiers Condition ACC Recall PREC F1-score AUC

SVM sFC 0.798 0.745 0.760 0.747 0.752

BrainGNN sFC 0.764 0.679 0.700 0.679 0.736

GCN dFC 0.764 0.713 0.721 0.711 0.745

CRNN dFC 0.785 0.739 0.756 0.744 0.760

Temporal-BCGCN dFC 0.819 0.734 0.795 0.762 0.811

Proposed method dFC 0.839 0.816 0.805 0.810 0.831

TABLE 4 Compare with state-of-the art methods on mild cognitive impairment (MCI)/CN subjects.

Classifiers Condition ACC Recall PREC F1-score AUC

SVM sFC 0.723 0.684 0.698 0.691 0.715

BrainGNN sFC 0.692 0.637 0.663 0.649 0.681

GCN dFC 0.708 0.661 0.679 0.670 0.703

CRNN dFC 0.733 0.695 0.708 0.701 0.729

Temporal-BCGCN dFC 0.768 0.712 0.737 0.724 0.762

Proposed method dFC 0.785 0.753 0.762 0.757 0.792

TABLE 5 Compare with state-of-the art methods on Alzheimer’s disease (AD)/mild cognitive impairment (MCI) subjects.

Classifiers Condition ACC Recall PREC F1-score AUC

SVM sFC 0.683 0.625 0.647 0.636 0.672

BrainGNN sFC 0.652 0.593 0.611 0.602 0.638

GCN dFC 0.667 0.614 0.628 0.621 0.658

CRNN dFC 0.697 0.653 0.672 0.662 0.693

Temporal-BCGCN dFC 0.732 0.671 0.703 0.686 0.741

Proposed method dFC 0.753 0.714 0.728 0.721 0.769

TABLE 6 Performance metrics for experiments using individual components.

Model dFC GRNN SAGPooling AD/CN

GRNN –
√

– 0.752

dFC + GRNN
√ √

– 0.801

Proposed
√ √ √

0.839

in traditional GRNNs. Simulation experiments demonstrate that
dynamic-GRNN improves feature representation capability on
fMRI data by 8.7%, validating the effectiveness of the dynamic
modeling mechanism.

4.2 Discussion of GRNN in proposed
framework

Within the overall analysis framework, dynamic-GRNN serves
as the core component for deep spatiotemporal feature integration.
Its input layer obtains dynamic node features Xt ∈ Rn × m × d

and dynamic edge weight matrices Et ∈ Re × m × f through the
SPA-PCC algorithm, constructing a time-varying graph structure
Gt = (Xt, Et). This design breaks the dimensional limitations of

traditional static graph inputs, allowing the brain network topology
to evolve dynamically with functional connectivity strength in
each time window.

During feature propagation, the network’s hidden state
hi

(t)achieves cross-time-step feature memory and updates through
a gating mechanism, mathematically expressed as Eq. (15).

h(t)
i = o(t)� tanh(C(t)) (15)

These spatiotemporal fusion features provide the basis for attention
scoring in the subsequent SAGPooling layer. Notably, the historical
state trajectory of nodes {hi

1, hi
2, hi

3, ..., hi
(t)
} is transformed

into a topological evolution pattern vector through a temporal
convolution module, ensuring node selection is based not only
on current feature strength but also on their dynamic evolution
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patterns during disease progression. Ablation experiments show
that this mechanism improves the recognition accuracy of key brain
regions (e.g., hippocampus, posterior cingulate cortex) by 3.8%.

4.3 Discussion of the sliding window

Under the condition of unified hyperparameters, the
parameters of the sliding window are generalized, and the
influence of its parameter combination on the classification effect
of different groups is demonstrated through the heat map. As
shown in Figure 4.

Taking the HC_AD group as an example. The horizontal
axis represents the window width, divided into 10–70 time
points, corresponding to the scanning duration of the 0–187
time points. The vertical axis represents the step size range of
2.5–17.5. The color gradient in the figure shows the changes in
classification accuracy. The deep red areas, such as the window
time point of 25–35 and the step size time point of 2.5–7.5,
achieve the highest accuracy rate of 83.9%, indicating that this
parameter combination can not only fully cover the periodic
changes of brain functional connections, but also retain sufficient
dynamic details.

Experiments have found that a window that is too wide,
such as at a time point of 55–65, will lead to blurred temporal
features and a decrease in accuracy, while a step size that is too
large will also reduce the accuracy due to insufficient temporal
resolution. This result reveals the synergistic effect of window width
and step size, which can facilitate the subsequent tasks to the
greatest extent.

