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Research indicates that locked-in syndrome (LIS) patients retain both
consciousness and cognitive functions, despite their inability to perform
voluntary muscle movements or communicate. Brain-Computer Interfaces
(BCIs) provide a means for these patients to communicate, which is crucial, as
the ability to interact with their environment has been shown to significantly
enhance their wellbeing and quality of life. This paper presents an innovative
approach to analyzing electroencephalogram (EEG) data from four LIS patients
to assess their consciousness levels, referred to as normalized consciousness
levels (NCL) in this study. It consists of extracting different features based on
frequency, complexity, and connectivity measures to maximize the probability
of correctly determining the patients’ actual states given the inexistence of
ground truth. The consciousness levels derived from this approach aim to
improve our understanding of the patients’ condition, which is vital in order
to build effective communication systems. Despite considerable inter-patient
variability, the findings indicate that the approach is effective in detecting neural
markers of consciousness and in differentiating between states across the
majority of patients. By accurately assessing consciousness, this research aims
to improve diagnosis in addition to determining the optimal time to initiate
communication with these non-communicative patients. It is important to note
that consciousness is a complex and difficult concept to define. In this study,
the term “consciousness level” does not refer to a medical definition. Instead, it
represents a scale of NCL values ranging from 0 to 1 representing the likelihood
of the patient being fully conscious (1) or not (0).

KEYWORDS

Brain-Computer Interface, complete locked-in syndrome, complexity, connectivity,
consciousness, EEG, frequency, soft clustering

1 Introduction

Locked-In Syndrome (LIS) is a rare but clinically significant neurological disorder that
poses substantial challenges for both patients and caregivers. It is most often caused by
damage to the ventral region of the pons in the brainstem, although injuries to the midbrain
or bilateral internal capsules have also been reported (Gazzaniga et al., 2018; Parker and
Parker, 2004; Laureys et al., 2005). The condition may result from stroke, traumatic brain
injury (TBI) or progressive neurological diseases such as Amyotrophic Lateral Sclerosis
(ALS) and Guillain-Barré syndrome (Kübler et al., 2001; Kübler, 2020).

The American Congress of Rehabilitation Medicine (ACRM) defines LIS based on
several clinical features: persistent eye opening, aphonia or markedly reduced speech,
severe paralysis affecting all four limbs (quadriplegia or quadriparesis), and preserved
cognitive function (NARIC, 1995). Communication is typically limited to vertical eye
movements or blinking (Schnakers et al., 2009). While patients usually retain normal
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sleep-wake cycles (Gazzaniga et al., 2018), chronic insomnia can
develop as the condition progresses (Soekadar et al., 2013; Posner
et al., 2007). LIS is extremely uncommon, affecting an estimated
one in 20,000 individuals.

There is currently no definitive cure. However, medications
such as riluzole, which may protect motor neurons by limiting
glutamate-induced excitotoxicity, can slightly delay disease
progression in ALS-related cases (NINDS, 2013; Bear et al.,
2016; Parker and Parker, 2004). In ALS, initial symptoms include
muscle weakness and wasting, which over time lead to the loss
of all voluntary movement, including speaking, swallowing,
and breathing. This progression typically results in death from
respiratory failure within five years of onset (Murguialday et al.,
2011).

Brain-Computer Interfaces (BCIs) could offer a solution
enabling such patients to engage with their environment. When
there are no residual muscle movement left after transitioning into
a complete LIS (CLIS) state, it becomes impossible to ascertain if the
patients are conscious or not at a specific time point. Thus, there are
no ground-truth for consciousness for CLIS patients. This makes it
extremely challenging to identify the optimal time to communicate
with them, particularly given the limited research focused on
evaluating patients’ consciousness. As we are focusing on EEG
in this study, the following subsections only include research
in communication and consciousness assessment including LIS
and/or CLIS patients using non-invasive EEG or ECoG.

1.1 BCI-based communication for CLIS
patients

The successful implantation of neurotrophic electrodes in
humans, as reported in Kennedy and Bakay (1998), marked a
foundational step in the development of BCI systems aimed
at enabling communication for individuals with severe motor
impairments. This study confirmed the technical feasibility of long-
term neural signal acquisition and demonstrated promising results
for potential BCI applications.

