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In this study, we present a mixed-signal framework that utilizes MRAM

(Magneto-resistive Random Access Memory) technology to emulate behaviors

observed in biological neural networks on silicon substrates. While modern

technology increasingly draws inspiration from biological neural networks, fully

understanding these complex systems remains a significant challenge. Our

framework integrates multi-bit MRAM synapse arrays and analog circuits to

replicate essential neural functions, including Leaky Integrate and Fire (LIF)

dynamics, Excitatory and Inhibitory Postsynaptic Potentials (EPSP and IPSP),

the refractory period, and the lateral inhibition. A key challenge in using

MRAM for neuromorphic systems is its low on/off resistance ratio, which limits

the accuracy of current-mode analog computation. To overcome this, we

introduce a current subtraction architecture that reliably generates multi-level

synaptic currents based on MRAM states. This enables robust analog neural

processing while preserving MRAM’s advantages, such as non-volatility and

CMOS compatibility. The chip’s adjustable operating frequency allows it to

replicate biologically realistic time scales as well as accelerate experimental

processes. Experimental results from fabricated chips confirm the successful

emulation of biologically inspired neural dynamics, demonstrating the feasibility

of MRAM-based analog neuromorphic computation for real-time and scalable

neural emulation.

KEYWORDS

analog neural network, biological neural network, refractory period, lateral inhibition,
inhibitory post synaptic potential

1 Introduction

Neuromorphic circuits have been proposed as a promising path for advancing the
next generation of computing technologies by drawing inspiration from the organizing
principles of biological nervous systems (Basu et al., 2022; Indiveri and Horiuchi, 2011;
Indiveri et al., 2011; Mead, 1990; Thakur et al., 2018; Yang et al., 2020). A wide range
of neuromorphic architectures and large-scale emulation systems have been reviewed
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and compared in recent studies, highlighting their potential to
efficiently replicate the computational capabilities of biological
neural networks while addressing energy and scalability challenges
(Thakur et al., 2018). These circuits not only emulate the
computational capabilities of individual neurons but also employ
spiking representations for communication, learning, memory,
and computation. However, despite their reliance on biological
neural networks as a reference, our understanding of these complex
systems remains limited.

Research efforts have been actively directed toward capturing
more detailed signals in biological neural networks. For instance,
recent developments have introduced nano-electrode arrays
(Abbott et al., 2020) capable of recording signals in biological neural
networks. These arrays allow for the cultivation of neural networks
directly on the surface of an integrated circuit, establishing
connections with neurons. These developments motivate the need
for hardware platforms capable of real-time interaction with
biological signals, operating at biologically realistic time scales, and
supporting biologically meaningful behaviors such as the refractory
period and lateral inhibition.

Numerous prior studies have incorporated biological neural
networks into circuits and systems. However, in most of these
studies, synaptic weights were stored using SRAM (Akopyan et al.,
2015; Benjamin et al., 2014; Bose et al., 2020; Chen et al., 2019;
Davies et al., 2018; Merolla et al., 2011; Schemmel et al., 2010;
Schemmel et al., 2010; Seo et al., 2011; Zhao et al., 2019) or
memristor devices such as RRAM or PCM. (Burr et al., 2015; Chiu
et al., 2023; Jo et al., 2010; Kulkarni et al., 2019; Ostwal et al., 2019;
Park et al., 2013; Sun et al., 2018; Valentian et al., 2019; Verma
et al., 2023; Vincent et al., 2015; You et al., 2023; Zamarreño-
Ramos et al., 2011; Zhang et al., 2018), while computation was
performed through digital methods (Painkras et al., 2013; Stuijt
et al., 2021). Although several works have explored the use of
MRAM (Chiu et al., 2023; Kulkarni et al., 2019; Ostwal et al., 2019;
Verma et al., 2023; Vincent et al., 2015; You et al., 2023), they
have predominantly focused on simulation-level evaluations. Based
on the existing literature, there has been no prior demonstration
of a fabricated neuromorphic system employing MRAM that
incorporates biologically inspired neural architectures with analog
membrane potential dynamics. In this work, we explore the use
of MRAM for implementing synaptic weights due to its non-
volatility, CMOS compatibility, and process maturity (Basu et al.,
2018; Na et al., 2020). While MRAM has notable benefits, it presents
a key challenge for use in biologically plausible analog systems:
its low on/off resistance ratio, which limits accurate current-
mode analog computation within mixed-signal architectures. The
proposed architecture introduces a current subtraction method
that compensates for MRAM’s limited resistance contrast and
enables reliable multi-level current generation. Specifically, the
configurable timing via global clock (GCLK) controlling synaptic
integration and AXON input timing can be set between 1 kHz and
50 kHz, covering biological firing rates (e.g., 1–100 Hz) as well
as accelerated conditions for faster experimentation. Furthermore,
the architecture is implemented in a modular local cluster format,
consisting of MRAM synapse arrays, analog neuron circuits, and
interface blocks. While this paper focuses on a single-cluster
implementation, multiple clusters can be tiled together using
packet-based routing (TX/RX/Router), enabling scalability toward
a complete, large-scale system.

The rest of this paper is organized as follows. Section 2.1
presents the comprehensive architecture featuring MRAM circuits
and details the types of neural behaviors from biological neural
networks that the proposed design can emulate. Section 2.2
describes the design and implementation of the proposed mixed-
signal architecture. Section 3 covers the measurement procedures
and results. Finally, Section 4 provides a summary of the findings.

