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Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal progressive

neurodegenerative disease characterized by the deterioration of upper and

lower motor neurons. Affected patients experience progressive muscle

weakness, including difficulty in swallowing and breathing; being respiratory

failure the main cause of death. However, there is considerable phenotypic

heterogeneity, and its diagnosis is based on clinical criteria. Moreover, most ALS

cases remain unexplained, suggesting a complex genetic background.

Methods: To better understand the molecular mechanisms underlying ALS, we

comprehensively analyzed, filtered and classified genes from 4,293 abstracts

retrieved from PubMed, 7,343 variants from ClinVar, and 33 study accessions

from GWAS catalog. To address the importance of ALS-associated genes

and variants, we performed diverse bioinformatic analyses, including gene set

enrichment, drug-gene interactions, and differential gene expression analysis

using public databases.

Results: Our analysis yielded a catalog of 300 genes with 479 ALS-

associated variants. Most of these genes and variants are found in coding

regions and their proteins are allocated to the cytoplasm and the nucleus,

underscoring the relevance of toxic protein aggregates. Moreover, protein-

coding genes enriched ALS-specific pathways, for example spasticity, dysarthria

and dyspnea. ALS-associated genes are targeted by commonly used drugs,

including Riluzole and Edaravone, and by the recently approved antisense

oligonucleotide therapy (Tofersen). Moreover, we observed transcriptional

dysregulation of ALS-associated genes in peripheral blood mononuclear cell and

postmortem cortex samples.
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Conclusion: Overall, this ALS catalog can serve as a foundational tool for

advancing early diagnosis, identifying biomarkers, and developing personalized

therapeutic strategies.
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1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a devastating,
progressive neurodegenerative disorder whose hallmark is
the degeneration of both upper and lower motor neurons in
the cerebral cortex, brainstem, and spinal cord (Swinnen and
Robberecht, 2014; Galvin et al., 2017; Hardiman et al., 2017).
ALS is one of the most common adult motor neuron diseases,
representing a significant socioeconomic burden (Logroscino et al.,
2018). Although affected by ethnicity, the global incidence of ALS is
approximately 2 cases per 100,000 person-years with a prevalence
of 6-9 per 100,000 individuals (Martínez et al., 2011; Mehta et al.,
2018; Longinetti and Fang, 2019; Brown et al., 2021; Wolfson et al.,
2023). The number of ALS cases is rapidly increasing, mainly due
to population aging. Furthermore, projections based on a meta-
analysis of reported cases show that the number of ALS patients
worldwide will likely increase to 375,000 in 2040, representing a
69% rise (Arthur et al., 2016). Moreover, the cumulative lifetime
risk for developing ALS is estimated to be 1:350 in men and 1:400
in women (Ryan et al., 2019). The age of onset is approximately
between 50 and 75 years, and even though the rate of disease
progression is variable, most patients die of respiratory muscle
failure within 2-3 years of symptom onset (Masrori and Van
Damme, 2020).

There is considerable variation in the phenotypic expression
of ALS including the onset site, age of onset, type and degree
of motor neuron involvement, disease progression, symptom
severity, and survival time (Tard et al., 2017; Feldman et al.,
2022). Approximately 70% of ALS patients present a spinal onset
characterized by muscle weakness of the limbs, 30% present
with a bulbar onset distinguished by dysarthria, dysphagia, and
dysphonia, and a minority (3-5%) have a respiratory or cognitive
onset (Tard et al., 2017; Masrori and Van Damme, 2020; Feldman
et al., 2022) The bulbar and respiratory onset are generally
associated with a poor prognosis (Kiernan et al., 2011); the former
being more common in women (Salameh et al., 2015). Despite
being predominantly considered a motor disease, ALS patients also
present cognitive and behavioral changes (Beeldman et al., 2020;
Pender et al., 2020). Thus, there is a molecular overlap between
ALS and Frontotemporal dementia (FTD) since approximately 15%
of ALS patients meet FTD diagnostic criteria (Ringholz et al.,
2005; Pender et al., 2020). Due to the heterogeneous presentation
of ALS, diagnostic criteria are available, including the revised El
Escorial criteria (Brooks et al., 2000), the Awaji Shima criteria
(de Carvalho et al., 2008), and recently, the simplified Gold Coast
criteria (Shefner et al., 2020). However, there is no definite test
for ALS diagnosis. Instead, a clinical investigation, consisting of
blood tests, imaging of the brain and spine, and neurophysiological

evaluations, is performed to exclude mimic disorders (Turner and
Talbot, 2013). Thus, there is an urgent need for accurate diagnostic
criteria for ALS to reduce the diagnostic delay (∼1 year after
disease onset), granting early treatment initiation and enabling an
improved prognosis.

ALS is mainly considered a sporadic disease (sALS) because
80–90% of the cases depict no known genetic mutation. In
contrast, 10% of ALS patients have a family history of disease with
an autosomal dominant inheritance pattern (fALS). Intriguingly,
mutations in merely more than 30 genes have been identified
as causative or conferring an increased risk of the development
of ALS, explaining 70% of fALS and only 15% of sALS (Renton
et al., 2014; Chia et al., 2018; Mead et al., 2023). However, the
heritability of ALS, both sporadic and familial, has been estimated
to be approximately 50% (Ryan et al., 2019; Trabjerg et al., 2020).
To explain the heritability of ALS, genome-wide association studies
(GWAS) and next-generation sequencing technologies have led to
the identification of several ALS risk loci (Van Rheenen et al., 2016;
Nicolas et al., 2018; van Rheenen et al., 2021). Nevertheless, these
changes explain less than 10% of ALS cases, suggesting that a large
number of ALS risk genes are still unknown. Known risk genes
converge on common biological pathways such as oxidative stress,
mitochondrial function dysregulation, protein homeostasis, RNA
processing, DNA damage, and excitotoxicity.

Interestingly, mutations in four genes account for 70% of fALS
cases, namely, C9orf72, TARDBP, SOD1, and FUS (Chiò et al.,
2014; Chia et al., 2018). However, the genetic architecture of ALS
is complex because a minority of patients exhibit a monogenic
inheritance, while the majority have an oligogenic pattern
characterized by the inheritance of mutations in several genes.
Furthermore, researchers have identified a shared polygenic risk of
ALS with traits and conditions including smoking, physical activity,
cognitive performance, and educational attainment (Bandres-Ciga
et al., 2019). In addition, unprecedented recent research combining
transcriptomic and epigenetic profiling of motor neurons, GWAS
statistics, and machine learning methods identified 690 potential
ALS-associated genes, representing a 5-fold increase in the
heritability of the disease (Zhang et al., 2022).