The first speller for LIS patients with ALS, developed by
Birbaumer et al. in the late 1990s, employed self-regulated Slow
Cortical Potentials (SCPs) to control a device that allowed patients
to select letters on a screen (Birbaumer et al., 1999; Hinterberger
et al., 2003). This system evolved into a Thought Translation Device
(TTD), enabling the selection of words and pictograms, and was
tested successfully with five LIS patients (Birbaumer et al., 2000).
Further developments included an adapted web browser and email
interface, called NESSI, which allowed patients to interact with web
pages using SCPs (Bensch et al., 2007).

SCP-based BCIs are slow, with brain responses taking around
five seconds, and the training can cause patient fatigue (Kübler
et al., 2001). Faster brain responses, such as the P300, have been
explored. For example, Oken et al. implemented a rapid serial visual
presentation (RSVP) paradigm with nine LIS patients, finding that
while all could complete easier tasks, only one could manage
the most difficult (Oken et al., 2014). Steady State Visual Evoked
Potential (SSVEP)-based systems have also been used, showing less
mental workload compared to P300 systems, but these systems are

impractical for patients without gaze control and can still cause
fatigue (Lesenfants et al., 2014; Combaz et al., 2013).

Auditory P300-based BCIs were developed for visually
impaired LIS patients, but reliable communication using these
systems has been difficult to achieve Kübler et al. (2009). In
some cases, invasive techniques like electrocorticography (ECoG)
have been used successfully, such as in a study where an
ALS patient achieved high spelling accuracy with an implanted
system (Vansteensel et al., 2016).

Attempts to communicate with CLIS patients initially failed,
raising questions about transferring brain control learned in LIS
to CLIS (Kübler and Birbaumer, 2008). However, later research
reported successful communication with CLIS patients using EEG-
based BCIs, with a vibro-tactile P300 and motor imagery, achieving
high accuracies of up to 90% (Guger et al., 2017). Another study
involved a CLIS patient using an intracortical microelectrode array
to spell words by modulating neural firing rates (Chaudhary et al.,
2022). The patient was able to effectively convey his needs and
perspectives, proving that it is possible to communicate with CLIS
patients using their brain signals.

These studies often do not assess patients’ consciousness before
the communication tasks, although following commands could
indicate consciousness (Lesenfants et al., 2015). Assessing this
capability beforehand might be more logical so to know when to
communicate with them.

1.2 Consciousness assessment in LIS and
CLIS patients

Correct diagnosis is critical for optimizing patient care,
especially for enabling communication with loved ones despite
severe impairments. Most studies assessing consciousness after
TBI focus on patients with Minimally Conscious State (MCS) or
Unresponsive Wakefulness Syndrome (UWS), with few including
LIS patients due to the rarity of the condition. This section
addresses studies involving at least one LIS or CLIS patient.

1.2.1 Consciousness assessment using Brain
Sensory Responses

Sensory stimuli (auditory, tactile, visual) are often used to assess
consciousness by eliciting event-related potentials (ERPs) such as
P300, which is commonly triggered by auditory stimuli (Sergent
et al., 2017; Annen et al., 2020). In one study, P300 responses
were used to differentiate between patients with UWS, MCS,
and LIS (Perrin et al., 2006). Results indicated that while P300
was present in all LIS patients, it was absent in two UWS
patients. Similarly, another study showed that P300 responses
predicted recovery in patients, including two LIS patients, after 12
months (Zhang et al., 2017).

Other methods, such as hybrid visual BCI combining P300
and SSVEP, have shown that LIS patients can follow commands
by focusing on specific visual stimuli (Pan et al., 2014). Vibro-
tactile P300 paradigms have also been effective, with 5 out of
6 LIS patients successfully eliciting P300 responses (Lugo et al.,
2014). Additionally, motor imagery tasks have been used to assess
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awareness, with spectral analysis of EEG revealing task-dependent
changes in LIS and MCS patients (Goldfine et al., 2011).