2 Materials and methods

2.1 Neural network basics and a
comprehensive architecture with MRAM

2.1.1 Overall architecture
Figure 1A provides an overview of the comprehensive

architecture for mixed-signal neural emulation, which is primarily
composed of three key elements: the memory array, the memory
read and current generation circuit, and the integrator circuit.
The memory array consists of threshold weights and synaptic
weights, with each synaptic weight represented by three bits. The
synapse bit-width (currently 3 bits) is flexible and can be adjusted
depending on system requirements; however, such changes would
require corresponding modifications to the peripheral control
logic. The memory read and current generation circuit, detailed
in section 2.1.3, plays a crucial role in this architecture. The
architecture represents a local neuron cluster comprising K AXONs
and N DENDs, where K = N = 16 in the implemented chip.
K and N denote the network’s input and output scalability
dimensions, respectively. In Figure 1, only the WL and BL are
shown for simplicity, providing a high-level overview of the
crossbar architecture. Each cluster includes 16 × 51 MRAM cells:
16 × 48 cells for storing actual synaptic weights and 16 × 3 cells
for PSP reference circuits, supporting current-mode differentiation.
Further details are provided in Figure 5B. In addition, the 2 × 6
MRAM cells are allocated for threshold storage, and 18 × 2 MRAM
cells are used as read references to facilitate reliable state sensing.
Multiple local clusters can be tiled together using interface circuits
to scale up the network size. The global clock (GCLK) governs the
axon input cycle, while the local clock (LCLK) controls the synapse
operations.

When an AXON spike arrives in synchronization with GCLK at
the local cluster, the pulse shaping logic activates internal switches
using LCLK to control the memory array and integrator circuit. The
spike input is converted to a word line (WL) input by the pulse
shaping logic and WL drivers, enabling the control of the memory
array through bit line (BL) and source line (SL) drivers. While input
timing in biological neural networks is inherently unsynchronized,
circuit designs often assume specific input frequencies to ensure
proper functionality. The integrator timing switch logic activates
several key switches, including reset, integration time, comparator,
and leakage switches, as detailed in section 2.2.1. The current
generated by the memory read and current generation circuit-
determined by the synaptic weight-is subsequently passed to the
integrator. Depending on the resulting current, the DEND may
fire a spike, emulating the action potential generation process in
biological neurons.
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FIGURE 1

Cluster design for mixed-signal neural emulation. (A) Single cluster architecture with K axons and N dendrites. (B) MRAM array architecture.

Figure 1B elucidates the structure of the memory array,
effectively representing the synapse. The WL of the memory
receives the transmitted stimuli from the axon, and the column’s
output transmits the resulting information to the dendrite. Each
synaptic weight consists of a 3-bit memory that can be programmed
individually. The current generation circuit applies different
current mirror ratios (e.g., x1, x2, or x4) to set the weights in binary
form. Depending on the programmed MRAM values, the synapse
can implement either an Excitatory Postsynaptic Potential (EPSP)
or an Inhibitory Postsynaptic Potential (IPSP). This EPSP/IPSP
distinction is visually represented in the figure using solid- or
dashed-line boxes, and it applies exclusively to the MRAM synaptic
weights. No such distinction is made for AXONs or DENDs, as
these components in the figure represent only the signal flow
path—AXONs deliver input spikes, and DENDs receive integrated
current and generate output spikes. Each column shares its current
generation circuits, allowing simultaneous inputs to be integrated
within the column. This shared structure emulates biological spatial
summation by summing the incoming currents at the dendritic
side.

In addition to synaptic weights, the memory array also includes
threshold weights, which determine the neuron’s firing threshold
by setting the duration of the integration window. These threshold
values are stored in dedicated MRAM cells—six MRAM devices
per cluster—and are shared by all neurons within the local
cluster. This shared threshold reference is used by the integrator
timing switch circuit to adjust the integration time window and
ensure consistent integration behavior across neurons. While more
granular threshold control (e.g., per-column or per-neuron) is
possible, it was not implemented in this work to maintain area
efficiency and circuit simplicity.

2.1.2 Biological neural networks
Neurons transmit information through synapses, where

electrical impulses travel from the axon of a pre-synaptic neuron

to the dendrite of a post-synaptic neuron, as illustrated in
Figure 2A (Abbott et al., 2020). Figure 2B shows the recorded
membrane potential of cultured neurons from (Abbott et al., 2020),
demonstrating that when a pre-synaptic neuron generates a spike,
it propagates across the synapse, causing an increase in the post-
synaptic neuron’s membrane potential. In this context, “S” denotes
a stimulus, “AP” represents an action potential, and “PSP” stands
for post-synaptic potential. When the membrane potential exceeds
a defined threshold, the post-synaptic neuron fires a spike and then
returns to its resting potential.

The Leaky Integrate-and-Fire (LIF) model abstracts this neural
behavior into three key processes: input integration, leakage, and
firing/reset. Neurons integrate incoming stimuli, with the PSP
reflecting changes in membrane potential. The "leaky" property
refers to the gradual decay of membrane potential over time in
the absence of new input, representing the neuron’s tendency to
return to its resting state. When the integrated membrane potential
surpasses the threshold, the neuron fires and resets.

