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Representational similarity analysis (RSA) is a powerful tool for abstracting

and then comparing neural representations across brains, regions, models and

modalities. However, typical RSA analyses compares pairs of representational

dissimilarities to judge similarity of two neural systems, and we argue that

such methods cannot capture the shape of representational spaces. By

leveraging tools from computational topology which can probe the shape of

high-dimensional data, we augment RSA to be able to detect more subtle

yet real di�erences and similarities of representational structures. This new

method could be used in conjunction with regular RSA in order to make distinct,

complementary inferences about neural function.
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1 Introduction

Comparisons of representations in human cortex across modalities, brain regions,

or between models and brain responses, can give meaningful insight into the neural

mechanisms which encode them, and representational similarity analysis (RSA) is

a popular framework for organizing and analyzing many such comparisons. RSA

estimates the representational geometry of a (neural) computational system as a matrix

of representational similarities (RSM) or dissimilarities (RDM) (Kriegeskorte and

Diedrichsen, 2019). Two such matrices can then be compared with a second order

isomorphism to quantify similarity or differences between the two systems—Spearman

correlation is commonly used in neuroimaging studies (Shepard and Chipman, 1970;

Kriegeskorte et al., 2008a). Correlation between RDMs can identify (i) brain regions

which similarly represent stimuli, (ii) commonalities in neural codes between species, (iii)

computational models which faithfully represent the function of a brain region, and more.

The powerful and flexible machinery of RSA has yielded many successes in

neurosciences and neuroimaging in particular—the introductory paper (Kriegeskorte et al.,

2008a) has been cited over 3,300 times so far. More pertinent to the current discussion

are examples of RSA applied to fMRI vision studies—one study (Connolly et al., 2012)

showed that there may be a spectrum of representations of animals in human visual cortex,

from most animate to least; another study (Bracci and Op de Beeck, 2016) showed that

visual areas represent shape and category to different extents and with interactions; and in

Kriegeskorte et al. (2008b) it was shown that primates may have a similar neural code for

object representations in the IT cortex.
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However, there have been several major criticisms of RSA, the

strongest being that two computational systems with highly similar

RDMs may be carrying out their computations in fundamentally

different ways (Dujmović et al., 2022; Chen et al., 2021). With the

primary goal of RSA being to infer whether two computational

processes are similar or not, this issue alone may limit our

inferences from RSA experiments. For example, at the top of

Figure 1 we consider a representational space of a torus, i.e., a

hollow doughnut, with seven sample representations. Projected

onto two dimensions (for instance using multidimensional scaling)

the torus becomes a 2D annulus (i.e., a circle with added noise) and

representations sampled from the torus project to representations

in the annulus. Yet the RDMs of the two sets of representations,

one set on the surface of the torus (in 3D) and the other along

the 2D annulus are erroneously equated by RSA. The same logic

also holds with a larger number of sampled representations - as

seen in a simulation of 1,000 points sampled from a torus at the

bottom of Figure 1 where the Spearman correlation of the two

1000-by-1000 RDMs was 0.986. This example demonstrates that

the central assumption of RSA—that linear distances of matrices

sufficiently captures similarity of representational geometry for

comparison—is not necessarily true.

While our example may seem artificial, the population

of orientation-selective neurons in V1 together have the

representational space of a loop (Singh et al., 2008), while rat

grid cells have the representational space of a torus (Curto, 2017).

Thus we must use tools that are sensitive to the shape of the

representational space of neurophysiological data, or we may err

in drawing similarities between two cells (e.g. a group of grid cells

and a group of V1 simple cells) based on a simplified model of their

representation.

But does this example demonstrate a problem using RDMs

to capture representational geometry or rather a problem using

correlation as a second-order isomorphism? It has previously been

suggested that using non-linear second-order isomorphisms would

better account for non-linear geometries (Kriegeskorte and Kievit,

2013), and some studies proposed such isomorphisms for analyzing

correlation matrices of neurological data (Shahbazi et al., 2021;

You and Park, 2022). A technique called distance correlation

(Szekely et al., 2008) has also been shown to be a useful measure

of independence in RSA model comparisons (Diedrichsen et al.,

2020), being able to capture non-linear dependencies as well as

linear ones.

These approaches account for the non-independence of pairs

of correlation/distance matrix entries, but in the example offered

above comparing a torus and its projection onto an annulus,

the difference comes from global topology, which implicates

distinct causal mechanisms—the annulus contains one periodic

phenomenon (captured in one loop) whereas the torus contains

two—A torus can be described by two loops: the major loop, which

goes around the central hole, and the minor loop, which circles

around the tube itself. Such structural features are only detectable

when taking into account all dissimilarities together, not just the

non-independence of pairs. For example, a Gaussian-distributed

cluster, and the same cluster punctured with a small hole in its

center, will have similar covariance matrices despite the former

being a cluster and the latter being an annulus.

Unfortunately it is not possible in RSA to segment RDMs

into features (i.e., sub-components) of their representational

geometries. Multidimensional scaling (MDS) (Mead, 1992) has

been used to project RDMs into lower dimensions for visualization

of representational spaces (Kriegeskorte et al., 2008a), but the

projection dimensions are not directly interpretable and are

always linear. For example, in (Kriegeskorte et al., 2008b)

RSA found evidence of a shared neural code in primate

IT cortex, but MDS embeddings only revealed a blob-like

distribution of representations coarsely separated by object

category. If segmentation of representational spaces were possible,

we could have linked representational similarity to features

of the representational spaces (see below), but this is not

possible with current RSA methods. In summary, RDMs,

and RSA by proxy, do not address complex (i.e, global and

not linear) representational geometries and the question of

appropriate second-order isomorphism may only be solved once

the representational geometry is appropriately captured.

The mathematical discipline concerned with studying

distance/adjacency between objects in an abstract space is topology

(Hatcher, 2002), and tools from computational topology can

be applied to multivariate data to derive topological metrics.

Structure or shape of data at a local scale can be integrated into

global shape descriptors using topological tools, and shape features

can then be quantified and analyzed to capture the richness of

data structure. Topology has a number of desirable qualities for

analyzing representational geometries. For example, the topology

of an object does not change when the object is rotated, stretched

or reflected (Hatcher, 2002). Robustness to small amounts of these

transformations in data would also be expected of representational

geometries—the features of neural codes do not depend on the

order of the labels of functional units, or the scale of neural activity

(Laakso, 2000).

The field of topological data analysis (TDA) provides practical

tools for analyzing data using topology, and TDA has been

applied in myriad fields (Carlsson and Vejdemo-Johansson, 2021).

The most established tool in TDA is persistent homology, PH

(Edelsbrunner et al., 2000; Zomorodian and Carlsson, 2005), which

seeks to identify topological features present in data, classified by

their dimension. Persistent homology takes as input the distance

matrix of a dataset (like an RDM), and identifies structures inherent

in the data, such as clusters (i.e. disconnected components), loops

and voids (which represent elements of the H0, H1 and H2 groups

respectively). Persistent homology also provides information about

the the sizes and density of points belonging to these structures,

which can be used to determine which features are significant.