1.2.2 Consciousness assessment using resting
state data

Resting state data, which captures spontaneous neural activity
without requiring task performance, is another method for
assessing consciousness. This approach often uses spectral analysis,
connectivity measures, and complexity metrics like Lempel-Ziv
complexity (LZC) (Jain and Ramakrishnan, 2020). In one study,
Perturbational Complexity Index (PCI) derived from LZC was
used to distinguish MCS from UWS patients, with PCI values
in LIS patients comparable to healthy controls (Gosseries et al.,
2014). Spectral connectivity has also been employed to assess
consciousness, revealing strong brain network connectivity in
patients misdiagnosed as unresponsive (Chennu et al., 2017).

Few studies have focused on LIS / CLIS patients using
resting state data. However, preliminary research using measures
like coherency and entropy showed potential for detecting
consciousness in CLIS patients, though these methods typically
consider only one or two signal features at a time (Adama et al.,
2019, 2021).

1.3 Motivation and research objective

This paper presents a study assessing LIS patients’
consciousness using EEG data recorded over several years from
four patients during an EOG-based communication. A previously
successful approach in estimating consciousness levels in one CLIS
and patients with disorders of consciousness (Adama and Bogdan,
2023a,b) was applied. To maximize accuracy in determining
consciousness, multiple features are extracted from pre-processed
EEG signals to capture various aspects of conscious states. By
integrating these features, this approach enhances the likelihood
of accurately assessing the patients’ true state, especially in the
absence of a definitive ground truth. The obtained results were
subsequently compared with the patients’ performance accuracy
to evaluate the method’s performance. Consciousness is difficult
to define, with various interpretations across different fields. In
this study, the term "consciousness level" does not adhere to the
medical definition. Instead, it refers to a normalized scale, where
0 represents unconsciousness and 1 indicates full consciousness.
This scale, designated as normalized consciousness level (NCL) in
the context of this research, is used to quantify and compare states
of awareness rather than provide a clinical diagnosis.

The NCL method was developed to help identify when patients
with CLIS are conscious, so that attempts at communication can be
made at the right time. The approach could potentially be used to
assist in diagnosis, but its main focus is on finding the best moment
to connect with the patient. This is especially important in CLIS,
where patients cannot move at all, and traditional methods that
rely on movement or speech are no longer useful. Common clinical
tools like the Coma Recovery Scale-Revised (CRS-R) (Giacino et al.,
2004) and the ALS Functional Rating Scale-Revised (ALSFRS-R)
(Cedarbaum et al., 1999) serve very different purposes. CRS-R is

FIGURE 1

Recording channels placed according to the 10-10 system
extension of the 10–20 system (Jasper, 1958).

meant to assess disorders of consciousness, such as the vegetative
state or minimally conscious state. However, LIS / CLIS are not
disorders of consciousness. These patients are often fully aware but
unable to respond. CRS-R depends heavily on a patients ability to
show signs of awareness through movement or speech (Giacino
et al., 2004), which is not possible with LIS/CLIS patients, especially
in late stages.

The ALSFRS-R, on the other hand, is used to measure physical
decline in ALS, including speech, mobility, and breathing. But it
says nothing about whether the person is conscious. In people with
advanced ALS, scores often drop to very low levels even if the
patient is fully aware (Cedarbaum et al., 1999; Tonin et al., 2020).
This makes both CRS-R and ALSFRS-R unsuitable for measuring
consciousness in this type of patients.

The paper is organized as follows: the EEG data acquisition
protocols, experimental setups as well as a description of the
approach used is introduced in Section 2. The results of the analysis
are presented in Section 3 and discussed, before concluding in
Section 4.

2 Methods

2.1 Patients and data description

EEG data from four ALS patients transitioning from LIS to
CLIS during rest and while accomplishing an auditory paradigm
(presented in the following section) were analyzed to test the
algorithm, namely Patients P11, P13, P15 and P16. In addition, at
least four electrodes were used to record vertical and horizontal eye
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FIGURE 2

Signal processing and analysis pipeline. The recorded signals are filtered and segmented, before extracting the different features. Each feature is then
averaged across selected group of channels before performing the clustering analysis. The probability that the patient is conscious is then extracted
by applying a decision rule to the obtained results (Adama and Bogdan, 2023a).

movements. Figure 1 shows the location of all recording channels
used for all patients. The data was acquired at a sampling rate of
500 Hz during the years 2018 and 2019.