Figure 2C illustrates membrane potential variations at different
stages (Yang et al., 2020). In the resting state (approximately –70
mV), the neuron is polarized. A stimulus induces depolarization,
and if the potential exceeds the threshold, an action potential
is triggered, followed by repolarization and, occasionally,
hyperpolarization before returning to the resting state.

Post-synaptic potentials (PSPs) can be either excitatory (EPSP)
or inhibitory (IPSP), depending on the nature of the stimulus. The
likelihood of generating an action potential depends on whether the
combined effect of stimuli causes a sufficient increase in membrane
potential. Multiple EPSPs and IPSPs can summate spatially or
temporally to influence the neuron’s firing behavior.

While the LIF model captures fundamental neural dynamics,
real neurons exhibit additional complexities, including the
refractory period and lateral inhibition. The refractory period,
depicted in Figure 2C, consists of an absolute phase—during
which the neuron is unresponsive to stimuli—and a relative phase,
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FIGURE 2

Neuron transmission and membrane potential. (A) Stimulus transmission between pre-neuron and post-neuron. (B) Membrane potential of a real
biological neuron during stimulus transmission. (C) Membrane potential corresponding to different neuron states.

which requires a stronger-than-usual stimulus to elicit a response.
Lateral inhibition, commonly observed in visual neurons, prevents
adjacent neurons from firing immediately after one has fired.
This mechanism plays a critical role in visual processing and is
exemplified by phenomena such as the Hermann grid illusion.

2.1.3 MRAM as synapse array
In this study, MRAM is chosen to represent synaptic weights

due to its non-volatile nature. These characteristics ensure
the retention of synaptic weight information, particularly in
experiments that replicate the operations of biological neural
networks, as demonstrated in Abbott et al. (2020), or in scenarios
involving learning capabilities. Furthermore, MRAM provides
advantages such as fast data processing, low power consumption,
and easy integration, owing to its compact size (Basu et al., 2018;
Na et al., 2020).

2.1.3.1 Characteristics of MRAM

MRAM utilizes a magnetic tunneling junction (MTJ), which
consists of a pinned layer and a free layer made of ferromagnetic
material, separated by an insulating oxide layer. As depicted in
Figure 3A, the resistance of MTJ is determined by the direction
of current passing through it, resulting in two distinct resistance
states: the low-resistance parallel state (LRS, P) and the high-
resistance anti-parallel state (HRS, AP) (Na et al., 2020).

Figure 3B illustrates the 1T1M MRAM configuration, including
one access transistor and one MTJ. The access transistor is
connected to the pinned layer of the MTJ, with its source connected
to the MRAM’s source line (SL) and its gate connected to the word
line (WL). Meanwhile, the free layer is linked to the bit line (BL) of
the MRAM. To write data into the MRAM cell, the current flows
either from the pinned layer to the free layer to achieve the AP state
or from the free layer to the pinned layer to achieve the P state.

2.1.3.2 MRAM read circuit

The conventional MRAM read circuit (Na et al., 2020), depicted
in Figure 4A, employs a Clamp NMOS to generate currents (IDATA,

IREF) proportional to the resistance value of the MTJ. Theses
currents are then converted into voltages (VDATA, VREF) using a
Load PMOS. By comparing IDATA with IREF or VDATA with VREF ,
the MRAM state (P or AP) can be identified. The MRAM devices
are connected between the BL and the SL, with the SL tied to GND.
Selection of each MRAM device is controlled by the WL.

To enable both memory read (distinguishing between P
and AP states) and synapse operations (current generation for
an integrator), we propose a dual-mode read circuit shown in
Figures 4B,C. For memory read operations (Figure 4B), voltage
comparison is performed while the regulation amplifier remains
off. In contrast, during synapse operations (Figure 4C), the
amplifier is activated, fixing VBL at VREAD_AMP. The diagrams
clearly show the connections of BL, WL, and SL, as well as the
readout current path from the MRAM and to the integrator. To
prevent MRAM read disturbance (Na et al., 2020), VREAD_AMP
must be maintained at a very low level, ideally below 50 mV. The
resulting output current, determined by the resistance value, is then
fed into the integrator, which will be elaborated on in section 2.2.

Regarding array tiling, the memory read circuit and synapse
operation current generation circuit are shared across each column
of the crossbar array. Specifically, when the BL and SL of the
MRAM devices are connected, the corresponding synapses within
that column utilize a shared readout and current integration circuit.
Each column has a dedicated read path, while the WLs are used to
select specific rows during memory operations.

2.1.4 Proposed MRAM architecture
In the MRAM used in this study, the resistance ratio between

the P state and the AP state is relatively small, ranging from 10
k�:20 k� to 5 k�:30 k� at most. When the resistance ratio is
1:2, it becomes challenging to distinguish a single P state MRAM
cell from two AP state MRAM cells when two WLs are accessed
simultaneously to read the data. This issue, illustrated in Figure 5A
highlights the difficulty of distinguishing a single P state from
multiple AP states. Here, IP and IAP are currents flowing through
single P-state and AP-state MRAM cells, respectively. For example,
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FIGURE 3

(A) MRAM configuration: AP state and P state, (B) MRAM write operation.

