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Opioids, while highly effective for pain management, are among the most addictive 
substances, contributing significantly to the global opioid crisis. Opioid use 
disorder (OUD) affects millions, with synthetic opioids like fentanyl exacerbating 
the epidemic due to their potency and widespread illicit availability. Opioids exert 
their effects through opioid receptors (ORs), primarily the mu opioid receptor (MOR), 
which mediates both therapeutic analgesia and adverse effects such as euphoria, 
dependence, and tolerance. Chronic opioid use leads to cellular adaptations, 
including receptor phosphorylation, desensitization, and recruitment of β-arrestin, 
which uncouple MOR from downstream signaling pathways. These changes, along 
with compensatory upregulation of adenylyl cyclase (AC) and cAMP signaling, 
underlie the development of tolerance, dependence, and withdrawal, however 
the exact signaling pathways responsible remain unknown. Emerging research 
highlights the role of neuroinflammation, genetic polymorphisms, and alternative 
splicing of MOR isoforms in modulating opioid responses and vulnerability to OUD. 
Current treatments for OUD, such as methadone, buprenorphine, and naltrexone, 
are limited by compliance, access, and relapse rates. Novel therapeutic strategies, 
including biased MOR agonists, opioid vaccines, and splice variant-specific agonists, 
offer promise for safer pain management and reduced abuse liability. However, 
a deeper understanding of opioid receptor signaling, neuroimmune interactions, 
and genetic factors is essential to develop more effective interventions. This 
review explores the molecular mechanisms of opioid tolerance, dependence, 
and withdrawal, emphasizing the need for innovative approaches to address the 
opioid crisis and improve treatment outcomes.

KEYWORDS

opioids, tolerance, dependence, opioid receptors, signaling, alternative splicing

Introduction

Opioids have been used for thousands of years for food, rituals, and medicinal purposes 
(Kritikos and Papadaki, 1967; Salavert et al., 2020). Opioids are the most widely used and 
effective medication for the treatment of pain; however, they are also one of the most addictive. 
It is estimated that over 6.1 million people age 12 or older in the USA have an opioid use 
disorder (OUD), and in 2022, 75% of reported drug overdose deaths in the USA were the 
result of an opioid (Center for Drug Evaluation and Research, 2024; National Institute on Drug 
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Abuse, 2024). An opioid use disorder (OUD) is characterized by 
persistent, chronic use of opioids that results in significant impairment 
and continued use despite harmful consequences (CDC, 2024; Dydyk 
et al., 2024). Recent years have seen a spike in the use of synthetic 
opioids such as fentanyl, which is 50 and 100 more potent than heroin 
and morphine, respectively, (Ramos-Matos et  al., 2024). The 
widespread illicit availability of fentanyl is exacerbating the opioid use 
epidemic, as other substances are being cut with fentanyl to modulate 
their effects.

Opioids can be classified as endogenous, natural, synthetic, or 
semi-synthetic; all of which are ligands for opioid receptors (ORs) 
(Lappas and Lappas, 2022). Endogenous opioids are those produced 
by the body (e.g., β-endorphin, enkephalin, dynorphin), natural 
opioids are those found naturally in the opium poppy Papaver 
somniferum (e.g., morphine, codeine), semi-synthetic opioids are 
derived from natural opioids (e.g., heroin, oxycodone, hydrocodone, 
buprenorphine), and lastly synthetic opioids are chemically 
synthesized and structurally unrelated to the natural alkaloids (e.g., 
fentanyl, methadone) (Marraffa, 2014; Hong et al., 2022; Lappas and 
Lappas, 2022). While all of these are agonists at ORs, they vary in 
structure which can alter their affinity and potency for the three ORs.

ORs are inhibitory G-protein coupled receptors (GPCRs), for 
which four different types have been identified; Mu (μ, MOR), kappa 
(κ, KOR), delta (δ, DOR), and nociceptin opioid receptor (NOP) 
(Dhawan et al., 1996; Cox et al., 2015; Toll et al., 2016; Lappas and 
Lappas, 2022). These receptors are expressed widely throughout 
various pain modulatory tissues in the body, including the brain, 
spinal cord, and peripheral nervous system, and are also found in the 
digestive tract (Yam et al., 2018). Agonists of ORs cause numerous 
effects, both therapeutic and adverse, including analgesia, euphoria/
dysphoria, CNS depression, respiratory depression, nausea, 
constipation, and drowsiness (National Institute on Drug Abuse, 2021; 
Paul et al., 2021). The most common clinically used opioids, as well as 
the most commonly misused opioids, are agonists of the mu opioid 
receptor (MOR), which is encoded by the OPRM1 gene (Wang et al., 
1994). While activation of MOR results in analgesia, it also indirectly 
activates the central dopamine reward pathways producing euphoria 
and reward (Li et al., 2016; Steidl et al., 2017).

In this review, we discuss the current state of our understanding 
of mu opioid receptor signaling and pharmacology as it relates to 
opioid tolerance, dependence, and withdrawal. Additionally, 
we discuss the implications of the neuroimmune effects of opioids on 
the development of opioid dependence, as well as discuss how certain 
genetic modifications can play a role in opioid tolerance, dependence, 
and development of OUD, and, finally, emerging therapies for better 
treatment of OUD.