Patient P11, a 33-year-old male with non-bulbar ALS, was
diagnosed in August 2015. He last used assistive and augmentative
communication (AAC) technologies in August 2017, with 10 visits
recorded over 13 months. Patient P13 is a 58-year-old male
diagnosed with bulbar ALS in January 2011. His last use of AAC
was in January 2018, and 4 visits were recorded over a 12-month
period. Patient P15, a 63-year-old female with lower motor neuron
predominant ALS (ICD-10: G12.2), was diagnosed in February
2017. She last engaged with AAC in November 2018, with 2 visits
recorded over 5 months. And Patient P16 is a 56-year-old male
diagnosed with lower motor neuron ALS in December 2012. He
last used AAC technologies in June 2018, with 2 visits recorded
over 3 months. More details about the patients, the experimental
setup and the data format can be found in Jaramillo-Gonzalez et al.
(2021).

2.2 Experimental setup

Patients participated in four types of auditory sessions which
were meant to be used for the development of an auditory
communication system: training, feedback, copy spelling, and free
spelling. The idea was to select letters to form words and sentences
using eye movements. Training and feedback sessions included 20
auditory questions with known answers (10 “yes” and 10 “no”),
such as “Berlin is the capital of Germany.” In the copy and free
spelling sessions, patients were presented with groups of characters,
each character being delivered auditorily. Patients indicated “yes”
by moving their eyes and “no” by not moving them. EOG signal
features corresponding to these eye movements were used to train
a binary support vector machine (SVM) to identify “yes” and “no”

responses, enabling patients to select letters and form sentences
during feedback and spelling sessions (Tonin et al., 2020).

2.3 Description of the approach

The CLIS patients’ NCL were determined using the approach
presented in Adama and Bogdan (2023a) and illustrated in Figure 2.
All analyses were performed using MATLAB. First, EOG artifacts
were reduced before extracting the features of interest from the
EEG signals. Then, clustering analyses were performed on these
features. The results obtained from this were then used to infer the
consciousness levels of the patients.

2.3.1 EOG artifact removal
LIS patients still have residual eye movements that can be

recorded using EOG. To reduce these artifacts on the EEG,
Canonical Correlation Analysis (CCA) was used (Jiang et al., 2019).
CCA is a blind source separation (BSS) technique that employs
second order statistics to separate components from uncorrelated
sources. To do so, it finds the linear relationship between two multi-
dimensional variables and maximizes pairwise correlations across
datasets. It removes muscle or ocular artifacts by investigating
differences in autocorrelation between brain and muscle or EOG
signals. One of its advantages is its low computational cost. The
EOG artifacts were removed using MATLAB’s built-in function
canoncorr taking as input the raw EEG and EOG signals.

2.3.2 Feature extraction
Different sets of features were computed to maximize the

probability of correctly determining the patients’ state as there are
no ground-truth at the moment. Each of them was calculated for
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each EEG segment of 3-seconds length. Prior to any analysis, the
signal was downsampled to 200 Hz to reduce computational costs,
and filtered between 0 and 45 Hz with a third order Butterworth
filter. The features comprise spectral, complexity and connectivity
measures, calculated for each channel or pair of channels.

2.3.2.1 Frequency-based features
The spectral features consisted of the relative powers of the θ

(4–8 Hz) and β (12–30 Hz) frequency bands, and the spectral edge
frequency 95% (SEF95).

The relative powers are calculated using Equation 1 (Bear et al.,
2016; Wang et al., 2015).

RP =
∑f2

f=f1 Sx(f )
∑fh

f=fl
Sx(f )

(1)

where:

• f1 (resp. f2) is the lower (resp. upper) limits of the frequency
band of interest,

• fl = 0 Hz and fh = 45 Hz,
• Sx(f ) is the power spectral density (PSD) of the signal x(t)

at the frequency f (Stoica and Moses, 2005). The PSD
was computed using the Welch method (Welch, 1967),
implemented via the MATLAB function pwelch.