FIGURE 4

(A) Conventional MRAM read circuit and proposed MRAM read circuit (B) in memory read operation and (C) in synapse operation.

if IP/IAP is 2, we cannot differentiate IP and 2xIAP. The problem
can persist even with other resistive memories featuring a higher
on/off ratio, particularly as the array size increases. To resolve this,
we propose a method for subtracting the current contribution from
AP states.

We use multi-bit representations for all synaptic weights
and thresholds to enhance precision and flexibility in neuron
modeling. Figure 5B shows the memory architecture for generating
currents with multi-bit components. Word lines (WLs) connect

the threshold generation and its reference blocks, mirroring
a similar configuration for the synapse generation and PSP
reference blocks. Each memory unit is independently accessible and
programmable. The comparison of synapse generation bits with
PSP reference bits determines the type of post-synaptic potential: if
the synapse generation bits exceed the PSP reference bits, an EPSP
is indicated; otherwise, an IPSP is represented. Figure 5C elaborates
on the concept of threshold current generation. For instance, if
the threshold generation block contains seven P-state cells and the
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FIGURE 5

(A) Limitation caused by low TMR ratio. (B) Proposed MRAM architecture for threshold and synapse current generation. Examples of (C) threshold
current generation, (D) single stimulus input, and (E) multiple simultaneous stimuli.

threshold reference block consists of two P-state and five AP-state
cells, the resulting threshold current is calculated as the difference
between the two, yielding 5(IP –IAP) or 5α, where α is defined as
IP –IAP. Similarly, in Figure 5D, for a single stimulus input, the
PSP reference block consists of two P-state and five AP-state cells,
while the synapse generation block includes six P-state and one AP-
state cells. This configuration corresponds to an EPSP with a net
current calculated as 4(IP-IAP) or 4α. If the threshold is set to 5α

as shown in Figure 5C, and a stimulus of 4α is applied, as shown
in Figure 5D, the stimulus exceeds the threshold, thereby triggering
an action potential.

The same principle applies when multiple stimulus inputs
are present. Figure 5E illustrates the PSP reference and two
simultaneous stimulus blocks. The first row of the synapse
generation block includes six P-state and one AP-state cells,
representing an EPSP of 4α. The second row of the synapse
generation block, which contains seven AP-state cells, represents an
IPSP of –2α. When these two stimuli are applied simultaneously,
their effects are summated, resulting in a net current of 2α.
However, since this net current remains below the threshold of 5α,
defined in Figure 5C, no action potential is triggered.

2.2 Analog circuit implementation

2.2.1 Integrator
2.2.1.1 Basic architecture

Figure 6A illustrates a circuit designed to emulate the LIF
functionality of a biological neural network, serving as a key
component of the system shown in Figure 1A. This circuit processes
stimuli, corresponding to inputs received via WLs. IPSP_REF is
obtained from the PSP reference array block shown in Figure 5B,

while ICOLUMN is generated by the Synapse Generation array
block in the same figure. As described in section 2.1.4, the
synaptic input current, ISYNAPSE is computed as the difference
between the synaptic weight and the PSP reference, specifically
ISYNAPSE = ICOLUMN – IPSP_REF . This indicates that the input
current to the integrator is determined by the synaptic weight. This
LIF circuit utilizes the current output from the memory array as
its input and produces an action potential (FIRE) as an output
signal. Figure 6B presents a timing graph depicting the operation
of the circuit, particularly the timing of the integrator’s switches.
All signals, except for the SWINTEG signal, are generated using
edge-detection techniques implemented with D flip-flops driven by
GCLK and LCLK.

In actual biological neural networks, the timing of inputs
and neural activity does not adhere to a fixed or synchronized
frequency. However, when designing circuits to emulate the
functionality of biological neural networks, it is typically assumed
that inputs are received at a specific frequency. To facilitate circuit
operation, signals are adjusted and reconstructed to align with this
assumed frequency, as shown in Figure 1A through Pulse Shaping
& Integrator Timing Switch.

Circuits designed to mimic the functionality of biological
neural networks can be categorized into two operations: Leaky
Integrate (indicated in red in Figure 6A) and Fire and Reset
(indicated in blue in Figure 6B) operations. The currents described
in section 2.1.3 are applied to the integrator input in Figure 6A,
where the difference between the currents is converted into a
voltage. When SWRST and SWINTEG are on, the input and output
voltages of the integrator amplifier are set to VCM_COL, and this
voltage is stored in the capacitor. After SWRST is deactivated while
the SWINTEG remains active, the voltage begins to change based
on the value of ISYNAPSE. In biological systems, leakage occurs
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FIGURE 6

Leaky integrate and fire (A) schematic (B) timing diagram.

naturally; in Figure 6A, this leakage is emulated using the ILEAKAGE
current when the SWLEAK is connected. SWLEAK is turned on after
the threshold comparison operation, causing leakage toward VREST .
If VINTEG > VREST , the voltage decreases, and if VINTEG < VREST ,
the voltage increases. The degree of leakage can be adjusted by
controlling the pulse width of SWLEAK and the magnitude of the
ILEAKAGE. A comparator is used to compare VINTEG with VTH . Base
on the SWCOMP signal, the comparator generates a FIRE signal (an
action potential) when the threshold condition is met.