The endogenous opioid system

The endogenous opioid system is responsible for a multitude of 
effects within both the central and peripheral nervous systems. The 
main classes of endogenous opioids are endorphins, enkephalins, 
dynorphins, and nociceptin, which are the primary endogenous 
agonists for MOR, DOR, KOR, and NOP, respectively, (Bodnar, 2022). 
These are peptides produced primarily by the brain, mainly the pituitary 
gland and hypothalamus, and the adrenal gland in response to many 
different types of stimuli including food, sex, and social interactions to 

regulate mood states (Darcq and Kieffer, 2018; Herman et al., 2024). The 
genes that encode the opioid peptide precursors are 
proopiomelanocortin (POMC), preproenkephalin (PENK), 
preprodynorphin (PDYN), and prepronociceptin (PNOC), which code 
for β-endorphin, the enkephalin peptides, the dynorphin peptides, and 
nociceptin, respectively. Following release, these peptides bind to opioid 
receptors, resulting in a variety of downstream signaling cascades based 
on receptor and peptide type and cellular expression.

The different types of ORs produce different downstream effects 
following activation. While MOR is the primary target for opioid 
analgesics, the DOR and KOR receptors also are involved in the 
modulation of pain. MOR activation is known to produce euphoria, 
while DOR activation is primarily associated with emotional state 
including positive affect and reduced anxiety, and KOR activation is 
associated with negative affect and dysphoria (Darcq and Kieffer, 
2018; Valentino and Volkow, 2018). The activity of all of these 
receptors together contributes to the complexity of opioid 
mediated signaling.

Opioid signaling

ORs are expressed in the central nervous system (CNS), peripheral 
nervous system (PNS), and gastrointestinal tract, with MOR being the 
most commonly expressed OR (Herman et al., 2024). MOR is encoded 
by the OPRM1 gene, which is found on human chromosome 6 (Wang 
et al., 1994).

All types of opioid receptors are 7-transmembrane GPCRs with an 
extracellular binding domain and intracellular signaling domain (Clark 
et al., 2006; Manglik et al., 2012; Dhaliwal and Gupta, 2024). ORs are 
coupled to inhibitory G-proteins, Gαi and Gαo. Upon receptor 
activation, the Gαi/o and Gβγ subunits are released and act on a variety 
of downstream intracellular pathways (Hilger et  al., 2018). This 
G-protein signaling is the “classical” opioid signaling pathway, however 
it is only one of the signal transduction pathways activated by opioids. 
In addition to activation of G-protein signaling, the β-arrestin signaling 
pathway is also activated (Figure 1; Al-Hasani and Bruchas, 2011; Kee 
et al., 2024). This β-arrestin signaling pathway is thought to be involved 
in the regulation of opioid signaling through receptor desensitization 
and internalization (Al-Hasani and Bruchas, 2011).

The Gai subunit released by OR agonist binding inhibits adenylyl 
cyclase (AC) on a cellular level. AC is responsible for converting ATP to 
cyclic adenosine monophosphate (cAMP). This results in a decrease in 
intracellular cAMP levels, thus a decrease in activation of cAMP-
dependent protein kinase A (PKA), which is responsible for 
phosphorylation and activation of downstream proteins, such as cAMP 
response element binding protein (CREB). Phosphorylated CREB binds 
to cAMP response element (CRE) promoter, resulting in transcription 
of genes downstream of cAMP. The Gβγ subunits released act differently 
at a presynaptic and postsynaptic level on neurons activated by opioids. 
Presynaptically, the Gβγ subunit will bind to voltage-gated calcium 
channels (VGCCs) and inhibit them, preventing release of 
neurotransmitters. On the other hand, postsynaptic Gβγ subunits 
activate G protein-coupled inward-rectifying potassium (GIRK) 
channels, which prevents depolarization by releasing K+ from the cell 
(North et al., 1987).

Important downstream signaling includes MAPK signaling 
pathways such as ERK, JNK, and p38, however the mechanisms are 
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ligand and receptor specific (Gutstein et al., 1997; Gendron et al., 2016; 
Gopalakrishnan et  al., 2022). This downstream signaling occurs in 
response to phosphorylation of the C-terminal domain of the OR 
following agonist binding. The internal C-terminal domain of MOR 
contains several serine, threonine, and tyrosine phosphorylation sites, 
however the exact roles that these sites play in the function of MOR 
signaling remains unclear (El Kouhen et al., 2001; Schulz et al., 2004; 
Kelly, 2011). Additionally, the exact downstream effects of these 
activated kinases on development of opioid dependence and tolerance 
remains unknown. Furthermore, recent studies have shown that 
different ligands can induce different patterns of phosphorylation on the 
same type of GPCR (Butcher et al., 2011; Doll et al., 2011). For example, 
it has been shown that low efficacy agonists such as morphine produce 
selective phosphorylation of the MOR-Ser375 residue without 
phosphorylation of other residues within the motif, which results in 
lower β-arrestin recruitment. In contrast, high efficacy agonists such as 
fentanyl promote more robust phosphorylation of MOR-Ser375, as well 
as Thr370, Thr376, and Thr379, which promotes greater β-arrestin 
recruitment (Just et al., 2013; Underwood et al., 2024).

Following opioid receptor phosphorylation, β-arrestin is recruited 
to the C-terminal of the receptor. β-arrestin is a scaffolding protein 
whose main role is as a key regulator of GPCR activity. It has been 
shown that following opioid receptor binding to an agonist, various 
sites within the C-terminal domain of the receptor are phosphorylated 
by GPCR kinases (GRKs) (Retamal et al., 2019). β-arrestin binds to 
these phosphorylated points and facilitates desensitization and 
internalization. After the receptor has been internalized, it is either 
degraded by the lysosome or dephosphorylated in the endosomal 
compartment by phosphatase enzymes and returned to the cell surface 

in a process called resensitization (Kelly, 2005; Drake et al., 2006; 
Mohan et al., 2012; Badal et al., 2018).