Mounting evidence demonstrates the contribution of
numerous genetic variants to the risk of ALS in different cohorts.
However, an updated and comprehensive collection of ALS-
associated genes and variants is needed. To this aim, we performed
a systematic review analyzing 4,293 abstracts from PubMed, 7,343
variants from ClinVar, and 33 study accessions from GWAS
catalog. Furthermore, we performed numerous functional analyses
to verify that our list of genes was associated with ALS.
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2 Materials and methods

2.1 Systematic literature search

A systematic search for relevant articles was performed in
February 2023 using PubTerm (Garcia-Pelaez et al., 2019); a
curation and annotation webtool. Our search strategy included
two main terms and their synonyms: amyotrophic lateral
sclerosis and variants. Articles were restricted to original
research papers and to humans. Thus, the following query
was used: (“Amyotrophic Lateral Sclerosis”[TIAB] OR “Lou
Gehrig”∗[TIAB] OR “ALS”[TIAB]) AND (mutation∗[TIAB] OR
polymorphism∗[TIAB] OR variant∗[TIAB] OR SNP∗[TIAB])
AND English[Language] NOT review[Publication Type] NOT
mouse[TIAB] NOT mice[TIAB] NOT animal∗[TIAB] to retrieve
records from PubMed database (Supplementary Table 1). The
process for record selection followed the Preferred Reporting
Items for Systematic Review and Meta-Analysis (PRISMA)
2020 guidelines (Page et al., 2021), as depicted in Figure 1. Our
systematic literature search was complemented with searches
for ALS-associated variants performed in ClinVar and GWAS
databases as will be described below.

2.2 Curation and gene categorization

Using the PubTerm annotation web tool, we organized
retrieved articles by gene, and we defined criteria for filtering
records (Figure 1). Records corresponding to non-human genes
or to genes resulting from annotation or nomenclature errors
were eliminated. The remaining records underwent a scrutinous
revision through a manual curation of the title, abstract, and
in some cases, the complete manuscript. At least two authors
performed the manual curation. Genes in the following exclusion
categories were filtered out: (1) unrelated, (2) not reported, (3)
conflicting evidence, (4) negative evidence, (5) related disease,
(6) other genetic alteration. Genes were “unrelated” when they
were not associated with ALS or any other neurological disorder.
Additionally, “not reported” genes were those that were related
to ALS, but their variants were not described. Moreover, genes
were annotated as “conflicting evidence” when articles disagreed
on the association of the gene variant with ALS risk. Genes
were noted as “negative evidence” when researchers reported
no association between the gene variant and ALS. Furthermore,
genes with variants found enriched in diseases related to ALS
(neurodegenerative, neuromuscular, neurological) were labeled as
“related disease.” Finally, genes in which the variant was associated
to ALS but there was uncertainty in its locus, or its single-nucleotide
polymorphism (SNP) was found in an intronic or intergenic region,
were considered as “other genetic alterations.”

Abstracts organized per gene were carefully analyzed until
enough evidence was obtained to classify the gene into a relevant
inclusion category. We defined six categories of genes with variants
associated with ALS: (1) gene variants with experimental evidence
of association to ALS, (2) gene variants found in gene exons and
with evidence in a GWAS, (3) gene variants described in a case
report, (4) gene variants found to be related to ALS complications,
(5) gene variants related to treatment response, and (6) genes

(with or without variants) that were suggested as biomarkers
of ALS. Genes that potentially fit more than one category were
assigned to the class with the strongest evidence or the highest
number of supporting abstracts. The resulting genes and their
categories are included in Supplementary Table 2. For every gene,
sentences from abstracts that were critical for assigning a gene’s
category, along with the abstracts’ PubMed ID, were annotated
in PubTerm’s notes. Annotations for each gene are available in
Supplementary Table 3.

2.3 Collection of ALS-associated variants

To find additional genes whose variants were not explicitly
described in PubMed records, we searched ClinVar, a public
database of human variant-phenotype associations (Landrum
et al., 2018). We downloaded ALS associated variants from
ClinVar website1 (Accessed on June 15, 2023) using the search
term “Amyotrophic Lateral Sclerosis.” Variants without a
defined SNP identifier (dbSNP ID) were filtered out. Variants
were assigned a severity score according to their clinical
significance and these scores were used for filtering redundant
variants (same SNP identifier), keeping unique variants of
highest severity (lowest score). Furthermore, only variants
with severity scores in the categories “pathogenic” or “likely
pathogenic” were used for downstream analysis. A list of genes
mapped to variants was compiled and filtered to exclude genes
resulting from the PubTerm revision. The remaining genes were
classified as having experimental evidence of variants. The list of
variants and clinical significance are included in Supplementary
Table 4.

To further collect ALS associated variants, we explored the
GWAS Catalog (Sollis et al., 2023), a comprehensive database
of human genotype-phenotype associations derived from curated
GWAS. All association studies related to the “Amyotrophic
Lateral Sclerosis” trait and corresponding to the MONDO_0004976
disease ontology were retrieved from the GWAS Catalog webpage2

(Accessed on June 15, 2023) and can be found in Supplementary
Table 4. Only unique variants with a defined SNP identifier, and
with a significance p-value less than 5 x 10−8 were considered
for downstream analysis. In the cases of redundant variants (same
SNP identifier), the smallest p-value was considered. A list of genes
spanning the remaining GWAS variants was obtained and filtered
to exclude genes resulting from the PubTerm search.

A catalog of SNP identifiers was compiled from the PubMed,
ClinVar, and GWAS systematic revisions. We extracted genomic
information of each variant from either GWAS, ClinVar or through
the rentrez R package (Winter, 2017). Variants were classified as
intronic, intergenic or exonic according to their genomic location
using Homer annotation tool (Heinz et al., 2010) and the hg38
annotation file version 21 downloaded from GENCODE3. The ALS
variants catalog and relevant genomic information is included in
Supplementary Table 5.