The workflow of the PH algorithm can be seen in Figure 2.

The process begins with a sweep through values of a linkage

radius—a parameter that defines the extent of the neighborhood

within which two data points would be joined (linked) to form

a structure (called the Vietoris-Rips complex), and the topological

features of these structures at each linkage value are classified as

belonging to either H0 (clusters), H1 (loops), H2 (voids), etc. As we

sweep through linkage values, features will appear, persist across

some range of linkage values, and then disappear—as shown in

Figure 2, the points on the loop form that loop only within a

certain range of radii B and all points eventually fully connect
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FIGURE 1

Top: seven sampled representations from a torus (3-D object with two loops), projected onto an annulus (2-D object with only one loop), and the

resulting two RDMs. The stimuli images were obtained from the supplemental information in (Kriegeskorte, 2009) but were originally introduced in

(Kiani et al., 2007), as is the case in later figures. Top left are the top and bottom views of seven sampled representations from the surface of the torus,

with colored lines indicating representational distances between adjacent points (green for small distances, yellow for medium and blue for large).

Middle left is the projection of these torus representations onto an annulus, with updated representational distances. These distances for both shapes

are color-coded in their respective RDMs, which would be considered equivalent by RSA, despite the representational spaces having completely

di�erent shapes. Bottom: a simulation of 1,000 points sampled from the torus (3-D object; bottom left), projected onto an annulus (2-D object;

bottom right) and the Spearman correlation of their resulting RDMs—0.986, again showing the erroneous equation of two totally di�erent topologies.

at radius C, destroying the loop structure. The linkage values

where a feature comes into existence and ceases to exist are called

the birth and death values, respectively. For further mathematical

details on this process see (Edelsbrunner et al., 2000; Zomorodian

and Carlsson, 2005). The birth and death values, along with the

feature dimensions, are plotted in persistence diagrams as shown

in Figure 3, and points that have death value much larger than

their birth value (i.e. their point in the persistence diagram is high

above the diagonal line where birth and death are equal) are called

"persistent"–they live long and prosper. A thresholding procedure

(Fasy et al., 2014) can then be used to distinguish between persistent

(i.e. significant) topological features and non-persistent (i.e. noise)

topological features, and an example of this can also be seen in

Figure 3. While less persistent features in a persistence diagram

may capture some data signal (Bubenik et al., 2020) more persistent

features are robust to subsampling, and are therefore more stable to

analyze. Another useful piece of information that can be extracted

for each topological feature is the representative cycle, which is a

subset of data points in a given topological object. For additional

details, see (Chazal and Michel, 2017).

As the number of sampled points in an object grows,

the topological features of the points, recovered by persistent

homology, converge to the underlying features (Chazal et al., 2014)

even in the presence of noise in the dataset (Edelsbrunner et al.,

2000). In this sense, increased sampling provides greater validity of

the topology of the data space.

It has been demonstrated that persistent homology can

detect event-related periodic spatial signals (i.e. spatial loops) in
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FIGURE 2

Persistent homology workflow. A linkage radius ǫ is increased from 0 and representations (i.e., data points) are connected when their distance is at

most ǫ, forming Vietoris-Rips complexes. Seven clusters and two loops are present in the dataset, and are tracked by the PH algorithm with each

having its own line segment. H0 and H1 are separated by the dotted blue line. At linkage radius A there are six clusters (since the human face and

monkey face are connected, and hence one cluster has died o�), while at radius B the loop is fully connected (and all components merge into one)

and at C the loop is filled in (i.e., is no longer a loop).

FIGURE 3

The output persistence diagram of PH run on the example dataset in Figure 2 (left) and an example thresholded diagram (right). In the persistence

diagram there are points for each of the seven clusters and two loops - one loop is very close to the diagonal line where birth and death are the

same, indicating that this loop was very “short-lived”. In the thresholded diagram only one cluster and one loop were significant, indicated by their

color and placement above their respective threshold lines.

simulated event-related fMRI data (Ellis et al., 2019). A related

technique for calculating persistence diagrams called “persistent

cohomology” can detect representational space topologies of neural

population responses of simulated rat neurons (Kang et al.,

2021). Persistent homology has also been used to find meaningful

structure in correlation matrices of spike trains in rat place cells

using vectorized summaries of persistence diagrams called Betti

curves (Giusti et al., 2015). PH also correctly characterized a
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low-dimensional neural manifold of mouse behavior analyzing

binned spike counts of thalamic neurons (Chaudhuri et al., 2019).

The results of these studies suggest that persistence diagrams are

a useful tool for characterizing representational spaces, but four

properties of diagrams make them particularly well-suited for this

task:

1. The topological features in persistence diagrams can

be identified in their input datasets, up to a choice in

representative cycle, thereby allowing us to segment datasets

into representational features.

2. Persistence diagrams remain consistent under different

orderings of the same variables.

3. Two persistence diagrams can be meaningfully compared even

if their input datasets contained different numbers of data points

or variables.

4. Persistence diagrams converge as the number of data points in

their input datasets grow Chazal et al. (2014).

Property 1 means that we can uncover topological features

of representational geometries, allowing for constraints on the

mechanisms implicated while making comparisons between

systems more interpretable. For example, a torus and a loop

have different numbers of significant loops (two and one

respectively), and therefore we could distinguish between RDMs

sampled from them. Also, two systems with similar linear

aspects in their geometries may perform different calculations

and this could be uncovered by investigating their topological

sub-structures.

On the other hand, Properties 2 and 3 suggest that using

persistent homology to analyze representational geometries may

allow for the pooling of data from different studies, even studies

with different (but relatable) sets of conditions/stimuli so long as

their pooling is defensible and interpretable to the researcher—for

examples, studies investigating face processing may use different

face conditions, different non-face stimuli, etc, and Properties 2 and

3 of PH allow us to pool results from these studies for stronger

inference of representations. It should be noted, however, that

quantitative comparisons of persistence diagrams, such as distance

metric calculations, will be confounded to some degree by the sizes

of the input diagrams, so future work should establish guidelines

for comparing different datasets sizes with RTA.

As multiple RDMs can be compared using RSA, we would

need an equivalent topological tool to compare multiple persistence

diagrams. For second-order isomorphisms of persistence diagrams

there exist two main approaches in the literature—for differences,

we can use distance calculations (Kerber et al., 2017) and for

similarities we can use kernel calculations (Le and Yamada, 2018).

Since topological features can be comprised of any number of data

points (representations), we can capture differences between any

number of data points between two representational geometries

using these topological second-order isomorphisms. While in

regular RSA differences and similarities are essentially opposites

(like in the case of correlation and correlation distance), due to

the complex nature of persistence diagrams (Turner et al., 2014)

we need specialized and distinct tools to calculate their differences

and similarities.

Two typical analyses of RDMs include

• Inference—deciding if two RDMs or two groups of RDMs

are similar/different (an important example of which is model

comparison), and

• Visualization—using MDS to project an RDM into low

dimensions (Kriegeskorte et al., 2008a).