Opioid receptor agonism can have differential effects depending 
on the specific type of cell it is acting on. While MOR activation in the 
CNS mainly results in modulation of neuronal activity, it also has 
effects on glial cells such as microglia and astrocytes (Hutchinson 
et al., 2007; Watkins et al., 2009). The main effects of MOR activation 
on neurons are the inhibition of neurotransmitter release, primarily 
inhibiting GABAergic neurons, and activation of downstream MAPK 
signaling. The direct inhibition of GABAergic neurons can result in 
further effects on other neurotransmitters. In contrast, on glial cells, 
opioids are known to have neuroimmune modulatory effects and 
result in activation of glial cells, causing release of cytokines such as 
TNF-α, IL-1β, and IL-6 (Cuitavi et al., 2023).

Cellular mechanisms of opioid 
tolerance

Tolerance can be  defined as the decreased response to a drug 
following prolonged or repeated exposure (Pietrzykowski and 
Treistman, 2008). This can be seen in the context of therapeutic or 
recreational drug usage, where an increase in dose is needed after a time 
to maintain its initial effect. Prolonged exposure to a drug can also lead 
to physiological dependence, which is not the same as tolerance. 
Physiological dependence can be described as physiological adaptations 
to prolonged or repeated exposure to a drug in which discontinuation 
will result in withdrawal symptoms (Griffin, 1990; Szalavitz et al., 2021). 
It is important to note that physiological dependence is not the same as 

FIGURE 1

Depiction of G-protein dependent and β-arrestin dependent OR signaling pathways and downstream effects following activation, as well as depicting 
internalization and trafficking. AC, adenylate cyclase; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; MAPK, mitogen-activated 
protein kinase; GRK, G-protein receptor kinase; P, phosphate group; Created in BioRender (https://BioRender.com/m15z911).
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addiction, nor is physical dependence required for addiction. Addiction 
is defined as a compulsive drive to continue taking a drug despite 
adverse consequences and is a complex behavior with a multitude of 
genetic, physical, psychological, and environmental factors playing a 
role (Volkow and Li, 2004). In vitro, drug tolerance and dependence can 
be  studied, as there are molecular markers showing these effects. 
However, addiction cannot be measured in vitro or in cell culture, since 
it is a measurement of behavioral effects, not only physiological. If an 
individual is dependent on an opioid, they will undergo withdrawal 
following its discontinuation. Withdrawal is associated with changes at 
the molecular level. The physiological signs of opioid withdrawal 
include aches and pain, muscle spasms, cramps, nausea, vomiting, 
diarrhea, anxiety, insomnia, sweating, as well as other adverse effects 
(Vernon et al., 2016; Kosten and Baxter, 2019).

Perhaps, the most obvious idea in terms of the cause of developing 
opioid tolerance would be downregulation in the number of ORs, and 
this has been reported following chronic administration of some opioid 
agonists (Stafford et al., 2001). However, studies have revealed that 
downregulation of ORs is inconsistent between different opioid agonists 
and therefore, may not completely explain tolerance. For example, 
Stafford et al. examined the contribution of down regulation of MOR in 
mice treated with morphine or etorphine, another opioid agonist 
(Stafford et al., 2001). They observed a substantial decrease in MOR 
levels in mice treated with etorphine, but little to no changes in mice 
treated with morphine. Following these observations, it is currently 
believed that, instead of OR downregulation being the only mechanism 
of tolerance development, OR are also desensitized and become 
uncoupled from downstream signaling pathways (Waldhoer et  al., 
2004). Thus, there are receptor density-dependent and -independent 
mechanisms underlying the development of opioid tolerance. The exact 
molecular mechanisms underlying opioid tolerance and dependence 
in vivo are still unclear, however research points toward the regulation 
of opioid receptors via the mechanisms of desensitization, 
phosphorylation, β-arrestin recruitment, internalization, and recycling 
to be involved in the development of opioid tolerance and dependence 
(Figure 1; Dang and Christie, 2012; Raehal and Bohn, 2014; Bowman 
and Puthenveedu, 2015; Zhou et al., 2021). Desensitization of a GPCR 
is a complex process that results in reduced receptor signaling in 
response to an agonist after repeated stimulation and may be largely 
responsible for the development of opioid receptor tolerance and 
dependence (Connor et al., 2004, 2015; Rajagopal and Shenoy, 2017).

Acute opioid exposure results in a decrease in AC activity and a 
decrease in cAMP levels within cells (Sharma et al., 1975a,b). However, 
it is also revealed that following chronic opioid exposure, the cells 
exhibit a compensatory increase in AC activity (Sharma et al., 1975a,b, 
1977). This increase in AC activity was first seen after morphine 
withdrawal was induced in morphine treated cells by adding naloxone, 
a MOR antagonist, or by washing the cells (Sharma et  al., 1975a). 
Following withdrawal from opioids, there is a spike in cAMP levels due 
to the overactivity of AC. This is known by a variety of names such as 
cAMP overshoot, supersensitization, or superactivation (Sharma et al., 
1975a,b, 1977). This compensatory increase in AC activity, which can 
be observed via cAMP overshoot and superactivation, is hypothesized 
to be one of the key aspects responsible for the development of opioid 
tolerance and dependence, as well as facilitating the negative effects 
associated with opioid withdrawal (Sharma et al., 1975a; Madhavan 
et al., 2010). Since the discovery of this superactivation of the cAMP 
pathway, it has been described as the most significant molecular 

adaptation in response to chronic opioids (Bie et al., 2005). It has been 
shown that this cAMP overshoot can result in an increase in GABAergic 
input to the dopamine neurons within the VTA (Meye et al., 2012). As 
a result, analyzing the cAMP pathway in response to opioids is one of 
the most important tools in measuring opioid tolerance, dependence, 
and withdrawal in vitro and in vivo.