1 https://www.ncbi.nlm.nih.gov/clinvar/

2 https://www.ebi.ac.uk/gwas/home

3 https://www.gencodegenes.org/
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FIGURE 1

Flowchart of literature selection. PRISMA flowchart summarizing the steps of the screening process with details regarding the number of
publications retrieved by the initial query, the number of reports excluded at each screening step, and the number of studies selected for the review
from PubMed, ClinVar, and GWAS.

2.4 In-silico determination of gene
functions

Genes resulting from our systematic review were classified
according to the gene type (protein-coding, non-protein coding
and others) specified in the hg38 GENCODE annotation file
version 21 downloaded from GENCODE (see text footnote 3).
The subcellular location of the molecules coded by each protein-
coding gene was then retrieved from the UniProtKB/Swiss-Prot
database (Bateman et al., 2023) accessed at https://www.uniprot.
org/ on June 15, 2023. The cellular location of the first isoform of
genes coding for multiple isoforms was used. Only records with
a “reviewed” status and “Homo sapiens” category were retrieved.
Additionally, all genes that encode known transcription factors
(TF) were further identified using a list of human TFs obtained
by combining the AnimalTFDB v4.0 (Shen et al., 2023) and the
The Human Transcription Factors database (Lambert et al., 2018)
downloaded from http://humantfs.ccbr.utoronto.ca/ on June 15,
2023 (gene type, subcellular location data, and TF classification are
included in Supplementary Table 6).

2.5 Gene set enrichment analysis

We used ALS associated genes to estimate the enrichment
of gene sets through a hypergeometric statistical test (phyper
R function). We used the msigdbr R package to download the
Molecular Signatures Database (MSigDB) (Subramanian et al.,
2005; Liberzon et al., 2015) and obtained human specific gene
sets (hallmark gene sets, Gene Ontologies, Biocarta, Reactome,
and KEGG pathways). Gene sets with FDR < 0.05 and at least 5

overlapping genes were considered significantly enriched and are
listed in Supplementary Table 7. All protein-coding genes were
considered within the gene universe for the hypergeometric test due
to their propensity of having variants. GraphPad Prism 9 tool was
used to generate Figs depicting the enrichment of significant ALS
related gene sets grouped by clinical phenotype and manifestations.
Overlaps of genes in significant gene sets related to ALS, cognitive
impairment, depression, dementia, and FTD were performed with
the InteractiVenn online tool (Heberle et al., 2015).

2.6 Comparison with canonical and
machine learning-based predicted
ALS-associated genes

The compiled set of ALS-associated genes were compared to an
independently curated list of ALS genes (n = 260) (Eitan et al., 2022)
and to a machine learning-derived set (n = 690) (Zhang et al., 2022).
Lists are included in Supplementary Table 8.

2.7 Analysis of drug-gene interactions

A drug-gene interaction analysis was performed using the
drug-gene interaction repository (February 2022) from The Drug
Gene Interaction Database (DGIdb) (Cannon et al., 2024). We
compiled drug-gene interactions by using the list of ALS-associated
genes as input with default parameters. We downloaded the list of
interactions and filtered them for further analysis and visualization
using Cytoscape V3.10 (Shannon et al., 2003). Genes depicting
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interactions with less than two drugs were filtered out. The full list
of interactions obtained is provided in Supplementary Table 9.

2.8 Differential gene expression analysis

To further assess the relevance of our list of ALS-associated
genes with variants, we performed a differential expression analysis
using two recently available high throughput sequencing ALS
datasets downloaded from NCBI’s Gene Expression Omnibus
(Barrett et al., 2013). We downloaded the FPKM expression matrix
of GSE183204 which includes transcriptomic data of peripheral
blood mononuclear cells isolated from 18 ALS patients and 12
age and sex-matched healthy controls. In this research, authors
stratified ALS patients according to levels of nuclear SOD1 as high
and low (Garofalo et al., 2022). Given that high levels of nuclear
SOD1 are hypothesized to have a protective mechanism in sALS
patients (Garofalo et al., 2022), we compared healthy controls
against sALS patients with low nuclear accumulations of SOD1.
Similarly, we downloaded the collection GSE124439 composed
of transcriptomic datasets obtained from 148 ALS postmortem
cortex samples and 17 neurologically healthy controls (Tam et al.,
2019). In this research, authors identified 3 distinct molecular ALS
subtypes: retrotransposon activation, oxidative stress, and activated
glia. Due to their lowest transcriptional heterogeneity, we selected
samples classified as activated microglia (ALS-glia) to compare
against neurologically healthy controls. Raw count matrixes were
downloaded from GEO.

For the first data set (GSE183204) gene expression values
were log-transformed and quantile normalized whereas the second
data set (GSE124439) was processed using the variance stabilizing
transformation (VST) included in DESeq2 (Love et al., 2014)
and quantile normalization. For each data set we performed a
principal component analysis (PCA) using 1,000 most variable
genes according to the median absolute deviation. Outlier samples
were identified by plotting the first two principal components and
were eliminated from downstream analysis. Focusing only on the
list of ALS-associated genes, we performed a differential expression
analysis using Limma (Ritchie et al., 2015) and DESeq2 (Love et al.,
2014) for the first and second data sets, respectively. Genes with
a normalized expression fold-change > 1.1 and a false discovery
rate (FDR) < 0.1 were considered differentially expressed. The
Gencode v43 human gene annotation file was downloaded3 and
used. All statistical analysis were performed in the R programming
language. Heatmaps of normalized expression matrices depicting
differentially expressed genes were constructed (Figure 6). The
matrices of normalized counts and differential expression metrics
of both public data sets are included in Supplementary Table 10.