Similar analyses can be performed with persistence diagrams—

differences among sets of persistence diagrams can be found

using distance-based permutation approaches as in Robinson and

Turner (2017); Abdallah et al. (2023)—and the pairwise distances

betweenmultiple persistence diagrams can be used to form anMDS

embedding of the diagrams into a low-dimensional space. We have

implemented these analytical and inferential tools to carry out TDA

on large multivariate datasets (e.g. fMRI) in our software package

TDApplied Brown and Farivar-Mohseni (2024). Therefore, the

machinery is in place to analyze persistence diagrams computed

from RDMs in ways similar to RSA.

We propose a new approach called representational topology

analysis (RTA) for detecting structures of representational space.

In RTA, RDMs are converted to distance matrices (although

this is not necessary for correlation dissimilarity matrices;

see the methods section) and then analyzed with persistent

homology, resulting in persistence diagrams, i.e. representational

topologies, that can then be analyzed with topological machine

learning and inference methods. Comparing persistence diagrams

is preferable to comparing RDMs because the latter do not

encode the topology of data space, while the former explicitly

represents this information. Representational topology analysis is

ideal in conjunction with regular RSA (for inference on linear

aspects of data space) in order to make powerful inferences

about representational geometry and, by extension, fundamental

mechanisms that gave rise to them. Interpretations from RTA

are also complementary to interpretations from RSA because in

the topological case we can make conclusions about when two

representational geometries are different or similar topologically,

compared to the regular RSA case where we can only say if two

geometries are linearly different or similar. Below, we applied RTA

on two datasets and were able to answer questions that regular RSA

could not, demonstrating the potential value of representational

topology.

A related framework to RTA in the literature is topological

RSA (tRSA) (Lin and Kriegeskorte, 2024), which aimed to

(i) permit a trade-off in studying representational geometry

and topology, and (ii) abstract from the noise and individual

idiosyncrasies of representational geometries using topology. In

tRSA the values in RDMs were transformed according to special

monotonic transformations, resulting in new data structures called

representational geo-topological matrices (RGTMs), which were

then compared with Euclidean distance. By comparing tRSA and

RSA on several simulated topological datasets, the authors found

that tRSA was better able to resolve representational topology

compared to RSA. On the other hand, in a visual fMRI study

it was found that tRSA was no better at finding regionally

consistent (topological) signatures of computation across subjects

than RSA. While tRSA shows promising flexibility in studying

representational topology and geometry simultaneously, unlike

RTA it does not compute a true topological descriptor of the
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FIGURE 4

A new model adjudication procedure for RTA. The stimulus set are repeatedly bootstrap resampled N times, and for each resampling we subset both

RDMs and compute the two bootstrap persistence diagrams. This process results in two groups of persistence diagrams, one for each

representational dataset, with a correspondence across the groups established by the shared stimulus subsamples. We then use a permutation test to

determine if there is a statistical di�erence between the two datasets based on a measure of within-group variation, and this test procedure returns a

p-value. A lower p-value indicates less similar representational spaces, and a higher p-value indicates more similar spaces.

dataset (like the persistence diagram) and therefore cannot provide

insights into the topological, previously unseen features of neural

computation that RTA can provide. Also, we will show several

scenarios where RTA does outperform RSA on certain tasks.

One of the most important features of RSA is the ability

to carry out model comparison (i.e. adjudication) (Kriegeskorte

et al., 2008a). A correlation between two RDMs admits a p-value,

capturing the significance of the linear relationship between them.

Therefore, given a list of candidate “model” RDMs for a “target”

RDM, the candidate with highest statistically significant correlation

with the target would be considered the “best model”.

Here we propose a novel method for statistical inference on

a target dataset T and a list of candidate model datasets {Mi},

in terms of topological similarity. This method integrates two

established procedures from the applied topology literature—a

bootstrap procedure (Fasy et al., 2014) and a hypothesis testing

procedure for group differences (Robinson and Turner, 2017). The

concept for our idea is displayed graphically in Figure 4.

If two representational spaces are similarly and sufficiently

sampled from the same shape structure then the resulting two

sub-representational spaces should have similar shape features.

We therefore estimate the sampling distribution of the persistence

diagrams for each pair of the two spaces (T,Mi) by repeated

bootstrap resampling (i.e. sampling with replacement)—each

resample results in a persistence diagram for that dataset (i.e.

PDTsub and PDMi,sub
). We then quantify the pairwise topological

distance between each of these resample pairs using the bottleneck

distance (Kerber et al., 2017). The sum of the upper triangle

represents the topological analog of the variance estimates in

classic univariate statistics, and the sum of these distances for

the two datasets is analogous to the mean sum of errors. To

determine if T and Mi represent statistically distinct topologies,

we use a permutation test whereby we determine the probability

of obtaining a smaller sum of distances from chance—we shuffle

each pair, PDTsub and PDMi,sub
, between the two groups (Abdallah

et al., 2023) and calculate the sum of distances for the sample,

N times. The frequency of permuted distances being less than

our test statistic (the sum of distances of the subsampled

diagrams) determines the chance probability of obtaining such

a difference. This gives a p-value of topological difference

in each desired topological dimension between each pair of

spaces (T,Mi).

For a given p-value threshold we can determine which

comparisons pass and do not pass this difference test, and out

of all comparisons that are not significantly different we wish to

know which Mj is the “best model” of T. We calculate a 95%

confidence interval for the topological distance between T and Mj

by computing the distance between each PDTsub and PDMj,sub
from

each bootstrap subset in the previous step. The 2.5% and 97.5%

percentiles of these values give the bounds of the 95% confidence

intervals. Any Mj with a confidence interval fully below that of

anotherMk is a better model of T.

The two steps we outlined—permutation testing followed by

confidence interval generation—is our model inference procedure.

The aforementioned model adjudication procedure allows us

to make comparisons between representational topologies, but we

still need a tool to help us compare a representational topology with

a representational geometry (i.e. to compare RTA with RSA). To

this end we introduce a novel visualization technique, called the

proximity labeled rips graph (PLRG), which displays a snapshot

of the topological structure of a representational dataset and

uses colors to show which topological features were captured by

geometry.

Our PLRG builds on the Vietoris-Rips graph (Zomorodian,

2010) or VR graph for short. At each linkage radius ǫ in persistent

homology, a set of edges are defined between the data points based

on their distances (all the distances ≤ ǫ), and this defines a graph

at each linkage. In our analyses we will generally compute VR

graphs at the birth scale of the most persistent loop. To get a

PLRG from a VR graph we color the graph nodes by the MDS

embedding coordinates of each corresponding point in the RDM—

similar colors indicate geometric proximity, and therefore color

gradients in part of a PLRG suggest an agreement between RSA and

RTA in that subset of data, and vice versa.