The cAMP overshoot phenomenon was first shown by Sharma et al. 
(1975a,b). The cAMP overshoot in an opioid dependent in vitro system 
may be precipitated by the addition of an antagonist such as naloxone, 
or by removing the agonist through washing the cells. Xia et  al. 
developed a high-throughput cell based assay model to measure 
morphine-induced cAMP overshoot (Xia et al., 2011). They used this 
screen to identify 24 inhibitors of cAMP overshoot in response to opioid 
withdrawal, showing how this assay may be  useful in identifying 
compounds that can inhibit morphine-induced dependence, 
withdrawal, and addiction. The overshooting of the cAMP pathway in 
response to opioid withdrawal is a transient event, with cAMP levels 
being shown to peak 15–30 min after withdrawal in vitro (Xia et al., 
2011). As such, it is important to be able to monitor cAMP levels at 
these time points. A common way that researchers have looked at levels 
of cAMP in an in vitro setting is through methods such as enzyme 
linked immunosorbent assays (ELISAs) to directly measure cAMP 
levels, as well as fluorescence based assays targeting various points 
within the cAMP pathway, radioimmunoassays, and other new methods 
to measure cAMP levels in live cells (Sprenger and Nikolaev, 2013). In 
addition to the use of direct measurements of cAMP, it is possible to 
target the downstream effectors of cAMP by measuring CREB or PKA 
phosphorylation. As phosphorylation of these effector proteins 
correlates to their activation in response to cAMP levels, it is possible to 
measure the phospho-levels of these proteins compared to their total 
levels and correlate that to changes in cAMP levels within the cells 
(Guitart et al., 1992; Lane-Ladd et al., 1997; Ren et al., 2013; Pena et al., 
2018). Assessment of levels of these phosphorylated proteins is a 
common method for examining cAMP activity in tissues collected from 
rodent studies.

Since the discovery of cAMP overshoot, research has focused on 
how specific compounds or receptors may prevent opioid dependence 
by inhibiting this phenomenon. Wen et  al. (2012) investigated the 
mechanism by which cholecystokinin octapeptide (CCK-8), a potent 
endogenous anti-opioid, exerts its effects (Faris et al., 1983; Wen et al., 
2012). They used cAMP overshoot to demonstrate that the CCK1 
receptor is responsible for the inhibitory effects of CCK-8 on morphine 
dependence (Wen et al., 2012). These observations were confirmed 
when Hao et al. (2018) demonstrated that the overexpression of CCK1 
receptor prevented cAMP overshoot in HEK293-hMOR cells, treated 
with morphine, as well as preventing phosphorylation of CREB and 
ERK1/2, suggesting that CCK1R overexpression blocked morphine 
dependence in this system (Hao et al., 2018).

One of the next most important mechanisms thought to be involved 
in the development of opioid tolerance and dependence is the 
recruitment of β-arrestins to ORs in response to agonism (Finn and 
Whistler, 2001; Al-Hasani and Bruchas, 2011; Zhou et al., 2021). The 
recruitment of β-arrestins to phosphorylated C-terminal domains of 
ORs results in receptor desensitization and endocytosis, causing 
signaling termination and decreases in downstream responses 
(Ferguson, 2001; Luttrell and Lefkowitz, 2002; Surratt and Adams, 2005; 
Lau et al., 2011). Desensitization of MOR is a result of uncoupling of the 
receptor from its G protein, which is initiated by β-arrestins (Connor 
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et al., 2015; Kee et al., 2024). However, the desensitization of MOR does 
not directly correlate with the subsequent internalization of receptor. 
While certain opioids such as endorphins and methadone result in 
receptor desensitization and endocytosis by β-arrestins, these processes 
are less robust in response to morphine (Finn and Whistler, 2001; Lau 
et al., 2011). This is believed to be an example of biased agonism of 
MORs (Finn and Whistler, 2001; Lau et al., 2011). Biased agonism is the 
difference in activation of various kinases and subsequent β-arrestin 
recruitment in response to different opioids binding MOR (Finn and 
Whistler, 2001; Lau et al., 2011). Research into biased MOR agonism 
has become a major point of focus in recent years, as the differences in 
activation pathways between different opioid agonists could play a 
major role in development of tolerance and dependence, as well as 
become a target of new treatments for OUD.

Brain region specific responses

As stated above, most clinically useful opioid analgesics, as well as 
opioids used recreationally, are MOR agonists. MORs are expressed in 
circuits involved in pain transmission including primary afferent 
neurons in the periphery (i.e., Aδ and C fibers), spinal cord dorsal 
horn neurons and central thalamic neurons (Kimmey et al., 2022). 
MOR activation in these circuits is responsible for the pain-relieving 
actions of opioid analgesics. Opioids also activate MORs in limbic 
brain areas including the ventral tegmental area (VTA), nucleus 
accumbens, and striatum which participate in opioid reward, 
reinforcement, and tolerance (Williams et al., 2013; Adhikary and 
Williams, 2022). Opioid receptor signaling cascades vary across brain 
regions and cellular location. The culmination of opioid actions in the 
CNS are due to both their pre- and post-synaptic effects. Postsynaptic 
opioid actions include, as discussed above, inhibition of adenylyl 
cyclase and increased potassium channel opening with resultant 
reductions in cell excitability and neuronal hyperpolarization. At 
presynaptic sites, opioids close voltage-gated calcium channels and 
thus inhibit neurotransmitter release. Through these mechanisms, 
opioids reduce the transmission of painful signals from the periphery 
through the spinal cord and to the brain, producing their characteristic 
analgesic effects. As related to opioid reinforcement, opioid receptor-
dependent inhibition of GABA release from interneurons in the VTA 
results in activation of the mesolimbic dopamine reward pathway 
through a disinhibition mechanism (Gendron et al., 2016; Charbogne 
et al., 2017; Cooper et al., 2017; Serafini et al., 2020). Through this 
indirect mechanism, opioids increase dopamine release in the nucleus 
accumbens, producing their other characteristic effect, euphoria.