3 Results

3.1 The systematic review identifies and
classifies genes with ALS-associated
variants

We performed a systematic review using PRISMA’s standards
to comprehensively collect all genes with variants associated with

ALS. A total of 4,293 abstracts (Supplementary Table 1) matching
the PubMed query described were imported into the PubTerm web
tool (Garcia-Pelaez et al., 2019). Through automatic annotation,
abstracts yielded 2,420 genes that were subsequently filtered
eliminating non-human (n = 978) and incorrectly annotated genes
(n= 427). The remaining 1,015 genes were categorized for exclusion
through a manual screening of the titles and abstracts of all records
associated with each gene. If needed, the complete publications
were reviewed for adequate gene categorization. Overall, we found
294 genes that were not related to ALS nor to any other neurological
disorder and 288 genes described as associated with ALS but
without a variant description. Furthermore, genes related to ALS
with variants described were classified as “conflicting evidence”
(n = 10) or “negative evidence” (n = 44) when studies disagreed
on the association of a gene variant to ALS or when they
reported no association, respectively. The remaining 379 genes
were filtered if their variants were associated with ALS-related
diseases, (neurodegenerative, neuromuscular, and neurological
disorders) (n = 87) or if gene variants were found in intronic or
intergenic regions (n = 43). Overall, our systematic review yielded
249 genes from PubMed with genomic variants related to ALS
(Figure 1).

The resulting genes (n = 249) were further assigned to inclusion
categories according to the type of evidence provided in their
related articles. A total of 120 and 34 genes reported variants
with experimental or GWAS evidence, respectively, whereas 4 and
6 genes depicted variants related to disease complications and
treatment response. Moreover, 19 and 66 genes, were described
as having variants found in case reports or suggested as potential
biomarkers, respectively. The classification of genes in either
exclusion or inclusion categories is depicted in Supplementary
Table 2. The critical sentence considered as supporting evidence of
classification into inclusion or exclusion categories is included in
Supplementary Table 3.

To further collect ALS associated variants, we explored the
ClinVar database (Landrum et al., 2018) and the GWAS Catalog
(Sollis et al., 2023) using the “Amyotrophic Lateral Sclerosis” search
query. We retrieved 7,343 variants from the ClinVar database and
filtered 3,613 variants which lacked an SNP identifier yielding
3,730 variants. The remaining variants were assigned a severity
score based on their clinical significance. A total of 107 variants
were redundant and only those with highest severity (lowest score
corresponding to pathogenic or likely pathogenic) were maintained
(n = 3,623). Interestingly, almost 50% of ALS variants (1,725/3,623)
had an uncertain significance and 13% (474/3,623) were classified
as “Conflicting interpretations of pathogenicity”, suggesting that
more studies associating those genes and their variants to ALS
pathogenesis are needed.

We further filtered variants leaving only those with pathogenic
and/or likely pathogenic scores, yielding 344 variants mapped to
48 genes (included in Supplementary Table 4). The SNP identifiers
of these variants were aggregated to our list of ALS-related SNPs
(Supplementary Table 5). We compared the 48 ClinVar genes to the
list of ALS genes derived from PubTerm and we found that 35 genes
overlapped and were distributed among the inclusion categories of
“With experimental evidence of variants” (n = 32), “With GWAS
evidence” (n = 1), and “Case report” (n = 2). After filtering these
overlapping genes, we obtained 13 genes annotated exclusively in
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TABLE 1 Top 20 genes with the higher number of abstracts associated with ALS with our search query using PubTerm.

Genes No. abstracts Inclusion category ClinVar Clinical significance GWAS

SOD1 1,763 With experimental evidence of variants Yes Pathogenic Yes

TARDBP 717 With experimental evidence of variants Yes Pathogenic No

C9orf72 567 With experimental evidence of variants Yes Uncertain significance Yes

FUS 486 With experimental evidence of variants Yes Pathogenic No

MAPT 118 With experimental evidence of variants Yes Pathogenic No

VCP 112 With experimental evidence of variants Yes Pathogenic No

OPTN 96 With experimental evidence of variants Yes Pathogenic No

SQSTM1 89 With experimental evidence of variants Yes Pathogenic No

ANG 74 With experimental evidence of variants Yes Uncertain significance No

UBQLN2 73 with experimental evidence of variants Yes Pathogenic No

TBK1 71 With experimental evidence of variants Yes Pathogenic Yes

VAPB 69 With experimental evidence of variants Yes Pathogenic No

SETX 53 With experimental evidence of variants Yes Pathogenic No

ALS2 50 With experimental evidence of variants Yes Pathogenic No

ATXN2 46 With experimental evidence of variants Yes risk factor No

PFN1 44 With experimental evidence of variants Yes Pathogenic No

CHCHD 10 37 With experimental evidence of variants Yes Pathogenic No

HNRNPA1 36 With experimental evidence of variants Yes Likely pathogenic No

MATR3 35 With experimental evidence of variants Yes Pathogenic No

KIFSA 27 With GWAS evidence Yes Pathogenic Yes

ClinVar (included in Supplementary Table 4) and we assigned them
to the “experimental evidence” category.

Similarly, from the GWAS Catalog we retrieved 346 variants
reported in 33 different study accessions (27 publications) and
matching the defined query (Supplementary Table 4). We found
85 variants without an assigned SNP identifier, 40 redundant
variants, and 173 non-significant (p-value > 5 ×10−8) variants
and filtered them out. We found significant variants annotated
as intergenic in GWAS Catalog (n = 10) that were mapped to
more than one gene due to their proximity. In such cases, the
same variant was assigned individually to all neighboring genes.
Thus, we obtained 58 variants (48 unique ones) that mapped to
49 genes of which 11 were found in our PubTerm search and
were either classified as having experimental (n = 6) or GWAS
evidence (n = 5). Subsequently, 38 genes found exclusively in the
GWAS Catalog were added to the category of genes with GWAS
evidence of variants (Figure 1). Intriguingly, filtered variants were
derived from studies based mainly on genome-wide/exome-wide
genotyping arrays or targeted genotyping sequencing, potentially
overlooking non-coding variants.

To evaluate the strength of ALS-associated genes we combined
the genes found in all databases, yielding 300 ALS-associated
genes (249 PubTerm, 13 ClinVar, 38 GWAS). From these, 71
genes were found to have at least 5 publications associated in the
PubTerm/PubMed search (Supplementary Table 4). Interestingly,
genes with the highest number of publications are commonly
known ALS-associated genes: SOD1, TARDBP, C9orf72, and FUS
(Table 1). For each gene, we added its inclusion category, and
whether it was found in the Clinvar search after filtering redundant

and unidentified variants. Moreover, for each gene found with
variants in Clinvar, we added its clinical significance. If a gene
had more than one variant, we selected the one with the highest
severity. We also labeled genes with significant (p-value < 5 ×

10−8) variants registered in GWAS Catalog. Surprisingly, only
6 genes (with at least 5 publications) were annotated in GWAS
catalog as having ALS-associated variants, suggesting that more
GWAS studies in diverse ethnicities are needed. We built a
boxplot from the combined datasets to determine if there was a
correlation between a gene’s clinical significance and the number
of abstracts assessed in PubTerm. As shown in Figure 2A, genes
with pathogenic clinically significant variants have a higher median
number of abstracts/publications associated with ALS. Similarly,
the top 20 genes with the highest number of abstracts are all found
in Clinvar and have a pathogenic clinical significance (see Table 1).