There are, of course, other popular techniques for visualizing

high-dimensional data as a graph, including Isomap (Tenenbaum

et al., 2000), UMAP (McInnes et al., 2018) and the Mapper

algorithm (Singh et al., 2007; Saggar et al., 2022, 2018). Isomap

is the most similar to our approach, with only a different graph

layout algorithm—an MDS projection of the path distance matrix
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between each pair of nodes in the neighborhood graph. Therefore,

substituting the VR graph for an Isomap graph would only

potentially produce qualitatively different plots, which we did not

feel was important to test for comparison. UMAP, on the other

hand, constructs a quantitatively different neighborhood graph

based on asymmetric k-nearest neighbor calculations—a graph

which does not capture the topological connectivity at a single ǫ

radius from persistent homology. Finally, Mapper graphs mix the

node coloring (which represents representational geometry in the

PLRG) and the graph construction procedure (which represents

representational topology in the PLRG) via filter functions, whereas

the PLRG keeps geometry and topology distinct for comparison.

For these reasons we do not compare our PLRGs against UMAP or

Mapper graphs.

2 Materials and methods

In order to compare RTA with RSA we carried out two

studies—the first used data from one of the seminal studies of

RSA (Kriegeskorte et al., 2008b), and the second used data from a

study of shared representations of naturalistic movie viewing across

subjects (Zhang and Farivar, 2020; Hall, 2009).

2.1 Model adjudication

In both of our analyses we compared pairs of representational

spaces to look for topological differences. We used the

“permutation_inference” function from TDApplied with

100 bootstrap samples and 1,000 permutation iterations. Since, for

each representational comparison, there was exact correspondence

between rows (and columns) of the two RDMs we used the paired

inference procedure for distance matrices, and the maximum

radius we used to calculate the bootstrapped persistence diagrams

was the joint maximum representational dissimilarity contained in

the two RDMs.

2.2 Human, monkey, and GoogLeNet
comparison

One of the earliest applications of RSA to visual fMRI studies

was (Kriegeskorte et al., 2008b), in which RSA was used to show

a common representational code in the primate inferior temporal

cortex by comparing fMRI data in humans and electrophysiology

data in monkeys [which was collected in the study (Kiani et al.,

2007)]. But what topological representational features exist in

this shared space? Regular RSA cannot segment RDMs to find

features of a representational space, and therefore cannot address

this question. One of the authors of (Kriegeskorte et al., 2008b)

provided us with the mean RDMs from the group of four

humans and the group of two monkeys for the 92 visual stimuli

displayed in Figure 5. The stimuli in the experiment were images

of various categories, including animals, humans, body parts,

naturalistic scenes and objects, and these images can be found in

the supplementary data of Kriegeskorte et al. (2008b).

We received two RDMs from Kriegeskorte et al. (2008b), one

which was the average RDM from four human subject’s 3T fMRI

data and the other of which was the average RDM from twomonkey

subject’s electrode recording data. The entries of the RDMs were

(average) correlation distances (i.e. 1 subtract Pearson correlation)

between the spatial response patterns of voxels/cells for each pair

of stimuli. For more details, see Kriegeskorte et al. (2008b). We

further transformed the correlation distance values from 1 − ρ to
√

2(1− ρ) which better satisfy the mathematical notion of distance

Brown and Farivar-Mohseni (2024).

We calculated persistent homology of the two RDMs using the

R package TDA (Fasy et al., 2021), up to homological dimension

1 (loops), up to the connectivity radius which was the maximum

RDM entry, and using the dionysus library functionality (Morozov,

2017) to calculate representative cycles (i.e., a subset of the data

points that lie on each loop) for the loops. We then computed

VR graphs (Zomorodian, 2010) from the two RDMs at the scale

of the birth radius of the most persistent loop for each RDM.

The stimuli in the two representative cycles were highlighted with

deeper colors. The layout of the graph is optimized to project

connected nodes nearby each other in 2D space and unconnected

nodes further apart, using the default Fruchterman-Reingold

(Fruchterman and Reingold, 1991) graph layout algorithm from

the R package igraph (Csardi and Nepusz, 2006). We plotted only

the graph component which contained the representative cycle

nodes because there was a significant jump in the persistence value

(roughly 24% in the human diagram and roughly 15% in the

monkey diagram) from the most persistent loop to the next most

persistent loops (the next number of jumps in both diagrams were

a difference of less than 1%). In cases where there are multiple long-

lived loops of similar persistence values it is important to note that

their exact ordering may be due to noise in the input dataset, and

the most persistent loop (and its representative cycle) may not be

stable. The computation and visualization of the VR graphs was

performed by TDApplied.

The six GoogLeNet RDMs were computed from the layer

activations of the GoogLeNet model (Szegedy et al., 2015) applied

to the same set of image stimuli as in Kriegeskorte et al. (2008b).

The RDMs also contained transformed correlation distances of

activations, like the human and monkey RDMs. The same plotting

procedure was used to produce the GoogLeNet PLRGs, and in the

four layers with at least two loops—the fourth, fifth and final layers

(the first layer had one loop)—the jump in persistence value from

the most persistent loop to the next most persistent loop was 15%,

103% and 9% respectively.

All combinations of the human, monkey and GoogLeNet

RDMs were compared with our model inference procedure.

2.3 Naturalistic movie viewing study

In Zhang and Farivar (2020), local spatial patterns of BOLD

activity in subjects viewing 2D and 3D naturalistic movies (Hall,

2009) were found to be highly conserved across subjects in early

visual areas and were modified by region and visual stream—early,

ventral and dorsal. It would therefore be expected that group-

average topological features differ by region especially for regions in
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FIGURE 5

The mean human (bottom right) and monkey (top left) RDMs (each converted to a distance matrix using the transformation 1− ρ →
√

2 ∗ (1− ρ)).

Darker colors indicate greater representational distances.

different visual streams. In order to test this hypothesis we analyzed

region-level data from Zhang and Farivar (2020), constructing

timepoint-by-timepoint spatial-pattern correlation distance RDMs

(i.e., the correlation distance between time i and j of the BOLD

patterns in each region) and used RTA to characterize the shape of

representational space in group average RDMs from certain early,

ventral and dorsal regions.

For a detailed account of the data, acquisition and

preprocessing of our naturalistic movie viewing analysis, see

Zhang and Farivar (2020). The study collected 3T fMRI data, with

3mm3 voxels, from 55 subjects watching four 5-min movie clips

in one scan (two clips each viewed in both 2D and 3D). The TR

was 2 s, and the first 1 minute of each movie clip was not analyzed,

resulting in 120 TRs of data for each movie clip. Data preprocessing

was carried out with the AFNI software (Cox, 1996) and fMRI

voxel data was projected onto cortical surface nodes (36,002 per

hemisphere) with the SUMA (Saad and Reynolds, 2012) and

FreeSurfer (Fischl et al., 2002) software packages. Cortical regional

boundaries followed the probabilistic atlas fromWang et al. (2015).