Chronic exposure to opioids can result in opioid tolerance and 
dependence. Although these phenomena are well established, the 
mechanisms and brain regions involved are not clearly elucidated 
(Adhikary and Williams, 2022; Gamble et al., 2022). Opioid tolerance 
may be mediated by alterations in MOR signaling and trafficking. As 
described previously, chronic opioid exposure is associated with a 
downstream adaptive mechanism involving the compensatory 
upregulation of adenylyl cyclase activity and associated cAMP-
dependent signaling (Sharma et al., 1975a,b). Upon opioid removal, 
overshoot in the production of cAMP occurs resulting in increased 
activation of PKA and associated downstream events. The cell 
populations involved in this response have been studied to a limited 
extent and mostly through studies performed in vitro or ex vivo. For 

example, cAMP overshoot and upregulation of cAMP-dependent 
signaling in response to opioid withdrawal has been shown in VTA 
slices of opioid-dependent animals, an effect that results in increased 
GABA transmission (Bonci and Williams, 1997; Madhavan et  al., 
2010). In addition, injection of Rp-cAMPS, an inhibitor of cAMP-
dependent PKA activation, directly into the VTA of morphine-
dependent rats attenuates naloxone precipitated withdrawal symptoms 
(Madhavan et al., 2010). These studies support the role of altered 
cAMP signaling within the VTA in opioid dependence. Other studies 
have focused on neurons in the locus coeruleus (LC) and their role in 
cellular opioid tolerance (Adhikary and Williams, 2022). The LC plays 
a central role in autonomic and stress responses, including those 
induced by opioid withdrawal. Noradrenergic neurons in the LC 
become hyperactive during opioid withdrawal, contributing to 
withdrawal symptoms such as restlessness, anxiety, sweating, and 
tachycardia. In brain slices containing LC neurons of animals treated 
chronically with morphine, acute application of morphine enhances 
MOR desensitization and signal uncoupling as compared with the 
effect in untreated animals (Dang and Christie, 2012; Adhikary and 
Williams, 2022). The degree of desensitization and tolerance varies 
depending on opioid agonist potency and efficacy and on the degree 
of phosphorylation of the MOR C-terminus (Arttamangkul et al., 
2019; Adhikary and Williams, 2022). The phenomenon of MOR 
desensitization is thought to underlie the maintenance of cellular 
opioid tolerance.

Neuroinflammation and its 
contribution to tolerance and 
dependence

While discussing neuroinflammatory responses to opioids, it is 
important to acknowledge its dual role in modulating the general immune 
response, including immunosuppressive, as well as immunostimulatory 
effects. Opioids, particularly morphine and heroin, have been shown to 
dampen various immune functions. This includes the downregulation of 
Natural Killer (NK) cell activity, T and B cell responses, antibody 
formation, and phagocytic activity of neutrophils and macrophages. 
These cells are responsible for phagocytosis, apoptosis regulation, cytokine 
and chemokine release, antibody formation, as well as a variety of other 
tightly controlled immunological processes (Bonilla and Oettgen, 2010; 
Turvey and Broide, 2010; Marshall et al., 2018). Downregulation of these 
cell types result in immunosuppression, which increases risk of infection 
and pathogenesis. Opioids have been shown to decrease the production 
of cytokines and chemokines by immune cells such as macrophages, 
microglia and astrocytes, further contributing to immunosuppression 
(Lefkowitz and Chiang, 1975; Bussiere et al., 1993; Núñez and Urzúa, 
1999; Eisenstein, 2019). The immunosuppressive effects of opioids are 
primarily mediated through MOR activity in immune cells (Gavériaux-
Ruff et al., 1998; Núñez and Urzúa, 1999; McCarthy et al., 2001; Boland 
and Pockley, 2018; Plein and Rittner, 2018; Eisenstein, 2019). Consistently, 
the epidemiological studies have linked high doses and the initiation of 
opioid therapy with a higher risk of infections, such as pneumonia, due 
to impaired immune function (Plein and Rittner, 2018). However, not all 
opioids share the same immunomodulatory properties. For instance, 
buprenorphine has been shown to have a more favorable immunological 
profile compared to morphine and fentanyl, particularly in cancer 
patients, buprenorphine and tramadol treatment may have less 
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detrimental or even beneficial effects on immune function (Franchi et al., 
2007; Boland and Pockley, 2018). Some studies also suggest that morphine 
can stimulate the immune system via binding to MD2, a molecule 
associated with Toll-like Receptor 4 (TLR4) (Alexander and Rietschel, 
2001; Hutchinson et al., 2010; Zhang et al., 2020; Gabr et al., 2021; Thomas 
et al., 2022). TLR4 plays a crucial role in the innate immune response, 
where its activation drives the release of proinflammatory cytokines and 
transcriptional activation (Newton and Dixit, 2012; Gabr et al., 2021). 
However, this hypothesis of opioid immune activation through TLR-4 is 
debated, as morphine is generally found to be immunosuppressive even 
in TLR4-deficient models (Hutchinson et al., 2010; Eisenstein, 2019). 
Immune cells are also known to secrete endogenous opioid peptides that 
bind to peripheral opioid receptors, potentially relieving inflammatory 
and neuropathic pain (Celik et  al., 2016). Together, this indicates a 
complex interaction where opioids can also have immunostimulatory 
effects (Celik et al., 2016; Plein and Rittner, 2018).