To analyze the ALS-associated variants found we compiled a list
of 479 SNP identifiers mapped to 146 unique genes. Most variants
were downloaded from ClinVar (70%), PubMed (16%), and GWAS
(11%), however, a minority were shared among PubMed/ClinVar
(2%) and PubMed/GWAS (1%) as depicted in Supplementary
Figure 1. Furthermore, we extracted genomic information of ALS-
associated variants using rentrez R package (Winter, 2017) and
Homer annotation tool (Heinz et al., 2010). As observed in
Figure 2B, ALS-associated variants are located mainly in protein-
coding regions including exons (31%), promoter-transcription start
sites (TSS) (17%) and transcription termination sites (TTS) (23%).
However, variants are also found in intronic (12%) and intergenic
regions (6%) and the remaining (11%) in regulatory regions such
as long intergenic RNAs (lincRNAs), antisense lncRNAs, and others
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FIGURE 2

Characterization of variants according to clinical significance, genomic location, and subcellular location of proteins. (A) Number of abstracts
(log10-transformed scale) found per ALS-associated gene and the clinical significance category of their variants as classified by ClinVar.
(B) Classification of variants associated with ALS-genes according to their genomic location. (C) Schematic representation of the subcellular
location of proteins coded by ALS-associated genes.

(pseudogenes, and small nucleolar RNAs). A catalog of all compiled
variants, RS identifiers, mapped genes, genomic location, source
database, and region type is found in Supplementary Table 5.

3.2 ALS-associated genes code for
proteins mainly found in the cytoplasm,
cell membrane, and nucleus

To assess the functional relevance of our list of 300 ALS-
associated genes, we searched for gene type information in the
GENCODE annotation file and found that 275, 11, and 4 genes were
classified as protein-coding, lncRNA, and miRNA, respectively.
The remaining 10 genes belonged to snRNA or pseudogene
categories. Furthermore, we analyzed the subcellular location of
ALS-associated proteins using UniProtKB/Swiss Prot database and

found that while the majority of proteins are found in the cytoplasm
(n = 78), cell membrane (n = 62) or nucleus (n = 39), others
are secreted (n = 32) or located in the endoplasmic reticulum
(n = 14) or mitochondrion (n = 12), suggesting diverse dysregulated
cellular pathways. For example, major ALS-related genes C9orf72,
FUS, and TARDBP, are allocated to the nucleus, whereas SOD1, is
found in the cytoplasm. Mutations in TARDBP, FUS, C9orf72, and
SOD1 may result in toxic protein aggregates in neurons, leading to
degeneration in ALS. Interestingly, we found that only 4% (12/300)
of ALS-associated genes including CAMTA1, CEBPD, KCNIP3,
LHX8, MEF2C, MTF1, RUNX2, SFPQ, SREBF1, TFAM, ZNF704
and ZNF746, are annotated as transcription factors. The subcellular
location of ALS-associated proteins is depicted in Figure 2C.
Supplementary Table 6 includes gene type, subcellular location, and
the classification of transcription factors.
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3.3 Functional gene set enrichment
analysis identifies ALS-relevant gene sets

To summarize the biological significance of the ALS-
associated genes found, we performed a gene set enrichment
analysis. To investigate the most significant gene sets across a
variety of domains such as diseases, bioprocesses and cellular
functions, we used the GO, Hallmark Gene Sets, Reactome,
KEGG pathways and the Biocarta databases. Gene sets were
considered enriched with a False Discovery Rate (FDR) < 0.05
and at least 5 overlapping genes. The full list of enriched gene
sets is included in Supplementary Table 7. Similar functional
terms were manually grouped into panels for comprehensive
interpretation and expository purposes as shown in Figure 3.
Significant terms that were related to different components of
ALS were grouped under spinal/muscular, bulbar, respiratory and
upper motor neuron categories. Terms related to biochemical
processes, cellular components and metabolism were grouped in a
physiology category and common ALS phenotypes and symptoms
were classified as “other.”

As expected, Amyotrophic Lateral Sclerosis was identified
as the most significantly enriched disease gene set (−log10
FDR = 66.7). Other significant disease gene sets found included
depression, cognitive impairment, frontotemporal dementia and
dementia, suggesting that ALS-associated genes are part of a
shared genetic background including other neurodegenerative
disorders. Figures 4A,B depict the genetic overlap between
these disorders. Genes like C9orf72, FUS, VCP, TBK1, CCNF,
HNRNPA1, and SQSTM1 among others are common to all
diseases. The pairing of ALS-depression shared the highest number
of genes, sharing 31 of the curated genes. This number is
followed by ALS-cognitive impairment with 22, and finally ALS-
dementia and ALS-frontotemporal dementia with 19 and 15 genes,
respectively.

Enriched gene ontologies included terms classified as
biological processes, cellular components and molecular
functions databases. Among biological processes, the most
significant gene sets contained terms that closely relate to
ALS pathophysiology, for example, neuron death, regulation
of apoptosis, response to oxidative stress, post-transcriptional
protein modification, microglial activation, axonal transport,
mitochondrial organization, vesicle mediated transport, autophagy
regulation and ion transport. Furthermore, the most significant
cellular component terms were related to axons, neuron
projections, dendrites and vacuoles. Likewise, significantly
enriched molecular functions included receptor binding, hydrolase
activity, and growth factor activity.