To represent the relative refractory period and lateral
inhibition, as discussed in section 2.1.2, we used a baseline
selector. This component defines the voltage levels corresponding
to various states: VGEN for the leakage state without action potential
emission, typically in response to subthreshold stimuli; VRFR for
the relative refractory period state; VREST for the resting state;
and VLAT for the state associated with lateral inhibition. The
voltage levels are configured to satisfy the following relationship:

VLAT < VRFR < VREST . Each voltage level can be individually
adjusted to suit specific requirements. During the initial integration
phase, the baseline selector’s output voltage is set to VREST ,
controlled by SWREST . If a stimulus raises the voltage without
triggering an action potential, the baseline selector’s output
transitions to VGEN , when all selection bits are set to 0.

In contrast, the absolute refractory period is enforced through
the operation of the switch generation block, which is governed by
the GCLK. Once an input stimulus triggers an action potential, the
switch generator becomes inactive for a fixed interval, during which
no new switches are generated – regardless of subsequent inputs –
thereby ensuring that the neuron remains entirely unresponsive
during this period.

The baseline selector and switch generation block define the
neuron’s behavior across various physiological states. The output
voltage of the baseline selector determines the starting voltage of the
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FIGURE 7

Time window generator. (A) Circuit schematic. (B) Timing diagram.

integrator for processing subsequent stimuli, thereby influencing
the overall neuronal response dynamics.

2.2.1.2 Time window generation
Figure 7A depicts a circuit producing the SWINTEG signal,

which is subsequently applied to the leaky integrate circuit shown
in Figure 6, utilizing the same integrator structure. Current
inputs from the MRAM represent the stimulus threshold. When
an input stimulus arrives, SWRST and SWHOLD are connected,
resetting the amplifier’s common mode voltage to VCM_TWG. In
this configuration, VCM_TWG is set to a voltage lower than the
integrator’s actual starting voltage. This arrangement ensures the
generation of an action potential when the MRAM weight values
for the threshold and synaptic weights are identical.

After the input stimulus is received, with SWRST on and
SWHOLD off, VTWG increases as a result of the difference
ITH_COLUMN – ITH_REF . VTWG connects to a comparator via an
analog amplifier. If VTWG surpasses VTH , SWINTEG is set to 0.
SWINTEG signal is sent to the circuit in Figure 6, where it determines
integration time from the falling edge of SWRST to the falling edge
of SWINTEG.

In the current implementation, a single threshold reference is
shared across all neurons within a local cluster to achieve efficient
hardware utilization. Although finer granularity could be achieved
by assigning a unique threshold per column or per neuron,
such approaches would significantly increase area and circuit
complexity. Therefore, the single-threshold-per-cluster strategy is
adopted as a practical trade-off between scalability, flexibility, and
area efficiency.

On the test chip, the generation of SWINTEG yields a stable
output that depends solely on the weight values of the memory,
regardless of inter-chip variations. The measurement results
validating this behavior are presented in section 3.2. In addition,
section 2.2.1.3 discusses an offset cancelation technique for the
analog circuit to enhance stability and accuracy.

2.2.1.3 Offset cancelation
Since there are multiple integrator circuits within a single

local cluster, offsets can influence the results of operations
designed to emulate the biological neural networks. The offset

cancelation methods for the comparators, integrators, and buffers
in Figures 6, 7 are detailed in Behzad (2016) and Hsu and Chen
(2014).

Figures 8A,C depict amplifier without offset cancelation
methods and Figures 8B,D depict auto-zeroing techniques for offset
cancelation. During the offset storage phase, AZ switches connect
the input and output of the amplifier, allowing the offset to be stored
in a capacitor. In the subsequent evaluation phase, during which
the comparator, integrator, and buffer operate, AZB switches are
activated to effectively cancel the stored offset.

Figure 8E shows the simulation results of the integrator and
comparator. The red histogram illustrates the output before offset
cancelation, with a mean difference (µA) of 2.42 mV and a standard
deviation (σA) of 3.26 mV (approximately 10 mV at 3σ). After
applying offset cancelation (blue histogram), the mean shifts to 8.03
mV (µB), and the standard deviation (σB) is significantly reduced
to 0.97 mV, bringing the 3σ range under 3 mV. These statistical
values are annotated in the figure. Figure 8F presents the buffer
simulation results. Before offset cancelation, the mean and standard
deviation are µC = 0.58 mV and σC = 3.37 mV, respectively. After
cancelation, these are reduced to µD = –0.12 mV and σD = 0.15 mV,
effectively minimizing the 3σ range to below 0.5 mV. These results
demonstrate more than a 10 × improvement in error performance,
achieved by circuit-level cancelation of offsets caused by process
variations and parasitic mismatches.

2.2.2 Integrator simulation results
In this section, we present the simulation results for the

integrator. Figures 9A,B illustrates two specific simulation setups
designed to verify the function of the proposed architecture. In
both figures, the blue neuron represents the axon transmitting
the stimulus, while the red neurons represent the dendrites
receiving the stimulus. Figure 9A shows a scenario in which a
single axon sends a stimulus to eight different dendrites, each
assigned synaptic weights that differ incrementally by one level.
The integration time SWINTEG is fixed in this experiment, and
the purpose is to confirm that the membrane voltage increases
linearly with respect to the synaptic weight, demonstrating accurate
weighted integration behavior. Figure 9B depicts a different setup,
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FIGURE 8

Offset Cancelation Method: (A) integrator and comparator without offset cancelation (B) integrator and comparator during offset cancelation phase
and normal operation phase (C) buffer without offset cancelation (D) buffer during offset cancelation phase and normal operation phase
(E) Monte-Carlo simulation result of the integrator and comparator and (F) Monte-Carlo simulation results of the buffer.

where a target dendrite receives input from an axon while
neighboring dendrites are simultaneously activated to simulate
lateral inhibition. This setup is used to evaluate how inhibitory
activity affects the integration of excitatory input in adjacent
neurons. These simulation setups were also used in actual chip
measurements, and the corresponding results are presented in
Figures 12, 14, respectively.