Movie viewing is a naturalistic task that typically induces

very similar temporal patterns of activity in a group of subjects

Hasson et al. (2004, 2010) and it has recently been shown that

this similarity is likely driven by gamma oscillations (Chen and

Farivar, 2020) and is detectable in the spatial patterns in a manner

that is more informative of viewing condition (stereoscopic 3D

vs mono) than the temporal pattern correlation (Hasson et al.,

2004). Here, we used RTA to determine whether the structure of

the representational space of spatial patterns over time is different

between regions/streams.

To this endwe computed group-average region-level significant

topological features—loops which survived the thresholding

procedure of Fasy et al. (2014) (see the methods section for details).

Significant loops which exist at different scales (i.e. with different

birth and death values) would indicate qualitatively different

representational structures. We computed the mean RDMs for five

regions, across subjects, of higher ventral regions VO1 and VO2,

higher dorsal regions PHC1 and PHC2 and the early region V3 in

both hemispheres for both 3D movie clips, resulting in 20 RDMs.

We chose to analyze only 3D movie data to ensure that there

was no confounding effect of stimulus condition in our analysis,

and because 3D movies are closer to naturalistic stimuli than 2D

movies. We used the bootstrap procedure to identify statistically

significant loops, and determined the most persistent significant

loops from the VO regions, PHC regions and V3. The result was

three group-average RDMs—one VO RDM, one PHC RDM and

one V3 RDM.

We chose to solely analyze 3D movie clips in our analysis,

in the regions V3, VO and PHC. To calculate an ROI RDM in

a hemisphere for a particular movie clip we selected the surface

nodes in that hemisphere which were in the ROI (based on atlas

boundaries), and computed Pearson correlation between each pair

of TRs of the time series activity of all the nodes in that movie.

This resulted in a 120x120 representational similarity matrix, which

was converted to an RDM by transforming each correlation value

ρ to the distance value
√

2(1− ρ). To obtain a group average

RDM for each region, movie and hemisphere, we averaged the

subject-specific RDMs.

We calculated persistent homology of the RDMs using the

R package TDAstats (Wadhwa et al., 2019), up to homological

dimension 1 (loops) and up to the connectivity radius which

was the maximum RDM entry. This homology calculation was

used in conjunction with the bootstrap procedure (Fasy et al.,

2014) in TDApplied to identify significant topological features,

and was implemented with 30 bootstrap iterations and significance

threshold α = 0.1 to avoid over thresholding. We chose to

use thirty samples because it is the generally accepted minimum
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guideline for statistical inference methods like the t-test (Kwak

and Kim, 2017). The full persistence diagrams for V3, VO and

PHC contained, on average, roughly 276 loops, compared to

0.1 loops on average in subsetted diagrams after thresholding.

The subsetted persistence diagram, according to the bootstrap

thresholding procedure, then contained significant group-average

region-level topological features (loops). For each region—V3, VO

and PHC—we identified the most persistent significant loop out of

all its thresholded diagrams, the loop’s birth radius and the RDM

it came from. We then used the R package TDA to calculate the

representative cycles for those three significant loops from their

respective RDMs, by performing the same persistent homology

calculation with the dionysus library functionality. We then used

our model adjudication procedure to compare each of the three

regional topological spaces.

Our novel Proximity-Labeled Rips Graph (PLRG) visualization

requires an RDM, the birth scale of a loop and its representative

cycle. The nodes of the PLRG graph are the TRs (i.e. spatial

patterns) and connections between nodes are determined by the

RDM entries which are at most the birth scale (i.e. a PLRG is a

VR graph). We plotted only the graph component that contained

the representative cycle nodes. Once again the position of the

graph nodes in 2D were determined by the Fruchterman-Reingold

algorithm from the igraph package. In order to color the PLRG

nodes, the RDM is projected into 2D using the cmdscale MDS

function from the R package stats (R Core Team, 2021), and the

color of each node is determined by the location of its data point

in MDS space according to a horizontal color scale [pink (left)

to green (right)] and a vertical color scale [blue (downwards) to

orange (upwards)]. For example, the top-right most coordinates

would be an average (in RGB space) of the maximum vertical color,

orange, and the maximum rightmost color, green, yielding brown.

Outside of calculating the color of each node, the full visualization

process of a PLRG is performed by TDApplied.

3 Results

3.1 Human and monkey IT cortex data and
GoogLeNet

Using our approach, RTA revealed a significant difference in the

topological strucutre of the RDMs between humans andmonkeys—

p < 0.001 in both H0 clusters and H1 loops. In order to capture

what different loop structures may have existed in the two spaces,

we identified their most persistent loop features, i.e. the loop with

greatest difference between their death and birth values—this loop

“lives” longest compared to all other loops. We will refer to these

two most persistent loops as the “human loop” and “monkey loop”.

We localized each loop by examining their respective representative

cycle, i.e. a subset of the 92 points on each loop. Representative

cycles are a useful tool for exploring topological features because

those features may occupy distinct regions of the data space. For

example, imagine a dataset with a loop and a cluster (not touching

each other)—all the data points would be used to calculate the

data’s persistence diagram but only a subset of the points would lie

on the loop. On the other hand, the points that do not lie on the

loop, even if they are not part of any other interesting topological

structure, can still have immense value in non-topological analyses

(for instance in RSA analyses).

To get a sense of the topological structure of the monkey and

human RDMs at those linkage scales we plotted both space’s PLRG

in Figure 6.

Striking differences occur between the two representational

spaces in this view—the monkey VR graph highlights substantially

more clustered representations that we can easily label, such

as animals, hands, faces, objects, etc., while the human

representational spaces appear to be organized into two

clusters symmetrically around a loop. That in both cases the

representations appear to be lobes organized around a central

confluence is intriguing, and may merit greater investigation. It

is worth noting that RSA suggests that the monkey and human

representations are highly comparable (Kriegeskorte et al., 2008b),

finding a gross clustering into animate and inanimate objects in

both human and monkey spaces, whereas RTA reveals the ways in

which they are actually different.

Next we compared the neural network model GoogLeNet

(Szegedy et al., 2015) against the human IT cortex data to see if

the two systems were carrying out similar calculations. We fed

the image stimuli through GoogLeNet and computed correlation

distance RDMs from activity patterns in fully connected layers 1

through 6 (the final layer). None of the GoogLeNet RDMs had

a significant correlation with the human RDM, and our model

adjudication procedure found significant differences between each

layer’s topological structure and the human data’s structure, both

in terms of clusters or loops. In other words, both RTA and RSA

agreed that the representational spaces were different. Out of the

six new RDMs, only four of them had any loops, and in Figure 7

we plotted the PLRG of each of those four RDMs at the birth scale

of their most persistent loop. These PLRGs show a very different

structure to the human PLRG—the first layer space is largely sparse

and disconnected, whereas later layers are one large cluster with

some minor branching.

3.2 Naturalistic movie viewing data

RTA’s model adjudication method found a statistically

significant difference between the loop structures in each pair

of the three representational spaces (at a Bonferroni-corrected

level of α = 0.05/3). In order to determine what structures these

differences may have be capturing, we plotted the VR graphs of

the three mean RDMs, at the scale of their respective loop birth

values, subsetted to contain only the data points which were in

the components of their respective loop representative cycles.