3.4 Publicly available ALS curated gene
lists and machine learning predictions
overlap with our list of ALS-associated
genes

To further assess the validity of our systematic review, we
compared the list of ALS-associated genes with other curated
lists found in the literature. Zhang et al. (2022) identified 690
ALS risk genes through regional fine-mapping (RefMap), a new

machine learning method that integrates epigenetic profiling with
GWAS summary statistics. Overall, they applied RefMap to ALS
GWAS data, transcriptomic and epigenetic profiling of iPSC-
derived motor neurons (MNs). Their ALS GWAS data used for
RefMap gene enrichment included an independently curated list
of genes (Eitan et al., 2022), and genes from the ClinVar database.
With RefMap, they were able to identify ALS active genomic
regions, which were mostly non-coding. They also determined that
ALS pathogenesis is initiated in the distal axon of affected MNs.
Finally, they established KANK1 as novel ALS gene, which is found
in human neurons and leads to TDP-43 mislocalization (Neumann
et al., 2006; Zhang et al., 2022). After manually comparing our list
with theirs, we observed an overlap of 16 genes, including KANK1.

Eitan et al. (2022) performed a region-based burden analysis of
variants in untranslated regions, including microRNAs (miRNAs),
of ALS whole-genomes and non-ALS controls. They used
whole-genome sequencing data from Project MinE ALS and
NYCG ALS to analyze regions of interest. After performing
the region-based burden test, where they combined rare genetic
variants with minor allele frequencies (MAF) ≤ 0.01 to weigh
their contribution to ALS, they identified 260 candidate genes
associated to sporadic ALS. Overall, the strongest association
found was for the untranslated region of IL18RAP, which was
considered as a protective non-coding allele that reduces the
chance of developing ALS five-fold and delays the onset in
people who develop the disease. After comparing the three
lists and eliminating duplicates, we observed that 29% (86/300)
of our ALS-associated gene list has been reported in two
independently curated lists of ALS-associated genes (Eitan et al.,
2022; Zhang et al., 2022) as depicted in Figure 4C. Intriguingly,
only 6 genes are found in the overlap between the three
data sets. The lists of genes are included in Supplementary
Table 8.

3.5 Drug-gene interactions analysis
reveals hub genes

The druggable genome consists of the group of genes that are
known or predicted to interact with drugs in diverse conditions
or disorders. To explore which of the ALS-associated genes found
are part of the druggable genome, we used the DGIdb (Cannon
et al., 2024) which contains over 10,000 genes and 20,000 drugs
involved in nearly 70,000 drug-gene interactions. We identified a
total of 2,836 drug-gene interactions involving 120 genes included
in our systematic review. Among those, 357 interactions had a
defined interaction type (inhibition, modulator, agonist, among
others) and 2,479 had non-specific interactions. The full list
of the retrieved interactions can be found in Supplementary
Table 9. A drug-gene interaction network including only defined
interactions and genes interacting with more than 2 drugs was
created for visualization purposes (Figure 5). Even though non-
specific, we added Edaravone and its interactor CYP1A2 into
the network to overview both FDA-approved drugs for the
treatment of ALS (Edaravone and Riluzole). Interestingly, the
network analysis revealed that two genes that encode alpha subunit
proteins of sodium channels, SCN4A and SCN7A, have the
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FIGURE 3

Highly enriched gene sets and ontologies classified. We identified (hypergeometric test with FDR < 0.05 and at least 5 common genes). Enriched
gene sets were grouped by relevant physiological categories. Enrichment is indicated as -log10(FDR) in black bars and the number of common
genes is represented with the yellow line. AB, Abnormal; UMN, Upper Motor Neuron; REG. Regulation; SYN, Synaptic.

highest amount of drug interactions, and can also be inhibited by
Riluzole.

SCN4A encodes for a voltage-gated sodium channel and
SCN7A for a type II sodium channel whose activation is
proportional to the extracellular sodium concentrations,
thus mediating sodium homeostasis. These channels are
essential for proper neuronal and muscular membrane
depolarization during an action potential. There are two
proposed mechanisms through which mutations in SCN4A
can lead to an ALS phenotype. The first is through excessive
sodium permeability leading to hyperexcitability and excitotoxicity
or via retrograde motor neuron toxicity caused by muscular
hyperexcitability (Franklin et al., 2020). SCN7A loss of
function has been proposed to disrupt extracellular sodium

homeostasis and lead to neuron hyperexcitability (Franklin et al.,
2020).

The main therapeutic action of Riluzole is through the
down-regulation of glutamic acid neurotransmission leading to a
diminished neuronal excitotoxicity. Part of this effect is due to
the inhibition of glutamate release from presynaptic dendrites,
which may be down-regulated by the drug’s role as a modulator
of voltage-gated sodium channels (Doble, 1996; Mohammadi et al.,
2002; Sever et al., 2022). The modulation on the propagation of
action potentials indirectly diminishes glutamate exocytosis, hence,
excitotoxicity. Riluzole has been described to act on a variety of
sodium channels and their subunits (Song et al., 1997; Weiss et al.,
2010), including SCN7A and SCN4A, which are also reported
on The ChEMBL Bioactivity Database (Mendez et al., 2019).
Whether the effect of Riluzole on mutant SCN7A and SCN4A is
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FIGURE 4

Comparison of ALS-associated genes with disorders depicting similar symptoms and curated/machine-learning ALS lists. Venn diagrams depicting
the ALS-associated genes that are common and specific between different enriched human phenotype gene sets. (A) ALS, Cognitive Impairment,
and Depression. (B) ASL, Dementia, and Frontotemporal Dementia (FTD). (C) Venn diagram depicting common genes between ALS-associated
genes and an independently curated list of ALS genes proposed by Eitan et al. (2022) and a list of genes inferred by Zhang et al. (2022) through a
machine learning approach using transcriptomic and epigenomic cell profiling. The list of genes proposed in this Venn diagram are referred to as A,
while those proposed by Zhang et al. and Eitan et al. are labelled as B and C respectively. (D) List of the common genes found in the comparisons
depicted in subsection (C).

intact, has not yet been studied. There are two case reports of
patients with SCN4A mutations who were treated with Riluzole
and died less than 2 years after symptom onset (Franklin et al.,
2020). It is possible that Riluzole’s effectivity may be partially

compromised in patients that are known carriers of mutations in
these genes.