Figure 9C illustrates the signal generation process of the time
window generator, as described in Figure 7. Simulations were
conducted for two threshold weight configurations: 7(P-AP) and
5(P-AP), with VTH voltage values ranging from 800 to 850 mV. The
results reveal an intriguing relationship between threshold weight
and integration time. As the threshold weight increases, the rate at

which VTWG rises also accelerates, leading to a shorter integration
time. Conversely, higher VTH voltage values delay the point at
which VTWG surpasses the VTH threshold, thereby extending the
integration time.

Figures 9D,E demonstrate the linear integration based on
synaptic weights. When an AXON input is received, it triggers
the generation of a SWINTEG signal, and the voltage VINTEG is
obtained by converting the current through synapse columns into
voltage. In the simulation result shown in Figure 9D, with a
threshold of 5(P-AP) and VTH of 850 mV, VINTEG reflects the
operation of eight synapse columns ranging from –2(P-AP) to
5(P-AP). The voltage decreases at –2(P-AP) and –1(P-AP) due to
IPSPs, remains unchanged at 0(P-AP) (no weight), and increases
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FIGURE 9

Simulation cases: (A) the linear integration (B) the relative refractory period and lateral inhibition, Simulation results: (C) time window generation,
linear integration when threshold is (D) 5(P-AP) and (E) 7(P-AP), relative refractory period and lateral inhibition when threshold is (F) 5(P-AP) and (G)
7(P-AP).

from 1(P-AP) to 4(P-AP) due to EPSPs. At 5(P-AP), the voltage
reaches the threshold, triggering an action potential. In Figure 9E,
with a threshold weight of 7(P-AP) and synaptic weights ranging
from –2(P-AP) to 7(P-AP), VINTEG similarly decreases with IPSPs,
remains unchanged at 0(P-AP), and increases from 1(P-AP) to 6(P-
AP) due to EPSPs. The voltage surpasses the threshold at 7(P-AP),
resulting in the firing of an action potential.

Figures 9F,G depict the simulation results for the relative
refractory period and lateral inhibition, with threshold weights
set at 5(P-AP) in Figures 9D and 7(P-AP) in Figures 9E. When
the first stimulus is applied to synapses <0>, <1>, and <2>,
the synaptic weight for <1> matches the threshold, causing
Dendrite <1> to fire an action potential. However, the synaptic
weights for <0> and <2> are below the threshold, preventing
Dendrite <0> and <2> from firing action potentials. Upon the
arrival of the second stimulus, VINTEG <1> starts integration from

VRFR, indicating the relative refractory period. VINTEG <0> and
VINTEG <2> start integration from VLAT , reflecting the lateral
inhibition caused by the firing of VINTEG <1>. Even if the
second stimulus matches the threshold weight, VINTEG <1> cannot
exceed the VTH due to the refractory period. Consequently,
Dendrite <0> and <2> are also unable to generate action
potentials, even when their synaptic weights match the threshold,
due to the effect of lateral inhibition.

3 Experimental results

3.1 Measurement setup

Figure 10A presents the overall layout of the local
cluster, designed using a 28-nm FDSOI CMOS process
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FIGURE 10

(A) Local cluster with interface layout (B) measurement setup.

FIGURE 11

Measurement results: integration time (SWINTEG).

with MRAM. The local cluster includes an MRAM array
storing synaptic weights, along with essential components
such as the MRAM read circuit, WL driver, BL driver,
and SL driver, all of which are crucial for retrieving values
from the memory array. The local cluster also incorporates
key elements such as a pulse shaping circuit, an integrator

timing switch for processing management, and an integrator
designed to emulate the behavior of biological neural
networks.

Figure 10B shows the measurement board of the test chip,
consisting of two main components: the evaluation board and
the FPGA common board. The evaluation board serves multiple
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FIGURE 12

Measurement results: linear integration when threshold is (A) 3(P-AP) and (B) 7(P-AP).

purposes, including hosting the test chip, supplying power via low-
dropout regulators (LDOs), providing analog inputs through a
digital-to-analog converter (DAC), and incorporating switches for
DC inputs. It also features test pins for monitoring the outputs of
the test chip. The FPGA common board facilitates digital input and
output operations, featuring an I2C interface for communication
with a PC via a USB interface. Its detachable design further
enhances flexibility, allowing compatibility with other test chips
and improving the overall versatility of the testing system.

3.2 Measurement results

Figure 11 presents the measurement results of the integration
time determined by SWINTEG, corresponding to the simulation
results shown in Figure 9C. Across multiple chips with process
variations, the integration time-defined as the interval between the
falling edges of SWRST and SWINTEG, as described in section 2.2.1
is proportional to the VTH value. In other words, as VTH increases,
the integration time also increases.