Since each graph represents data from one movie across subjects,

each graph node represents a TR in its graph’s movie, so each

node is plotted with the movie frame five seconds prior to the TR

(accounting for the hemodynamic lag). To determine if and where

RSA provided a complementary view of these graphs, we projected

the three RDMs (subsetted for the TRs in their respective VR

graphs) into 2D space using MDS and colored each node in the VR

graph by its location in MDS space. We call this novel visualization

a proximity-labeled rips graph (PLRG for short). Finally, in order

to link the PLRG’s back to the raw data we also plotted the movie
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FIGURE 6

The PLRGs of the monkey RDM (left) and the human RDM (right) at the scales of their respective loop births. The monkey visualization shows a

central cluster of animal and monkey faces, from which the loop and two flares (an animal body flair, right, and a hand flair, top left) stem from. From

the loop there is also one flair which corresponds to scenery. Only 54 of the 92 stimuli were plotted as these vertices made up the connected

component of the VR graph which contained the loop (each of the other 38 stimuli either had no connections to other stimuli or formed small,

topologically uninteresting clusters). The human visualization contained 81 of the 92 stimuli, and appears to be two dominant clusters with two paths

of sparse connections forming the loop. The clusters are animate objects (left) and inanimate objects (right).

frame associated with each graph node at the node’s location (in

the graph space, not in the MDS space). The results can be seen

in Figure 8.

The differences in the topological structure between the three

regions can be readily appreciated, and these structures were not

accounted for byMDS of the RDMs. This illustrates the importance

of topological analysis of representational space for inference on

similarity.

4 Discussion

We demonstrated the potential of topological analysis in

identifying representational structures in stimulus-driven fMRI

patterns, and showed how this knowledge of the representational

geometry can be complementary to standard RSA. Importantly,

sensitivity to topological features allows one to find non-linear

dimensions (i.e. non-linear variables that capture meaningful

variance in the structure of the data) in representational spaces,

such as the loop we reported for the monkey IT data. This

approach goes beyond classic inferential statistics and allows us to

have insight into the nature of the mechanisms underlying neural

representations.

We first examined two RDMs, one averaged from four human’s

IT cortices and one averaged from twomonkey’s IT cortices. Unlike

in Kriegeskorte et al. (2008b) we found that the representational

spaces were different, determined by RTA’s model adjudication

procedure, and we were able to visualize how the most persistent

loops in the monkey and human representational spaces did not

appear to encode the same information—the monkey loop likely

encoded a continuous spectrum of change in object category,

whereas the human loop was more likely the distal connections

between animate and inanimate clusters. Two possible explanations

of the differences between the two loops could be that (1) human IT

cortex efficiently resolves object category into natural and animate

clusters, whereas this distinction is more blurred (i.e. continuous)

in monkey IT cortex, or (2) the representational spaces are distinct

simply because humans and monkeys can have very different

semantic encodings of the same image. The first explanation

seems unlikely—the monkey VR graph also had a clear distinction

between animate and inanimate objects. The second explanation

seems more likely, for example a giraffe and a monkey may have

similar representations in humans because they are both animals

found in Africa, and in monkeys because they are both non-

dangerous creatures—in other words, there is not a one-to-one

semantic correspondence. This result is perhaps the best exemplar

of the major criticism of RSA described earlier—the two species

may be performing very different calculations, and this difference

was only detectable using RTA.

The RSA and RTA comparisons of the GoogLeNet RDMs and

the human RDM all agreed that the geometry and topology of

the spaces were different, and these differences were clearly visible

in the PLRGs—the model’s first layer did not have any high-level

object patterns resolved, whereas later layers were largely one dense

cluster with some flairs, and the human data was better captured

with two clusters connected by sparse connections along two paths.

GoogLeNet was therefore likely capturing overly-complex image

features compared to the biological data.

We carried out the same analytic approach to a naturalistic

movie viewing dataset (Zhang and Farivar, 2020). We analyzed
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FIGURE 7

The four GoogLeNet PLRGs, in layers 1, 4, 5, and the final layer, each plotted at the birth radius of their largest loop. The first layer PLRG was mostly

isolated stimuli (which were not plotted) and contained only a small loop, showing that continuous measures of object category likely do not exist at

this early stage of processing. The three other PLRGs show a significantly more clustered representation of the images, with no clear pattern of the

RSA-derived colors. Topologically, the learned structure of the representational space is resolved no later than the fourth layer.

group-mean topological structures in VO, PHC and V3 areas. All

three pairwise regional comparisons found significantly different

loop signatures, and our novel proximity-labeled rips graphs of the

spaces, at the scale of their most persistent (significant) loop’s birth,

were visually very different between the three regions and could

not be accounted for by geometry alone. For example, the VO and

PHC PLRGs did not have similar colorings of nearby nodes, and

the V3 PLRG had clusters of similarly-colored nodes which existed

far apart in the graph. By plotting the frames corresponding to 5

seconds prior to each TR over each TR’s graph node, we can see

that V3 is likely representing low-level movie features—like object

position/movement or scene color, as demonstrated by the many

neighboring frames which seem to only differ in the position of

objects in the frame or the scene color. On the other hand, there

is not a clear division of scene (object) category in the VO PLRG,

nor is there a clear relationship between graph structure and object

movement/position in the PHC PLRG, but the PHC does exhibit a

clear structure (as opposed to VO). In this example RTA was also

able to capture aspects of representational spaces which RSA could

not.
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FIGURE 8

Topologies of mean representational spaces in VO (top row), PHC (middle row) and V3 (bottom row) areas. Left column is the PLRG laid out using a

graph-layout algorithm, right column are the frames corresponding to each graph node, plotted at its node’s 2D coordinate in the graph. The

color-coding scheme for PLRG nodes, based on MDS coordinates, is displayed to the left of the VO PLRG—the x coordinate determines a horizontal

color which is green for positive x-values and purple for negative x-values, and a vertical color which is orange for positive y-values and blue for

negative y-values, and two nodes which have similar colors are TR’s with correlated activity patterns, i.e. are nearby in MDS space. PHC and V3 have

clearly-defined topologies in their PLRGs, whereas VO has mainly one densely-connected cluster. As well, the lack of color-clustering and smooth

color gradients in the VO and PHC PLRG’s indicate that MDS, i.e. RSA, did not capture the graph structure well. V3 on the other hand did exhibit color

clustering and gradients, suggesting that there was a stronger relationship between topology and geometry at the loop birth scale. Moreover, the

clustering and gradients suggest that some folding of the graph may be appropriate, where nodes which are far apart on the graph with similar colors

may actually be proximal in terms of the geometry of data space. The frame visualization of V3 also appeared to most smoothly vary by color and

scene type compared to PHC and VO.
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While RSA provides a “hub” for researchers to integrate data

from different modalities, species, etc., it may be limited by

the requirement of fixed-size matrices to encode representational

geometries and correlations. Because persistent homology

• is invariant under reordering its input data,

• can compare outputs regardless of the number of points it used

as input, and

• its output converges as the number of data points grows,

representational topology analysis may be well-suited to compare

RDMs across RSA studies which do not have the same stimulus

set or set size, building on ideas first proposed in Laakso (2000).