TLR4-mediated neuroinflammation in the periaqueductal gray 
(PAG) drives opioid tolerance through soluble TNF signaling. Blocking 
TNF signaling thus can prevent neuroinflammation and preserves 
morphine efficacy (Eidson et al., 2017). Morphine-induced hyperalgesia 
and tolerance are also associated with increased adenosine kinase 
expression and reduced A3 adenosine receptor (AR) signaling. Enhancing 
A3AR signaling with agonists was found to attenuate these adverse effects 
by reducing neuroinflammation (Doyle et  al., 2020). Similarly, both 
morphine and fentanyl activate the NLRP3 inflammasome in glial and 
neuronal cells, leading to neuroinflammation and tolerance. Suppression 
of NLRP3 inhibits tolerance and prevent hyperalgesia (Carranza-Aguilar 
et al., 2022). Thus, the interplay between MOR, TLR4, A3AR, and their 
composite effect on neuroinflammation appears to be  critical in the 
development of opioid tolerance and dependence.

Outside of the CNS, peripheral monocytes play a significant role in 
opioid tolerance and dependence, primarily through their impact on 
immune function and chemotaxis. Opioids such as heroin and morphine 
significantly block the chemotactic response of monocytes, a crucial 
function in immune response, presumably via activation of mu and delta 
opioid receptors in a manner that can be  reversed by naloxone, 
contributing to the functional defects observed in intravenous drug users 
(Pérez-Castrillón et al., 1992). However, transmigration of monocytes 
across the BBB is elevated during opioid use, for example an activation of 
glial and immune cells leads to the production of proinflammatory 
mediators, creating neuroinflammatory state that is fundamental in the 
transition from acute to chronic pain. This neuroinflammation also 
disrupts the analgesic effects of opioids, contributing to the tolerance and 
dependence and the migration of peripheral monocytes into the central 
nervous system (CNS) (Echeverria-Villalobos et al., 2023). Opioids like 
morphine induce the release of extracellular vehicles from astrocytes, 
which contains miR-23a. This miRNA leads to the loss of pericyte 
coverage at the blood–brain barrier (BBB), increasing the influx of 
peripheral monocytes into the CNS and promoting neuroinflammation 
(Liao et al., 2022). Opioids, and other recreational drugs, increase the 
frequency of CD14lowCD16high (non-classical) monocytes in the peripheral 
blood and their translocation into the CNS. Elevated dopamine levels, 
common during substance use, further enhance this transmigration, 
exacerbating neuroinflammation and contributing to neurocognitive 
impairments (Calderon et al., 2017). Chronic morphine exposure in mice, 
especially in the context of HIV-1 infection, facilitates the trafficking of 
inflammatory monocytes (Ly6C+) and T-cells (CD3+) into the CNS, 
driven by chemokine gradients and TLR activation (Dutta and Roy, 2015). 

Chemokines like CCL2 (aka MCP-1) play a crucial role in the 
transmigration of non-classical monocytes across the BBB, which is 
dramatically reduced the CCL2-mediated monocyte transmigration, 
suggesting a potential dual benefit in reducing neuroinflammation and 
treating opioid addiction (Dutta and Roy, 2015; Jaureguiberry-Bravo 
et al., 2018).

Molecular and genetic aspects 
influencing dependence, tolerance, 
and withdrawal

While downstream effects of opioid signaling can result in 
dependence, tolerance, and addiction, there are certain genetic 
responses that can occur that may be implicated in the development 
of tolerance and dependence (Figure 2). One such change that could 
be linked to the development of cellular tolerance is the alternative 
splicing of the OPRM1 gene. There have been 20 alternatively spliced 
isoforms of human MOR identified, with the MOR-1 variant being the 
most studied and defined as the canonical MOR receptor due to it 
being the most expressed form of the receptor (Pan et al., 1999, 2003, 
2005; Pasternak and Pan, 2013; Williams et al., 2013; Regan et al., 
2016; Abrimian et al., 2021; Liu et al., 2021). These isoforms can be full 
length seven transmembrane (7TM) GPCRs, truncated 6TM which 
lack a N-terminal binding domain, or even further truncated 1TM 
receptors. All 7TM spliced variants have different C-terminal domains 
compared to MOR-1 (Abrimian et al., 2021). The different C-terminals 
domains of the 7TM isoforms are shown in Table 1. The C-terminus 
of MOR is phosphorylated following activation and is responsible for 
downstream signaling and β-arrestin recruitment. Since these spliced 
variants contain different C-terminals than MOR-1, they may have 
different phosphorylation sites, resulting in different downstream 
signaling cascades and different abilities to recruit β-arrestin. As a 
result, the isoforms may result in activation of downstream 
dependence-related genes in a different manner than canonical 
MOR-1. Differential downstream gene activation may also provide 
insight into what specific pathways play a role in the development of 
opioid tolerance and withdrawal.