Interestingly, three of the genes with the most common and
penetrant ALS mutations known (TARDBP, FUS, and SOD1) depict
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FIGURE 5

Drug-gene interaction network. Drug-gene interaction network depicting drugs (Blue, Yellow) targeting relevant ALS-associated genes (green)
found in the systematic review. Hub genes with the highest number of targeting drugs are shown. Arrow colors indicate the interaction category.

drug targets, however, their interaction type is not categorized
and thus they are not shown in the network (Figure 5). An
outstanding example are the variants of SOD1 which are targeted
by Tofersen, an antisense oligonucleotide (Miller et al., 2022)
Tofersen, a treatment designed specifically for SOD1-associated
ALS was approved in April 2023 by the FDA after clinical trials
(Miller et al., 2020, 2022; Benatar et al., 2022). Tofersen, being
an antisense oligonucleotide, works by binding the mutant SOD1
transcripts and reducing their synthesis (Weishaupt et al., 2024).

Among the genes with interactions classified as “non-specific,”
CYP1A2 was found to be targeted by Edaravone, an FDA approved
drug for ALS treatment. Edaravone’s mechanism of action is still
unclear, however, it is described as a reactive oxygen species
scavenger. It is thought to trap free radicals and increase the
expression of nuclear factor-erythroid factor 2 related factor (NrF2)
which activates antioxidant response genes, thus protecting cells
from ferroptosis (Homma) (Johnson et al., 2022; Soares et al.,
2023). Even though Edaravone has been broadly approved for ALS
population, its main benefit is in patients with definite or probable

ALS either with milder symptoms (scoring at least 2 points in each
of the items in the ALSFRS-R) or a disease duration less than 2 years
(Soares et al., 2023).

3.6 Transcriptional dysregulation is
observed in ALS public databases

To evaluate the transcriptional dysregulation of ALS-associated
genes, we downloaded two ALS and neurologically healthy controls
datasets corresponding to peripheral blood mononuclear cells
(GSE183204) and postmortem cortex samples (GSE124439). Raw
count matrices were log-transformed and normalized, and outlier
samples were identified using PCA plots depicting 1,000 most
variable genes. In the first dataset (GSE183204), consisting of
peripheral blood mononuclear cells of ALS patients with low
levels of nuclear SOD1 and age and sex-matched healthy controls
(Garofalo et al., 2022), we identified four outlier samples (3 controls
and 1 ALS). The remaining 9 ALS samples and 9 controls were
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FIGURE 6

Heatmaps of differentially expressed ALS-associated genes in public ALS databases. The differential expression of ALS-associated genes was
evaluated in (A) peripheral blood mononuclear cells (GSE183204) (Garofalo et al., 2022) and (B) postmortem cortex samples (GSE124439) (Tam
et al., 2019). Raw count matrices were log-transformed and normalized. Genes were considered differentially expressed with fold-change > 1.1 and
FDR < 0.1. Gene expression is depicted as row-z-scores.
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compared. We focused on the list of ALS-associated genes and
found 52 differentially expressed genes using Limma (Ritchie et al.,
2015) with fold-change > 1.1 and FDR < 0.1. The heatmap of
Figure 6A shows the row z-scores of the 52 differentially expressed
genes which clearly separate ALS cases from healthy controls. As
observed, the majority of ALS-associated genes are downregulated
(39 down vs. 13 up). The top 5 most downregulated genes include
CXCR4, CYLD, HLA-DRA, MATR3, and C9orf72.

Similarly, we identified and filtered three outlier samples in
the postmortem cortex dataset (GSE124439) corresponding to two
controls and one ALS sample. The remaining 27 ALS samples,
classified as activated microglia by the authors (Tam et al., 2019),
were compared against 15 neurologically healthy controls using
DESeq2 (Love et al., 2014). We found 163 differentially expressed
genes with a fold-change > 1.1 and FDR < 0.1 (Figure 6B). From
these genes, 89 were downregulated and 74 upregulated in ALS
samples, suggesting a more robust dysregulation in postmortem
cortex tissue than in peripheral blood mononuclear cells. The top
5 differentially expressed genes are upregulated and they include
PXK, MOBP, SH3TC2, MBP, and MOB3B. Interestingly, Myelin
Basic Protein (MBP) and Myelin-Associated Oligodendrocyte Basic
Protein (MOBP) are both involved in oligodendrocyte-driven
myelination whereas SH3 domain and tetratricopeptide repeats-
containing protein 2 (SH3TC2) is thought to be expressed in the
Schwann cells that wrap the myelin sheath around nerves (Stendel
et al., 2010; Barateiro et al., 2016). These results support the
proposition that oligodendrocyte dysfunction and myelin damage
contribute to neuronal death in ALS (Kang et al., 2013). The
molecular role of PXK and MOB3B in the pathophysiology of ALS
is not clear. However, they are involved in cellular processes related
to synaptic transmission, neuroprotection, and maintenance of
cellular integrity (Mao et al., 2005; Takeuchi et al., 2010; Elkholi
et al., 2023). The matrices of normalized counts and differential
expression metrics of the expression of ALS-associated genes in
the peripheral blood mononuclear cell and postmortem cortex
samples are included in Supplementary Table 10. As observed in
Figure 7, 28 ALS-associated genes are differentially expressed in
both databases, depicting 23 genes with a significant fold-change
in the same direction. See list of common differentially expressed
ALS-associated genes and their fold-changes in each database in
Supplementary Table 10.

4 Discussion

In ALS, pathological processes arise mainly from toxic gain-of-
function, loss-of-function or toxic aggregates of proteins derived
from variations/mutations in genes. Until recently, the number of
ALS genes was only 40 (Chia et al., 2018; Goutman et al., 2018)
and isolated efforts have been performed to increase this number
using multi-omics and machine-learning approaches (Eitan et al.,
2022; Zhang et al., 2022). Hitherto, we performed a systematic
review to identify genes with variants associated with ALS. We
comprehensively analyzed, filtered, and classified genes from 4,293
abstracts retrieved from PubMed, 7,343 variants from ClinVar,
and 33 study accessions from the GWAS catalog. Our analysis
yielded 300 genes with 479 ALS-associated variants. These genes
were classified according to their association with ALS and the