As shown in Figure 11, although there is nearly a 60-
ns difference among different chips due to intrinsic fabrication
variation, the overall trend across the voltage range remains
consistent. This demonstrates that the internally generated
SWINTEG signal effectively maintains a stable integration time
based on the stored weight values in MRAM, regardless of chip-
to-chip variations. The observed chip-to-chip variation is not

a malfunction but rather an intended adaptive behavior of the
system.

The graph in Figure 12 shows the measurement results from a
circuit designed to emulate the biological neural network described
in section 2.1.2, confirming the linear relationship between VINTEG
values and various synapse weight values.

The measurement results in Figures 12A,B correspond to the
simulation results shown in Figures 9D,E when GCLK, which
determines the frequency of AXON inputs, is set to 50 kHz.
While the simulation applies stimuli with varying strengths
simultaneously to multiple neurons, the measurement results were
obtained by repeatedly applying and resetting input stimuli to
a single neuron. Despite this difference in setup, both results
consistently demonstrate linear membrane potential integration
behavior. Figure 12A illustrates the case where axon inputs with
synaptic weights ranging from –2(P-AP) to 3(P-AP) are received.
The VINTEG decreases when an IPSP occurs and increases when
an EPSP is generated. When the synaptic weight is 3(P-AP), an
action potential is fired because the weight exceeds the threshold.
Figure 13B shows similar results for a threshold of 7(P-AP), with
input stimuli ranging from –2(P-AP) to 7(P-AP). This result further
confirms the linear integration of current into membrane voltage
as a function of synaptic weight, validating the neuron’s analog
processing capability across a wider dynamic range.

Figure 13A depicts the outcomes of leaky integration. As a
stimulus is applied, the membrane potential undergoes integration;
however, this process involves several discrete leakage steps. Unlike
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FIGURE 13

Measurement results: (A) measured membrane potential with leakage (B) leakage controlled by SWLEAK (C) leakage controlled by ILEAKAGE.

the continuous leakage experienced by actual biological neurons,
represented by the red trend line, the proposed circuit operates
with distinct leakage time windows. The leakage behavior is
controlled by the SWLEAK duration and the ILEAKAGE current,
meaning that the leakage occurs only when the SWLEAK is activated.
Figures 13B,C demonstrate the adjustable leakage mechanism. In
Figure 13B, increasing the pulse width of SWLEAK while keeping
ILEAKAGE constant leads to a greater reduction in VINTEG. In
contrast, when the input current ILEAKAGE is augmented while

maintaining the pulse width of SWLEAK constant in Figure 13C,
VINTEG experiences an even more pronounced decrease.

Figure 14 presents the measurement results demonstrating
the effects of the relative refractory period and lateral inhibition,
which are consistent with the simulation results shown in
Figure 9F,G. When an input stimulus triggers an action
potential in Dendrite <0>, the neuron enters a relative
refractory period, during which the next input does not
immediately lead to firing. Instead, integration resumes at a lower
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FIGURE 14

Measurement results: relative refractory period and lateral inhibition.

potential level, denoted as VRFR, upon the arrival of the next

stimulus.

In contrast, Dendrite <1> is influenced by lateral inhibition

from neighboring dendrites. Although it receives excitatory input,

its membrane potential starts from a voltage significantly below

the resting level due to this inhibition. As a result, while the

potential rises, it does not reach the firing threshold, and no action

potential is generated. Integration begins at VLAT , and the absence
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TABLE 1 Comparison table.

This Work Loihi
2018

(Davies
et al., 2018)

Neurogrid
2014

(Benjamin
et al., 2014)

TED
2015 (Burr
et al., 2015)

IEDM
2019

(Valentian
et al., 2019)

JXCDC
2019

(Ostwal
et al., 2019)

ICECS
2019

(Kulkarni
et al., 2019)

*Configuration 1 Cluster 1 Chip 1 Chip 16 Chips 1 Chip 1 Chip 1 Chip 1 Chip

Technology 28 nm 14 nm
FinFET

180 nm 180 nm 130 nm – 28 nm

Memory type STT-MRAM SRAM FPGA/SRAM PCM ReRAM SOT-MRAM STT-MRAM

Membrane potential Analog Digital Mixed Digital Analog Digital Digital

Synapse 4k 256 128M 6G 164,885 13.5k 158,800 64k

Neuron 256 16 128k 10M 385 10 994 256

Area [mm2] 7.74 0.576 60 168 – 4 – –

Neurons/mm2 33 27 2,184 59,523 – 2.5 – –

**Neurons/mm2

[28 nm]
33 27 1,092 382,647 – 11 – –

EPSP O O O O O O O

IPSP O O O O O O X

Refractory period O O O X O X X

Lateral inhibition O O X X X X X

Frequency range Real-time accelerated Real-time
accelerated

Real-time Slower than
real-time

Real-time Pulse-driven (µs
level)

Accelerated

*Configuration denotes single-chip or multi-chip systems. 1 Cluster represent 16-chip implementations. **Neurons/mm2 indicates that the data has been normalized. Since the studies were
conducted using different processes and examined varying areas, normalization is essential to ensure a fair comparison of the data.

of spiking confirms that lateral inhibition effectively suppresses
neuronal activity. This mechanism contributes to a reduced firing
rate, as evidenced by the flat membrane potential trace of Dendrite
<1> in Figure 14.