Previous research showed that there is an increase of beta power
during verbal and spatial memory tasks, and has proven to be one of
the best features to classify patients with disorders of consciousness
(Borjigin et al., 2013). On the other hand, a global increase in both
powers along with their coherence were observed during recovery
of consciousness after anesthesia (Pal et al., 2015).

SEF95 is defined as the frequency below which 95% of the
signal power is contained (Imtiaz and Rodriguez-Villegas, 2014;
Abootalebi et al., 2009) and is calculated using Equation 2, in which
f is the frequency and Fs the sampling frequency. The obtained
results were then normalized by dividing them to the upper limit
of the critical frequency during filtering (45 Hz).

SEF95∑
f=0

Sx(f ) = 0.95
Fs/2∑
f=0

Sx(f ) (2)

This spectral feature is commonly used to determine the depth
of anesthesia in healthy subjects. Deeper levels are characterized by
lower SEF values (Rampil et al., 1980). For example, SEF95 above
15 Hz are representative of light anesthesia, while values between 8
and 13 Hz indicate moderate level of anesthesia. Frequencies lower
than 7 Hz imply deep level of anesthesia (Touchard et al., 2019).

2.3.2.2 Complexity-based features
The complexity of the EEG signals were evaluated using the

Ellipsoid Radius Ratio (ERR) (Eagleman et al., 2018) and the
Lempel Ziv complexity (LZC) (Lempel and Ziv, 1976). A large
complexity is an indicator of an activated cortex. Consequently, an
increase in the complexity of the signal indicates a higher level of
consciousness, and inversely (Górska et al., 2021; Gosseries et al.,
2014).

A Poincaré plot is a map where each point (xn, xn+τ ) represents
the value of a time series x at time n plotted against its value at time
n+ τ . In the ERR (ratio SD1/SD2) of the Poincaré plots (Eagleman
et al., 2018), SD2 (resp. SD1) represents the standard deviation
(SD) along the line of identity (resp. the line perpendicular to the
line of identity), and describes the long term (resp. short time)
variability of the signal. Both standard deviations were calculated
using Equations 3, 4 (Golińska, 2013; Hayashi et al., 2014; Satti
et al., 2019).

SD1 =
√

2
2

SD(xn − xn+τ ) (3)

SD2 =
√

2SD(xn)2 − 1
2

SD (xn − xn+τ )
2 (4)

In practice, the values of SD1 and SD2 were computed using the
extended Poincaré plot algorithm developed in Satti et al. (2019)
with a value of τ set to 1. The randomness of EEG signal is reduced
during deep anesthesia. It is marked by a decrease of SD1, and by
extension ERR (Hayashi et al., 2014). A more round shape of the
ellipsoid (ERR ≈ 1) corresponds to randomness, which represent
more complex signals.

On the other hand, LZC assess repetitiveness in binary
sequences (Lempel and Ziv, 1976). A normalized version of LZC
has been used recently to compare the consciousness levels of
different types of patients with that of healthy subjects (Lee et al.,
2015). To compute it, it is necessary to transform the data into a
binary sequence. This was done practically by first extracting the
analytic signal using the MATLAB function hilbert, and then
obtaining the binary sequence by taking the mean of the absolute
value of the Hilbert transform of the signal as a threshold (Schartner
et al., 2015).

Let S = s1s2...sn be the obtained binary vector of length
n. The LZC is the number of distinct patterns in S as it is
streamed from the left to the right (Schartner et al., 2015; Aboy
et al., 2006). This was essentially done using the MATLAB toolbox
calc_lz_complexity (Burns and Ramesh, 2015).