highest number of them were assigned to the experimentally
validated group. Furthermore, other genes with ALS variants were
classified as having GWAS evidence or suggested as a biomarker. As
expected, the genes with the highest number of related publications
are those with the most common and penetrant ALS mutations
known: C9orf72, TARDBP, FUS, and SOD1 (Goutman et al.,
2018). Moreover, the top 20 genes with the highest number
of publications depict mainly pathogenic variants. Interestingly,
71% of ALS-associated variants are found in protein-coding
regions (exons, TSS, and TTS), as opposed to what has been
reported describing that most disease-associated variants are in
non-coding regions (Smigielski et al., 2000; Hindorff et al., 2009).
Furthermore, our results show that ALS associated genes are largely
protein-coding with enzymatic activity. Although our aim was
to capture both coding and noncoding variants associated with
ALS, our search strategy was optimized for sensitivity to gene-
linked evidence, thereby prioritizing variants with established gene
associations. As a result, non-coding variants located in intergenic
or enhancer regions without annotated gene links were excluded.
While this may have introduced a gene-centric bias, the lack of
gene annotation in these regions meant their inclusion would not
have impacted our downstream analyses. Still, these non-coding
elements remain underexplored and may play a more significant
role in ALS pathogenesis as has been suggested (Cooper-Knock
et al., 2021; van Rheenen et al., 2021). Moreover, to fully address
the importance on non-coding variants, more whole-genome
sequencing GWAS studies are needed.

We also investigated the molecular function and subcellular
location of the proteins coded by our list of ALS-associated genes
and found that 26% and 21% were found in the cytoplasm and
in the nucleus, respectively, confirming that pathophysiological
mechanisms of ALS include disturbed RNA metabolism, impaired
autophagy/proteostasis, impaired DNA repair, and cytoskeletal
defects (Nguyen et al., 2018). Moreover, we found significantly
enriched gene sets relevant to ALS pathophysiology using our list
of ALS-associated genes and we observed genetic overlap between
other neurodegenerative disorders; for example, depression,
cognitive impairment, frontotemporal dementia and dementia.
This genetic overlap underlies the shared disease symptoms and
supports the difficulty in their diagnosis.

We found that 29% of our list of ALS-associated genes has been
reported in a manually curated and a machine-learning predicted
list. This results likely reflect distinct biological dimensions of ALS,
with literature-supported annotation versus data-driven functional
predictions. The minimal convergence observed across gene sets
suggests that machine learning and transcriptomic methodologies,
while powerful, may not yet capture the full spectrum of ALS-
relevant genes recognized in the literature, or are designed to
selectively target rare genetic regions.

To analyze potential drugs for repurposing, we explored the
drug-gene interactions using our list of ALS-associated genes.
We retrieved a list of potential drugs targeting ALS-associated
genes, including commonly used drugs (Riluzole and Edaravone)
and recently FDA-approved drugs (Tofersen). Tofersen is a novel
category of drugs consisting of antisense oligonucleotides that
bind transcripts originating from genes with specific variants
therefore reducing the synthesis of the mutant protein and thus
decreasing its toxic effects. It is important to mention that these
drugs only provide benefit in individuals carrying the specific
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FIGURE 7

Comparison of differentially expressed ALS-associated genes. Comparison of log2-fold changes of differentially expressed ALS-associated genes
found in two public databases (GSE183204) (Garofalo et al., 2022), (GSE124439) (Tam et al., 2019). Axes represent log2-fold changes. The regression
line is depicted in red.

gene variants, highlighting the importance of genetic screening
and GWAS studies. Moreover, an increasing number of antisense
oligonucleotide genetic drugs are being developed (Crooke et al.,
2021), thus it is important to compile comprehensive catalogs of
variants and genes associated with ALS.

We hypothesized that ALS-associated genes would depict
transcriptional dysregulation and to verify it, we downloaded
two public ALS data sets corresponding to samples from
peripheral blood mononuclear cells and postmortem cortex (Tam
et al., 2019; Garofalo et al., 2022). We performed a differential
expression analysis and found that 17% and 54% of our list
of 300 ALS-associated genes were significantly dysregulated
in peripheral blood mononuclear cell and postmortem cortex
samples, respectively. Interestingly, even though the fold-changes
were considerably higher in the postmortem cortex samples, 28
genes were differentially expressed in both data sets, with 23
of them depicting dysregulation in the same direction. These
results suggest that transcriptional dysregulation is not only
observed in neurons, but also in mononuclear cells, thus, these
transcripts are potential biomarkers of ALS. Among the common
ALS-associated dysregulated genes, we found PXK, MOB3B, and
CXCR4. Intriguingly, while the role of PXK and MOB3B in
ALS remains elusive, researchers have demonstrated that they are
involved in synaptic signaling and axonal survival and maintenance
(Mao et al., 2005; Elkholi et al., 2023). Similarly, increasing evidence

is implicating the CXC chemokines/cognate receptors signaling
axes in the pathophysiology of ALS, suggesting that monitoring
CXC-ligands (e.g. CXCR4) in ALS is important for tracking disease
progression (La Cognata et al., 2024).

Several limitations in ALS genetic research should be
highlighted. One significant challenge is the discrepancy between
the number of ALS-related genes identified in PubMed compared
to ClinVar or GWAS databases. This suggests a need for more
comprehensive genetic studies and better registration practices,
particularly in ClinVar, to ensure clinical significance and facilitate
the application of findings. Furthermore, the heterogeneity in study
design and data analysis complicates the integration of findings
across studies, underscoring the importance of standardized
methodologies and reporting practices. Another critical limitation
is the lack of reproducibility across independent cohorts, often
influenced by differences in sample size, geographic regions, and
genetic backgrounds. Addressing these issues is vital for advancing
ALS genetic research. Finally, there remains a significant gap
in studying underrepresented ethnic populations. Most genetic
research in ALS has focused on populations of European descent,
leaving many other ethnic groups largely unexplored. Expanding
genetic studies to include diverse populations is critical to gaining a
comprehensive understanding of ALS pathogenesis and addressing
disparities in disease outcomes.
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Overall, this systematic review consolidates data from multiple
databases to create a comprehensive catalog of genes and
variants associated with ALS, presenting promising candidates
for further validation studies. Our findings emphasize the need
to transition from genetic associations to larger, more diverse
case-control and cohort studies to deepen our understanding
of ALS pathogenesis. Additionally, registering these variants in
databases like ClinVar can enhance their utility in clinical and
research contexts.
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