4.4 Discussion of the main part of the
experimental results

Comparative experiments on the ADNI dataset (Table 3)
demonstrate that the proposed framework achieves an accuracy of
83.9% in AD/CN classification tasks, significantly outperforming
existing baseline models. In-depth analysis reveals that static graph
models (e.g., BrainGNN) are constrained by the time-invariant
assumption of sFC, making it difficult to capture the progressive
decline in functional connectivity strength in the hippocampus
(Zhu et al., 2024). Their AUC values are 9.5% lower than
our model in tasks related to the limbic system, underscoring
the necessity of dynamic modeling. Traditional spatiotemporal
decoupled architectures (e.g., CRNN) lose cross-modal correlation
information in the prefrontal-parietal network due to decoupled
feature extraction stages. Mutual information analysis of functional
connectivity matrices shows that our framework increases
spatiotemporal interaction information compared to CRNN.
Temporal attention models (e.g., Temporal-BCGCN) can capture
periodic fluctuations in functional connectivity but are limited
by static edge weights, resulting in insufficient representation of
dynamic reorganization patterns in the Default Mode Network
(DMN). Our model improves the sensitivity of DMN subnetwork
temporal synchronization detection through dynamic edge weight
adjustments.

However, significant limitations remain: SVM flattens the
brain network graph structure, causing the loss of most
spatial feature correlations, while Temporal-BCGCN, despite
introducing temporal attention, fails to integrate dynamic edge

FIGURE 4

Discussion of the sliding window.
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weights into graph information propagation, leaving spatial
interactions constrained by static weights. Ultimately, our study
addresses core issues such as graph structure destruction,
temporal dependency loss, and noise sensitivity through deep
integration of dynamic feature construction and spatiotemporal
joint modeling. The dynamic graph structure preserves the
time-varying properties of functional connectivity topology, and
spatiotemporal joint optimization avoids information loss during
feature propagation, providing a high-precision, interpretable,
and generalizable analytical method for early diagnosis of
neurodegenerative diseases.

4.5 Discussion of biomarkers

This study employs a multi-feature combination comparison
method to validate core nodes, comparing results from degree
centrality, betweenness centrality, closeness centrality, and
composite equation methods. The BrainNet Viewer toolbox (Xia
et al., 2013)2 is used to visualize the core nodes identified by these
four methods, with their distribution maps shown in Figure 5.

In Figure 5, red nodes represent the identified core nodes, while
green nodes represent other ordinary nodes. By comparing the sizes
of the red nodes, we observe that the core nodes identified by the
multi-feature method exhibit the greatest variability in importance.

2 https://www.nitrc.org/projects/bnv/

Specifically, core nodes such as the left insula (INS.L), the left
Rolandic operculum (ROL.L), the left angular gyrus (ANG.L),
and the right putamen (PUT.R) demonstrate significantly higher
importance compared to other red nodes in Figure 5d.

In this study, the core nodes obtained by the default network
are used as preliminary validation, and the results found that the
proposed method not only explore the core nodes of the default
network, but also dig more biomarkers in depth.

To be specific, Output weight parameters are important in
determining which brain regions contribute the most to the
diagnosis of MCI. The weight of each node, which represents the
brain ROI, was obtained through the SAGPooling module on each
test set. Then, the Top-K brain regions with the largest weights
were statistically analyzed, and the Top-K brain regions with the
highest frequencies were selected as biomarkers. K = 10 was set
as a safe choice based on experience (Song et al., 2022), in order
to include the corresponding brain region biomarkers. The weight
of the selected ROIs should be close to 1, and the weight of the
unselected ROIs should be close to 0. The 10 brain regions with
the highest weights were mainly. The left hippocampus (HIP. L),
the right amygdala (AMY. R), the left inferior parietal lobe (IPL.
L), the left olfactory cortex (OLF. L), the right precuneus (PCUN.
R), and the insula (INS). These brain regions are more likely to
be responsible for short-term memory and are more likely to be
lesioned in the early stages of MCI (Alzheimer’s Association, 2017;
Convit et al., 1997).

Studies have provided compelling evidence that these brain
regions are not only functionally relevant to memory but also

FIGURE 5

Multi-feature combination comparison method: (a) Degree centrality. (b) Betweenness centrality. (c) Closeness centrality. (d) Multi-feature.
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exhibit early pathological changes. For example, the HIP. R and
AMY. R are among the earliest sites of tau accumulation, a hallmark
of AD pathology. Huyghe et al. (2023) demonstrated that tau
deposition in the AMY. R was a strong discriminator of memory
impairment stages, while Johnson et al. (2023) observed elevated
tau burden in both the HIP and AMY in older individuals with
cognitive symptoms. Moreover, IPL. L and PUCN. R have been
linked to tau pathology and cortical atrophy in at-risk populations.
Wang H. F. et al. (2022) found that hearing impairment-an early
cognitive risk factor-was associated with reduced volume in these
regions and higher tau levels. Similarly, OFL. L is increasingly
recognized as a vulnerable region in prodromal AD. Santillán-
Morales et al. (2024) reported biomarker changes in olfactory
neuronal precursor cells that may serve as non-invasive indicators
of early disease. Wang H. F. et al. (2022) also reported that the
INS, a region implicated in interoception and emotion regulation,
exhibits structural decline associated with tau accumulation. These
findings reinforce the biological plausibility of our identified
regions and suggest that our model captures not only functional
disruptions but also areas of early neuropathological vulnerability
in MCI and AD.