Concrete evidence for this use-case of RTA is hidden in our

naturalistic movie analysis—free movie viewing does not follow

the traditional task-based experimental design of RSA studies,

which is necessary to compute stimulus-stimulus representational

dissimilarities, but the flexibility of RTA allowed us to consider

each time point as a “stimulus”, the spatial pattern at a time point

its “representation”, and carry out principled comparisons of the

topological structures which arose across subjects and movies. This

type of RSA-like application, “time continuous RSA”, was discussed

as a potentially interesting use-case of RSA in Kriegeskorte

et al. (2008a). This means that fMRI datasets (as well as data

from other functional neuroimaging modalities) can be compared

regardless of their experimental design or duration, which would be

particularly interesting for resting-state datasets. Resting state data

is characterized by co-fluctuations between distal but functionally-

related regions (Biswal et al., 1995; Cordes et al., 2000; De Luca

et al., 2006), which implies the existence of periodic spatio-temporal

signals that could be detected with persistent homology—spherical

representational topologies have already been identified in resting-

state (and naturalistic image viewing) electrophysiological data

from V1 in monkeys (Singh et al., 2008) and this topology

could be explained by the interactions between the (periodic)

orientation and spatial frequency feature maps. To our knowledge

RTA is the first framework that allows comparisons between

scans of different duration and study design without temporally

collapsing data.

Despite the unique capabilities of RTA, it does have several

limitations. Firstly, it is more complicated than regular RSA—

there are more computational tools which are needed to carry

out a topological analysis. Secondly, RTA is more computationally

demanding—persistent homology can be computed quickly with

small RDMs (up to around 100 stimuli) in low dimensions,

but computing higher-dimensional homology with large RDMs

will likely be slower. Similarly, the analysis procedures for

persistence diagrams can take time if the persistence diagrams

contain many points (although this can be remedied by using

the bootstrap procedure to only select significant topological

features) or if there are a large number of persistence diagrams

(as in a fMRI searchlight analyses). Thirdly, since persistence

diagrams converge with larger sample size (Chazal et al.,

2014), RTA will be better able to reliably capture topological

features with more data points [RSA also performs better

with more data (Kriegeskorte, 2009)]. Our informal assessment

would suggest at least twenty data points as the low-end

threshold.

Representational topology analysis directly addresses the

topology of representational space—an aspect that RSA (as

a linear geometric method) cannot. This understanding of

representational geometry is useful in that it can reveal non-

linear dimensionality of the representation space which has

direct implications for the nature of the input patterns and,

by extension, the mechanisms that give rise to those input

patterns. In this manner, understanding the topology of

representational space provides for novel insights unafforded

by existing methods.
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Dujmović, M., Bowers, J. S., Adolfi, F., and Malhotra, G. (2022). The pitfalls
of measuring representational similarity using representational similarity analysis.
bioRxiv. doi: 10.1101/2022.04.05.487135

Edelsbrunner, H., Letscher, D., and Zomorodian, A. (2000). Topological
persistence and simplification. Discrete Comp. Geometry 28, 511–533.
doi: 10.1007/s00454-002-2885-2

Ellis, C., Lesnick, M., Henselman, G., Keller, B., and Cohen, J. (2019). Feasibility
of topological data analysis for event-related fmri. Netw. Neurosci. 3, 1–12.
doi: 10.1162/netn_a_00095

Fasy, B., Kim, J., Lecci, F., Maria, C., Millman, D., and Rouvreau, V. (2021). TDA:
Statistical Tools for Topological Data Analysis. R package version 1.7.7.

Fasy, B., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., and Singh,
A. (2014). Confidence sets for persistence diagrams. Ann. Stat. 42, 2301–2339.
doi: 10.1214/14-AOS1252

Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002).
Whole brain segmentation: Automated labeling of neuroanatomical structures in the
human brain. Neuron 33, 341–355. doi: 10.1016/S0896-6273(02)00569-X

Fruchterman, T. M., and Reingold, E. M. (1991). Graph drawing by force-directed
placement. Software: Pract. Exp. 21, 1129–1164. doi: 10.1002/spe.4380211102

Giusti, C., Pastalkova, E., Curto, C., and Itskov, V. (2015). Clique topology
reveals intrinsic geometric structure in neural correlations. Proc. Nat. Acad. Sci. 112,
13455–13460. doi: 10.1073/pnas.1506407112

Hall, H. (2009). Under the Sea 3D. Mississauga, ON: IMAX Entertainment.

Hasson, U., Malach, R., and Heeger, D. J. (2010). Reliability of cortical activity
during natural stimulation. Trends Cogn. Sci. 14, 40–48. doi: 10.1016/j.tics.2009.10.011

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., and Malach, R. (2004). Intersubject
synchronization of cortical activity during natural vision. Science 303, 1634–1640.
doi: 10.1126/science.1089506

Hatcher, A. (2002). Algebraic Topology. Algebraic Topology. Cambridge: Cambridge
University Press.

Kang, L., Xu, B., and Morozov, D. (2021). Evaluating state space discovery by
persistent cohomology in the spatial representation system. Front. Comput. Neurosci.
15:616748. doi: 10.3389/fncom.2021.616748

Kerber, M., Morozov, D., and Nigmetov, A. (2017). Geometry helps to compare
persistence diagrams. ACM J. Exp. Algorithm. 22:3064175. doi: 10.1145/3064175

Kiani, R., Esteky, H., Mirpour, K., and Tanaka, K. (2007). Object category structure
in response patterns of neuronal population in monkey inferior temporal cortex. J.
Neurophysiol. 97, 4296-4309. doi: 10.1152/jn.00024.2007

Kriegeskorte, N. (2009). Relating population-code representations
between man, monkey, and computational models. Front. Neurosci. 3:2009.
doi: 10.3389/neuro.01.035.2009

Kriegeskorte, N., and Diedrichsen, J. (2019). Peeling the
onion of brain representations. Ann. Rev. Neurosci. 42, 407–432.
doi: 10.1146/annurev-neuro-080317-061906

Kriegeskorte, N., and Kievit, R. A. (2013). Representational geometry:
integrating cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412.
doi: 10.1016/j.tics.2013.06.007

Kriegeskorte, N., Mur, M., and Bandettini, P. (2008a). Representational similarity
analysis – connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2:4.
doi: 10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al.
(2008b).Matching categorical object representations in inferior temporal cortex ofman
and monkey. Neuron 60, 1126–1141. doi: 10.1016/j.neuron.2008.10.043

Kwak, S., and Kim, J. (2017). Central limit theorem: the cornerstone of modern
statistics. Korean J. Anesthesiol. 70:144. doi: 10.4097/kjae.2017.70.2.144

Laakso, A. (2000). Content and cluster analysis: assessing representational similarity
in neural systems. Philos. Psychol. 13:2726. doi: 10.1080/09515080050002726