2.3.2.3 Connectivity-based features
Linear and non-linear relationships between the pairs of

channels were determined using the imaginary part of the
coherency (iCOH) and the weighted symbolic mutual information
(wSMI) in the θ bands. On one hand, the θ band plays an important
part in working memory (Borjigin et al., 2013). Moreover, a
decrease in coherence is observed in healthy subjects during
periods of unresponsiveness induced by anesthesia (Pullon et al.,
2020). On the other hand, the long-range connectivity patterns
that are in theory connected to consciousness are most robustly
and accurately assessed by the wSMI in the θ band (Engemann
et al., 2018). Higher connectivity values represent high levels of
consciousness and inversely (Bourdillon et al., 2020).

The linear relationships were estimated using the coherency,
which is based on the Fourier analysis of time series signals (Kayser
et al., 2009; Sakellariou et al., 2016; Nolte et al., 2004; Blinowska and
Zygierewicz, 2011). Only its imaginary part is used in order to avoid
volume conduction in the brain (Nolte et al., 2004). The coherency
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between a pair of signals x and y at frequency f is computed using
Equation 5, where Sxy(f ) is the cross power spectral density of the
signals, and Sxx(f ) and Syy(f ) are the auto power spectral density of
x and y respectively (Priestley, 1981).

Cxy(f ) = Sxy
(
f
)

√
Sxx

(
f
) · Syy

(
f
) (5)

The non-linear relationships were assessed using wSMI, which
converts the signals x and y into sequences of discrete symbols
(x̂, ŷ). This results in a decrease of the sensitivity to measurement
and an increase of the efficiency of numerical computations (King
et al., 2013). The symbols are determined based on the amplitude
trends of k = 3 consecutive time points separated by a temporal
separation of elements τ , leading to a total of 3! = 6 different
potential symbols (a, b, c, d, e, f ) (Lee et al., 2015). The value of τ

is determined depending on the frequency of interest according to:

fmax = fs
k.τ

(6)

where

• fmax: maximum resolved frequency, and
• fs: sampling frequency (Imperatori et al., 2019; King et al.,

2013).

The parameter τ is adjusted to tune wSMI sensitivity to
different frequency ranges: smaller values increase sensitivity to
higher frequencies, while larger values enhance sensitivity to lower
frequencies. For example, setting τ = 32ms allows the analysis to
capture slower, low-frequency patterns (King et al., 2013).

The wSMI between two signals x and y is then obtained using
Equation 7.

wSMI(x, y) = 1
log(k!)

∑
x̂∈X̂

∑
ŷ∈Ŷ

w(x̂, ŷ)p(x̂, ŷ) log
(

p(x̂, ŷ)
p(x̂)p(ŷ)

)
(7)

where p(x̂, ŷ) is the joint probability of co-occurrence of symbols x̂
and ŷ, p(x̂) and p(ŷ) are the probabilities of those symbols in each
respective signal.

2.3.3 Soft-clustering and consciousness level
assessment

These features were computed for each channel or pair of
channels. The results were subsequently averaged over them as
illustrated in Figure 2. Only the lower part of their respective
connectivity matrices without the diagonals were averaged for
iCOH and wSMI measures. This resulted into a feature vector
of size n × p, where n represents the features data samples
and p = 7 is the dimension of the feature vector. Afterwards,
the feature vector was input into two soft-clustering approaches,
separately, namely Fuzzy c-mean clustering (FCM) Bezdek (1981)
and Gaussian Mixture Model (GMM) (McLachlan and Peel, 2000;
Ferraro and Giordani, 2020). In a regular hard clustering analysis,
each data point is assigned to a specific cluster. In a soft clustering
analysis, each data point can belong to different clusters with a

specific membership degree. A membership degree value of 1 to a
cluster means that the data point represents that cluster perfectly,
while a value of 0 signifies that it is not at all representative of the
cluster (Chiu, 1994; Peters et al., 2013). The sum of the membership
values for all clusters is 1 (Peters et al., 2013).

FCM, a distance-based method, typically assumes spherical
clusters with equal variance, GMMs, which are model-based,
accommodate elliptical clusters with potentially anisotropic
distributions. Using both methods at the same time enhances the
robustness of clustering outcomes by mitigating bias introduced
by the specific assumptions of a single algorithm. In addition,
combining the results through an ensemble approach allows for the
construction of consensus clusters, thereby increasing the overall
reliability of the analysis.