While these spliced variants are expressed at a low level compared 
to MOR-1 at standard physiological conditions, they have been 
shown to be upregulated in response to various stimuli, such as acute 
and chronic morphine treatment, as well as exposure to methadone 
and heroin (Vousooghi et al., 2009; Verzillo et al., 2014; Xu et al., 
2015; Regan et al., 2016; Brown et al., 2022; Donadoni et al., 2022). 
Specifically, the MOR-1X isoform has been shown to be upregulated 
in cell lines following acute and chronic application of morphine, and 
is associated with differential activation of kinases such as ERK1/2 
and p90 RSK1/2 when compared to the MOR-1 isoform (Regan et al., 
2016; Donadoni et  al., 2022). With this, it was also noted that 
morphine treatment increased splicing regulatory factor SRSF1, 
which may play a role in increasing the rate of MOR-1X alternative 
splicing (Regan et al., 2016). The MOR-1X isoform contains a unique 
C-terminal domain with additional phosphorylation sites for kinases 
such as protein PKA, which plays a key role in the cAMP pathway. 
Additionally, MOR-1X has been shown to be  upregulated in the 
medial prefrontal cortex of male human heroin users, as well as in 
cortex tissues obtained from people with HIV (Brown et al., 2022; 
Donadoni et  al., 2022). Chronic morphine exposure additionally 
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upregulates MOR variants MOR-1B2 and MOR-1C1, which has been 
shown to shift G protein coupling from inhibitory to stimulatory 
signaling, contributing to tolerance (Chakrabarti et al., 2021). The 
different MOR isoforms also exhibit different binding affinities for 
different classes of opioids, including both endogenous and 
exogenous ligands (Pan et  al., 2003, 2005). As a result, different 
opioids may result in different downstream signaling by preferentially 
inducing and binding to specific isoforms. Isoform specificity to 
different opioids and differences in downstream signaling may play a 
role in MOR biased agonism. This idea was recently explored by 
Narayan et al. (2021), who showed differences between G protein 
activation and β-arrestin recruitment between six different mouse 
MOR splice variants, each with unique C-terminal domains (Narayan 
et al., 2021).

In addition to the potential roles alternatively spliced 7TM MORs 
may have in opioid signaling, there has been some work looking at the 
effect of truncated 6TM receptors. In mouse studies, it has been 
revealed that the 6TM receptors are essential for opioid analgesia and 
may be targets for novel opioids that lack side effects (Majumdar et al., 
2011; Lu et al., 2018). Using these mouse models, a novel compound, 
IBNtxA, has been identified as a potent 6TM MOR agonist that can 
produce analgesia. Mice that have knock out (KO) for all 6TM 
isoforms show morphine analgesia but lack IBNtxA analgesia. In 
contrast, when mice have KO for all 7TM isoforms, they lack 
morphine analgesia but retain IBNtxA analgesia. Mice with double 
KO for 6TM and 7TM receptors do not respond to either morphine 
or IBNtxA (Majumdar et al., 2011; Lu et al., 2018). While these studies 

were performed using mouse models, they provide novel insight into 
potential actions of 6TM MOR isoforms in humans.

Beyond splice variants, there also have been certain polymorphisms 
of ORs that have been linked to opioid tolerance and dependence. A 
specific single nucleotide polymorphism (SNP) within the OPRM1 
gene, named SNP rs1799971 (A118G), is a prominent target for study 
due to its association with OUD. Several studies have shown an 
association between OPRM1 A118G and development of heroin 
addiction (Shi et al., 2002; Bart et al., 2004; AL-Eitan et al., 2021). It was 
also shown that the A118G variant binds β-endorphin with three times 
the affinity than the standard MOR variant, and that β-endorphin is 
three times more potent at GIRK activation in the A118G form than the 
unaltered form (Bond et  al., 1998). Furthermore, the A118G 
polymorphism has shown an increase in responsiveness to naltrexone 
in humans with alcohol dependence, as well as an decrease in 
buprenorphine efficacy in a murine model of OPRM1 A118G 
(Chamorro et al., 2012; Browne et al., 2017). This suggests that differing 
polymorphisms in the OPRM1 gene may be associated with different 
risks for the development of OUD, as well as being involved in treatment 
efficacy. While A118G polymorphism is the only SNP that has been 
extensively studied, there may be  more of an implication for of 
polymorphisms on an individual’s vulnerability for the development of 
OUD. Another study suggests that genetic modulation, such as single 
point mutation at the MOR T394 phosphorylation site, blocks opioid 
tolerance and increased vulnerability to heroin self-administration 
further validating MOR polymorphisms on dependence, as well as 
identifying as a potential therapeutic target (Wang et al., 2016).

FIGURE 2

Molecular and genetic alterations of MOR, specifically alternative splicing and SNPs, and how they may be involved in dependence and tolerance 
signaling. This cartoon depicts a generically alternatively spliced 7TM C-terminal variant of MOR and a MOR receptor with an SNP on the C-terminal. 
Created in BioRender (https://BioRender.com/p97q223).
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Outside of the context of OUD, an SNP has been identified in 
women of Chinese descent and is associated with fentanyl-induced 
emesis. Women undergoing gynecological surgery were genotyped for 
SNPs in the OPRM1 gene, from which an SNP in the MOR-1X isoform 
was identified that is associated with an individual being 5.6 times more 
likely to develop fentanyl-induced emesis in a postoperative setting 
(Pang et al., 2012).

Clinical treatment of OUD

There are three FDA-approved medications for the treatment of 
OUD, buprenorphine, methadone, and naltrexone. Methadone is an 
opioid receptor full agonist that can assist in mitigating opioid withdrawal 
and craving. Buprenorphine is an opioid receptor partial agonist that 
binds with high affinity to MOR receptors (Greenwald et al., 2014). It 
reduces craving and is an effective treatment option. Both drugs maintain 
tolerance to opioid-induced respiratory depression and hence protect 
patients if they return to opioid use. By binding to the MOR, they also 
diminish the effects of an illicit opioid that might be  consumed. 
Naltrexone, in contrast, is a long-acting opioid receptor antagonist that 
can be  used to treat OUD. Naltrexone will prevent an opioid from 
binding to and activating MOR if the person returns to drug use. In this 
way, the positive effects of opioid use are diminished, and the person is 
protected from a potential overdose. There are some limitations to these 
treatments, namely compliance, access, stigma, and abuse liability of 
methadone and buprenorphine. These medications are most effective 
when combined with psychosocial and/or behavioral therapies. Despite 
these treatment options, relapse rates remain high, ranging from 80 to 
90% within the first year after treatment (Smyth et al., 2010).