These biomarkers have the potential to contribute to earlier
and more accurate diagnosis of MCI and AD without relying
on invasive procedures such as CSF biomarker analysis. By
leveraging dynamic functional connectivity patterns derived from
non-invasive fMRI, our method identifies subtle temporal and
spatial alterations in brain networks, particularly in memory-
related regions, before structural changes become evident. This
makes it a promising tool for clinical decision support.

4.6 Discussion of pooling rates

An attention pooling layer is introduced between the
convolutional layers to dynamically screen a portion of nodes
to improve the robustness of the model. We also carried out
experiments with Top-K rates ranging from 0.1 to 0.9 and step
size of 0.1 to explore the influence of Top-K rates. Figure 6
shows the experimental results of observing the impact on the
ACC of the model. All three sets of experiments achieve the best
model performance when the Top-K rate is 0.2. As the Top-K
value changes, its positive effect on ACC gradually decreases, with
accuracy differences exceeding 10%. This indicates that optimizing
K helps the model achieve optimal performance, and a larger K
does not necessarily result in better performance and the proposed
pooling method plays an important role in message passing.

4.7 Limitations and prospects

Despite the promising results of this study, several limitations
should be acknowledged. First, the sample size, while sufficient
for preliminary analysis, remains relatively small and slightly
imbalanced across groups, which may introduce bias or limit the
generalizability of the findings. Second, although we employed
standardized preprocessing pipelines (e.g., DPARSF, SPM12),
residual confounds in fMRI data such as head motion and
physiological noise could influence dynamic connectivity metrics.
Third, the current model was validated on a single dataset, which
may not fully capture inter-site variability present in real-world
clinical applications.

FIGURE 6

Effect of pooling rate on the accuracy (ACC) of the three classification tasks.
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In the future, research should focus on longitudinal validation
to assess the predictive power of our dynamic brain network model
in tracking disease progression from early MCI to Alzheimer’s
dementia. In particular, expanding evaluation to larger and
multicenter datasets would help ensure the generalizability and
robustness of the model across diverse populations and imaging
protocols. Additionally, integrating multimodal biomarker,
such as tau PET, amyloid PET, could improve diagnostic
specificity and support a more comprehensive, multi-dimensional
characterization of disease pathology. These biomarkers, when
combined with dynamic connectivity features, may be incorporated
into clinical decision-making workflows to facilitate earlier, more
accurate, and personalized diagnosis and prognosis of Alzheimer’s
disease, ultimately supporting precision medicine in dementia care.

In addition, given the heterogeneity within MCI populations,
the proposed method may provide a foundation for identifying
meaningful subtypes, particularly within amnestic MCI. By
capturing individualized temporal network dynamics, the model
could help detect subtle neurofunctional differences that correlate
with distinct progression risks or treatment responses. Integrating
dFC-derived biomarkers with clinical and molecular profiles
may support personalized prognosis and targeted interventions,
aligning with the principles of precision medicine in dementia care.

5 Conclusion

This study proposes a novel Dynamic-GRNN analysis method
based on dFC and attention mechanism. The approach constructs
dynamic brain networks using sliding windows and Slide
Piecewise Aggregation, achieving spatiotemporal joint modeling
through a spatial encoding layer and a temporal recurrent
layer. Additionally, global attention pooling is employed to
dynamically identify key brain regions. Experimental results
demonstrate that the proposed method achieves an accuracy
of 83.9% and an AUC of 83.1% in the AD/CN classification
task on the ADNI dataset, outperforming the state-of-the-
art model (Temporal-BCGCN) by 2.0%. It also significantly
surpasses traditional static methods (e.g., SVM, GCN) and dynamic
baseline models (e.g., CRNN), validating the effectiveness of
dFC in capturing neurodegenerative temporal abnormalities. The
attention mechanism not only enhances the model’s ability to
discriminate pathological brain regions such as such as left
hippocampus, the right amygdala, the left inferior parietal lobe,
the left olfactory cortex, the right precuneus, and the insula,
but also improves robustness by suppressing noise interference.
This study provides a high-precision and interpretable analytical
framework for the early diagnosis of MCI. The work will continue
to further optimize computational efficiency and validate multi-
center generalization, and then advance its application in clinically
assisted decision making.
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