2.3.3.1 FCM
The FCM technique was first introduced in Bezdek (1981)

in order to improve earlier clustering methods. The goal is to
minimize an objective function:

Jm =
D∑

i=1

N∑
j=1

μm
ij ||xi − cj||2 (8)

where:

• D: number of data points,
• N: number of clusters,
• m, (m > 1): fuzzy partition matrix that defines the cluster’s

fuzziness,
• m = 1 corresponds to a hard-clustering analysis, and
• cj: center of the j-th cluster.

The cluster centers are calculated using Equation 9.

cij =
∑D

i=1 μm
ij xi∑D

i=1 μm
ij

(9)

where:

• xi: ith data point,
• μij: degree of membership of xi in the jth cluster,

μij = 1
∑N

k=1

( ||xi−cj||
||xi−ck||

) 2
m−1

(10)

The MATLAB function fcmwith the following parameters was
applied to the data to perform the FCM analysis: N = 2 clusters
(“conscious” and “unconscious”), m = 2 as recommended by
previous research (Peters et al., 2013), the maximum number of
iterations was fixed at 1000, and the minimum improvement in
objective function between two consecutive iterations ε at 1e−5.

2.3.3.2 GMM
GMM uses a Gaussian mixture distribution as a model. It

assumes that the data is generated by a random statistical model
that the clustering method attempts to recover (Ferraro and
Giordani, 2020). Given x = (x1, x2, ..., xn) ∈ R

p, the random
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vector xi is assumed to arise from a finite mixture of probability
density functions:

f (xi, �) =
K∑

g=1
πg�

(
xi|μg , 	g

)
(11)

where:

• K: number of components (clusters);
• πg > 0, (g = 1, ..., K) and

∑K
g=1 πg = 1: mixing proportions;

• � = (π1, ...πg−1, μ1, ...μg , 	1, ..., 	g): parameter vector;
• �

(
xi|μg , 	g

)
: underlying component-specific density

function with parameters μg; σg , g = 1, ..., K.

A cluster is represented by a specific mixture component
density that is associated to a specific parametric class. The method
uses maximum likelihood optimisation to estimate the parameters
in � (Ferraro and Giordani, 2020). Ellipsoidal clusters centered
at the mean vector μg are generated by the model represented in
Equation 11. The other geometrical properties of each cluster are
controlled by the parameter σg . Difference of means in the different
component models suggest that the model distinguishes among the
K classes (McLachlan and Peel, 2000).

The MATLAB function fitgmdist was used to fit GMMs
to the data. The same parameters as for the FCM were used.
Furthermore, the MATLAB function posterior was applied to
estimate the component-membership posterior probabilities (Stahl
and Sallis, 2012).

2.3.3.3 Normalized consciousness level (NCL)
determination

Each of these two clustering methods produced degrees of
membership to each of the states of interest. In this study, the
consciousness level is defined as the degree of membership of each
data sample i to the cluster representing “conscious” states (Adama
and Bogdan, 2023a,b). The premise is that higher consciousness
levels are characterized by:

• an increase of power in the θ (RPθ ) and β bands (RPβ ),
• a value of SEF95 superior to the α band,
• a higher ERR value of the Poincaré plots,
• a larger LZC value,
• A greater value of iCOH and wSMI in the θ band.

The resulting degrees of membership obtained from the
two clustering approaches were subsequently combined using a
product ensemble (Equation 12, in which P(c, m1) (resp. P(c, m2))
represents the probability that the data point i belongs to cluster c
in partition m1 (resp. m2)).

Pprod(c, m1m2) = prod(P(c, m1), P(c, m2)) (12)

The NCL values are the elements in P from Equation 12 that
represent the membership value to the “conscious” cluster.

NCL = Pprod(c = "conscious") (13)

It is important to clarify that the approach used here intends
to introduce an alternative perspective on the assessment
of consciousness levels focused primarily on (completely)
locked-in patients.