In light of these observations, finding more efficacious treatments 
for OUD is a crucial area of focus. Current research has explored a 
variety of different routes to develop better interventions for OUD. One 
area of interest is the development of opioid vaccines (Bremer and Janda, 
2017; Haile et al., 2022). These vaccines can bind to the opioids in the 
periphery and prevent them from being able to cross the BBB into the 
CNS, thus inhibiting their rewarding and reinforcing effects. Haile et al. 
(2022) developed a vaccine against fentanyl and showed that the vaccine 
blocked the effects of fentanyl, but not morphine, in both male and 
female rats. Additionally, they showed that the antibodies generated from 
their vaccine were specific to fentanyl and sufentanil, a fentanyl 
derivative, however were not specific to morphine, methadone, 
buprenorphine, or oxycodone (Haile et al., 2022). As this vaccine is 
specific to fentanyl, it would allow the vaccinated person to still 
be administered the other clinically used opioids mentioned, and as 
fentanyl has become the main illicit opioid being used, this would 
prevent the effects of majority of illicility obtained opioids in the event of 
a relapse (Haile et al., 2022; Ramos-Matos et al., 2024). However, this is 
a vaccine which may have implications in immunocompromised 
individuals, which many people with OUD are. The safety and efficacy 
of a vaccine like this in humans still needs to be explored, however could 
be a powerful preventative measure for people with OUD.

Another potential strategy is to create safer opioids to use in clinical 
settings to prevent the development of OUD. One such area of research 
is utilizing biased agonists which theoretically would produce analgesia 
with reduced reinforcing effects. An example of a biased agonist is 
oliceridine (TRV734), which was approved by the FDA in 2020. 
Oliceridine is a biased MOR agonist with selectivity for the G protein T
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signaling pathway, with reduced β-arrestin signaling which typically is 
associated with opioid adverse effects. Oliceridine showed a decreased 
risk for adverse effects such as constipation and respiratory depression. 
While oliceridine is an effective analgesic, it has similar abuse liability to 
other opioid analgesics both in human and animal studies (Negus and 
Freeman, 2018). Newer G-protein biased MOR agonists are under 
development as better alternatives to oliceridine (Schmid et al., 2017). 
These compounds have higher degrees of bias than oliceridine, however 
their abuse potential needs further study.

Agonists with specificity to MOR splice variants have the potential to 
be effective analgesics that lack reinforcing properties. As mentioned 
previously, IBNtxA has been identified as a MOR 6TM specific agonist 
that produces analgesia in rodent models (Majumdar et al., 2011; Lu et al., 
2018). Further study into splice variant-specific agonists could result in 
the development of safer opioid medications for pain management.

While our rodent models for studying the effects of opioids can 
provide novel insight into behavior, the cellular effects do not completely 
mimic that of a human brain due to differences in genomes. As a result, 
models that better represent the human brain can provide new 
understandings of human specific effects of opioids at the cellular level 
without the need for post-mortem brain tissue. The rise of induced 
pluripotent stem cell (hiPSC) derived 2D and 3D-cell culture models in 
recent years has given us a powerful tool to model the human brain 
in  vitro through the use of primary derived neurons and cerebral 
organoids (hCOs). Researchers have now used hCOs to model the effects 
of opioids on the developing brain to elucidate the impacts of maternal 
opioid use (Yao et al., 2020; Dwivedi and Haddad, 2024). hCOs have also 
been used to model the role that MOR receptors have on pain signaling 
mechanisms (Fernandes et al., 2022). iPSCs derived from patients with 
OUD have been used to generate hCOs and neurons, and have been 
shown to respond to opioids (Sheng et al., 2016; Unterholzner et al., 2021; 
Ho et al., 2024). The use of these models can allow us to examine how 
genetic variations play a role in the development of opioid dependence.

Conclusion

While opioids have been used for thousands of years, there is still 
much we  do not know about the mechanisms underlying the 
development of opioid tolerance, dependence, and addiction (Pasternak 
and Pan, 2013). In order to further elucidate these mechanisms, there are 
many routes that may be explored. One area that should be  further 
explored is the implications of alternatively spliced isoforms on 
downstream opioid mediated signaling. The differences between spliced 
isoform signaling in response to opioids may unveil novel targets for 
treatments of OUD or the development of safer opioid medications. 
Another area that should be  further explored is the mechanisms of 
biased opioid signaling. The mechanisms underpinning biased opioid 
signaling may not only expand our understanding of opioid mediated 
signaling and effects of different exogenous opioids, but it may also 
provide useful insights into potential therapeutic targets. Expanding 
upon biased opioid signaling, the development of opioids for pain and 
analgesia that lack euphoric, reinforcing, and/or rewarding effects by 
biasing toward specific pathways or specific receptor types may allow the 
development of medications with less abuse liability than those 
currently offered.

To further elucidate opioid signaling mechanisms in the CNS, 
the use of human cerebral organoids as a model can provide novel 

insights (Notaras et  al., 2021; Li et  al., 2024). This is especially 
important due to the immunomodulatory effects of opioids on glial 
cells, which will release cytokines upon activation that induce 
changes in other cell types such as neurons. While there are rodent 
models to study these effects, they lack the human genome, so 
observations in rodents may not translate to humans. As such, there 
is a need to establish better models of human opioid effects in the 
lab setting.

In summary, there are many different directions to explore with 
opioid addiction, but it all comes down to this; we  need a better 
understanding of opioid receptor signaling and how opioids produce 
tolerance and dependence. We also need to further understand how the 
proposed mechanisms involved in opioid tolerance and dependence 
interact with each other, since it is clear that no single system or pathway 
is solely responsible for the development of these opioid-
related adaptations.
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