It is important to note that the absolute refractory period
is not explicitly measured in Figure 14, as it is enforced by
the circuit-level gating mechanism, which blocks incoming input
stimuli during that period. This gating ensures that no new action
potential can be triggered during the absolute refractory period,
and therefore, no additional measurements were necessary for
this phase. The behavior during the relative refractory period was
sufficient to demonstrate the relevant dynamics, which are the focus
of Figure 14.

3.3 Comparison

Table 1 provides a comparative analysis of this work with
other several representative studies. A key distinguishing feature
of this work is the use of STT-MRAM for the synapse array,
whereas other studies employ SRAM, PCM, or ReRAM. Among
these systems, our work is unique in its use of MRAM-based
analog computation, which allows both excitatory and inhibitory
post-synaptic potentials (EPSP/IPSP), as well as refractory period
and lateral inhibition to be implemented in hardware. These
biologically relevant functions are often missing or abstracted in
fully digital architectures such as Burr et al. (2015), Davies et al.
(2018), Ostwal et al. (2019), and Kulkarni et al. (2019).

The table includes specifications for both a single
neuromorphic chip and a 16-chip cluster. The single chip,

comprising 256 synapses and 16 neurons, occupies 0.576 mm2,
while the 16-chip cluster integrates 4,096 synapses and 256
neurons, occupying 7.74 mm2. For consistency with other studies
in the table, the neuron count is based solely on the number
of post-synaptic elements that perform LIF operations (i.e.,
dendrites). However, as the primary objective of this work is
to emulate biologically inspired neural behavior at the circuit
level, each pre-synaptic axon can also be interpreted as a distinct
neuron representation, resulting in a total of 32 neurons per
chip. In terms of area efficiency, although our system does not
match the ultra-high neuron density of systems like Neurogrid,
which heavily leverage digital scaling and simplified models, it
achieves a balanced trade-off between analog biological fidelity
and circuit compactness, with 33 neurons/mm2. Moreover, our
system supports a wide frequency range, operating from 1 to 50
kHz, thus accommodating both real-time biological emulation and
accelerated processing modes. In contrast, some analog systems
like the ReRAM-based implementation operate in slower, pulse-
driven modes, while others like (Burr et al., 2015; Ostwal et al.,
2019) do not support time-continuous dynamics such as leaky
integration or refractory periods. In this context, the proposed
system demonstrates a practical approach to integrating MRAM
with analog circuitry for implementing key neural behaviors in a
compact and scalable neuromorphic architecture.

4 Discussion

In this paper, we have presented a biologically plausible and
scalable neuromorphic system based on a mixed-signal architecture
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that combines MRAM-based synaptic memory with analog neuron
circuits. The proposed system supports several key neural functions
observed in real neurons, including leaky integration, excitatory
and inhibitory postsynaptic potentials (EPSP/IPSP), refractory
periods, and lateral inhibition. In addition, the system operates
over a configurable temporal range (from microseconds to
milliseconds), which aligns with biologically realistic firing rates
and membrane time constants. This allows the circuit to replicate
both behavioral and temporal dynamics of real neurons, making
it suitable for experiments involving real-time interaction with
biological signals. Furthermore, the global clock (GCLK) in the
system is configurable from 1 kHz to 50 kHz, enabling both
operation at biological time scales (e.g., 1–100 Hz) and accelerated
experimental conditions, such as hardware-software co-simulation
or real-time signal replay.

To realize this functionality in hardware, we chose MRAM as
the synaptic memory due to its non-volatility, CMOS compatibility,
and commercial availability. While MRAM offers several practical
advantages, its low on/off resistance ratio poses significant
challenges for analog neuromorphic computation, particularly
when accurate current-mode processing is required. To address
this, we introduced a current subtraction technique that enables
reliable multi-level current generation from MRAM states. In
addition, the circuit includes offset cancelation mechanisms and
programmable current scaling via SWINTEG to minimize the
effects of process variation and improve the accuracy of analog
computation. These mechanisms help ensure stable and consistent
analog neural behavior even in the presence of device mismatch or
variation of the resistance value across MRAM cells.

The system adopts a modular local cluster structure consisting
of MRAM synapse arrays, analog neuron circuits, and timing
control logic. By tiling multiple clusters, the network can be
easily expanded without major redesigns. Interface circuits such
as transmitters (TX), routers, and receivers (RX) enable efficient
inter-cluster communication, supporting scalable and distributed
operation. Although detailed evaluation is beyond the scope of
this paper, ongoing design verification includes Network-on-Chip
(NoC)-based packet transmission between clusters. Overall, this
hierarchical structure lays the groundwork for expanding the
architecture to larger systems.

Experimental results from fabricated test chips confirm that the
proposed architecture successfully replicates key neural dynamics
in hardware. Overall, this work demonstrates a practical and
biologically grounded approach to implementing neuromorphic
systems using MRAM-based mixed-signal circuits. Looking
forward, this architecture may lend itself to integration with nano-
electrode arrays (Abbott et al., 2020), potentially enabling real-time
interaction with biological neural networks. Such integration could
support applications in brain-inspired sensing or experimental
platforms involving closed-loop biological interfacing.
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