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2025.1597899
https://doi.org/10.3934/fods.2022014
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1523/JNEUROSCI.2314-15.2016
https://doi.org/10.21105/joss.06321
https://doi.org/10.1088/1361-6420/ab4ac0
https://doi.org/10.1038/s41593-019-0460-x
https://doi.org/10.3389/frai.2021.667963
https://doi.org/10.1016/j.neuroimage.2020.117010
https://doi.org/10.1523/JNEUROSCI.5547-11.2012
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.5281/zenodo.7682609
https://doi.org/10.1090/bull/1554
https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.48550/arXiv.2007.02789
https://doi.org/10.1101/2022.04.05.487135
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1162/netn_a_00095
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1073/pnas.1506407112
https://doi.org/10.1016/j.tics.2009.10.011
https://doi.org/10.1126/science.1089506
https://doi.org/10.3389/fncom.2021.616748
https://doi.org/10.1145/3064175
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.3389/neuro.01.035.2009
https://doi.org/10.1146/annurev-neuro-080317-061906
https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1016/j.neuron.2008.10.043
https://doi.org/10.4097/kjae.2017.70.2.144
https://doi.org/10.1080/09515080050002726
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Brown and Farivar 10.3389/fnins.2025.1597899

Le, T., and Yamada, M. (2018). “Persistence fisher kernel: A riemannian manifold
kernel for persistence diagrams,” in Advances in Neural Information Processing
Systems, eds. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (New York: Curran Associates, Inc.).

Lin, B., and Kriegeskorte, N. (2024). The topology and geometry of neural
representations. Proc. Nat. Acad. Sci. 121:e2317881121. doi: 10.1073/pnas.2317881121

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv [preprint]
arXiv.1802.03426. doi: 10.48550/arXiv.1802.03426

Mead, A. (1992). Review of the development of multidimensional scaling methods.
J. R. Stat. Soc. Ser. D 41, 27–39. doi: 10.2307/2348634

Morozov, D. (2017).Dionysus Is a C++ Library for Computing Persistent Homology.
Available online at: https://mrzv.org/software/dionysus2/.

R Core Team (2021). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Robinson, A., and Turner, K. (2017). Hypothesis testing for topological data
analysis. J. Appl. Comput. Topol. 1:7. doi: 10.1007/s41468-017-0008-7

Saad, Z. S., and Reynolds, R. C. (2012). Suma. NeuroImage 62, 768–773.
doi: 10.1016/j.neuroimage.2011.09.016

Saggar, M., Shine, J. M., Liégeois, R., Dosenbach, N. U. F., and Fair, D. (2022).
Precision dynamical mapping using topological data analysis reveals a hub-like
transition state at rest. Nat. Commun. 13:4791. doi: 10.1038/s41467-022-32381-2

Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G.
E., Glover, G. H., et al. (2018). Towards a new approach to reveal dynamical
organization of the brain using topological data analysis. Nat. Commun. 9:4.
doi: 10.1038/s41467-018-03664-4

Shahbazi, M., Shirali, A., Aghajan, H., and Nili, H. (2021). Using
distance on the riemannian manifold to compare representations in brain
and in models. Neuroimage 239:118271. doi: 10.1016/j.neuroimage.2021.1
18271

Shepard, R. N., and Chipman, S. (1970). Second-order isomorphism
of internal representations: shapes of states. Cogn. Psychol. 1, 1–17.
doi: 10.1016/0010-0285(70)90002-2

Singh, G., Mémoli, F., and Carlsson, G. E. (2007). Topological Methods for the
Analysis of High Dimensional Data Sets and 3D Object Recognition. San Diego: SPBG.

Singh, G., Mémoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., and Ringach, D.
(2008). Topological analysis of population activity in visual cortex. J. Vis. 8, 1–18.
doi: 10.1167/8.8.11

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Boston, MA: IEEE). 1-9.

Szekely, G., Rizzo,M., and Bakirov, N. (2008). Measuring and testing dependence by
correlation of distances.Ann. Statist. 35, 2769–2794. doi: 10.1214/009053607000000505

Tenenbaum, J. B., Silva, V., d., and Langford, J. C. (2000). A global
geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323.
doi: 10.1126/science.290.5500.2319

Turner, K., Mileyko, Y., Mukherjee, S., and Harer, J. (2014). Frechet means
for distributions of persistence diagrams. Discrete Comp. Geomet. 52, 44–70.
doi: 10.1007/s00454-014-9604-7

Wadhwa, R., Dhawan, A.,Williamson, D., and Scott, J. (2019).TDAstats: Pipeline for
Topological Data Analysis. R package version 0.4.1. Available online at: https://github.
com/rrrlw/TDAstats

Wang, L., Mruczek, R. E. B., Arcaro, M., and Kastner, S. (2015). Probabilistic
maps of visual topography in human cortex. Cereb. Cortex 25, 3911–3931.
doi: 10.1093/cercor/bhu277

You, K., and Park, H.-J. (2022). Geometric learning of functional brain network on
the correlation manifold. Sci. Rep. 12:17752. doi: 10.1038/s41598-022-21376-0

Zhang, A., and Farivar, R. (2020). Intersubject spatial pattern correlations during
movie viewing are stimulus-driven and nonuniform across the cortex. Cereb. Cortex
Commun. 1:tgaa076. doi: 10.1093/texcom/tgaa076

Zomorodian, A. (2010). “The tidy set: A minimal simplicial set for computing
homology of clique complexes,” in Proceedings of the Twenty-Sixth Annual Symposium
on Computational Geometry, SoCG ’10 (New York, NY: Association for Computing
Machinery), 257–266

Zomorodian, A., and Carlsson, G. (2005). Computing persistent homology.Discrete
Comp. Geomet. 33, 249–274. doi: 10.1007/s00454-004-1146-y

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2025.1597899
https://doi.org/10.1073/pnas.2317881121
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.2307/2348634
https://mrzv.org/software/dionysus2/
https://doi.org/10.1007/s41468-017-0008-7
https://doi.org/10.1016/j.neuroimage.2011.09.016
https://doi.org/10.1038/s41467-022-32381-2
https://doi.org/10.1038/s41467-018-03664-4
https://doi.org/10.1016/j.neuroimage.2021.118271
https://doi.org/10.1016/0010-0285(70)90002-2
https://doi.org/10.1167/8.8.11
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1007/s00454-014-9604-7
https://github.com/rrrlw/TDAstats
https://github.com/rrrlw/TDAstats
https://doi.org/10.1093/cercor/bhu277
https://doi.org/10.1038/s41598-022-21376-0
https://doi.org/10.1093/texcom/tgaa076
https://doi.org/10.1007/s00454-004-1146-y
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	The topology of representational geometry
	1 Introduction
	2 Materials and methods
	2.1 Model adjudication
	2.2 Human, monkey, and GoogLeNet comparison
	2.3 Naturalistic movie viewing study

	3 Results
	3.1 Human and monkey IT cortex data and GoogLeNet
	3.2 Naturalistic movie viewing data

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