2.4 Evaluation of the approach

The clustering results were evaluated by assessing
the clusters separability (how well separated they are).
Moreover, the approach itself was evaluated by comparing
the obtained results to the performance accuracy achieved
by the patient during the experiments. It is expected that
high accuracies will be obtained during states with higher
levels of consciousness. However, the opposite is not true
in this case as the experiment is based on EOG, and
the ability to perform voluntary muscle movements are
reduced as the condition progresses, although the cognitive
functions remain almost intact (Bear et al., 2016; Posner et al.,
2007).

2.4.1 Clustering analysis validation
To validate the effectiveness of the clustering

methods, partition coefficient and partition entropy
metrics were employed. These validation measures
were used to ensure that the soft clustering models
effectively differentiate between the conscious and
unconscious states.

2.4.1.1 Partition coefficient (PC)
Partition coefficient (PC) assesses the clarity of cluster

assignments. It computes the relative average of fuzzy intersection
between pairs of fuzzy subsets in U by their algebraic product. PC
is a maximization index which value ranges between 1/c and 1.
Lower values suggest a very fuzzy clustering while a value equal to 1
represents a well-defined clustering (Bezdek, 1973, 1974; Eustquio
and Nogueira, 2020).

PC(U) = 1
n

c∑
i=1

n∑
k=1

(
Ai(xk)

)2 (14)

where: U: fuzzy pseudo-partition defined as U = [Ai(xk)]. Ai(xk):
membership degree of xk in cluster Ai, 1 ≤ i ≤ c. c: number
of clusters, n: number of observations to be clustered, xk: an
observation to be clustered, 1 ≤ k ≤ n. In this study, c =
2 (conscious vs. unconscious). Consequently, PC values range
between 0.5 and 1.

2.4.1.2 Partition entropy (PE)
Partition entropy (PE) provides insight into the fuzziness of

the clusters, indicating the degree of overlap between them. It
is a minimization index that uses Shannon’s entropy function to
describe the fuzzy uncertainty in each object xk. Its values range
from 0 to 1, in which a value of 0 represent complete well-defined
and non-overlapping clusters, and 1 displays maximum uncertainty
between them (Bezdek, 1975; Eustquio and Nogueira, 2020). The
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fuzzy uncertainty in a pseudo-partition U is measured using the
following equation:

PE(U) = − 1
n

c∑
i=1

n∑
k=1

Ai(xk)log
(
Ai(xk)

)
(15)

2.4.2 Proxy conscious states based on known
feature values

The performance of NCL was evaluated by comparing
threshold-based proxy values derived from the literature, which
characterize features typically associated with conscious states.
These values were interpreted as lower-bound indicators of
consciousness and used to construct a reference matrix. This
matrix had the same number of observations as the original
feature matrix and was generated by applying the defined threshold
to each corresponding feature. Specifically, for each feature,
if the observed value exceeded the respective threshold, the
corresponding entry in the proxy matrix was assigned a value
of one, indicating that the feature supports the presence of
consciousness in that observation. Otherwise, a value of zero was
assigned. Subsequently, for each observation, the average across
all proxy features was computed, yielding a continuous index
that reflects the degree of support for consciousness based on
the known thresholds. This index was then compared to the
NCL output.

The threshold values were selected based on published findings.
For instance, RPtheta values in patients diagnosed with an MCS
were reported as follows in Lehembre et al. (2012): 0.0523 ±
0.02 in the frontal region, 0.0648 ± 0.03 in the posterior region,
0.0589 ± 0.03 in the left hemisphere, and 0.058 ± 0.02 in the
right hemisphere. SEF95 values exceeding 8 Hz, typically in
the alpha band or above, have been associated with conscious
brain activity (Touchard et al., 2019). LZC values around 0.34 ±
0.03 have been reported in healthy controls during eyes-closed
resting states (yu Wu et al., 2011). Theta-band iCOH values
for MCS patients were found to be 0.118 ± 0.02 for inter-
hemispheric connections, 0.134 ± 0.02 for frontal-to-posterior
connections, 0.12 ± 0.03 in the left hemisphere, and 0.114 ± 0.02
in the right hemisphere (Lehembre et al., 2012). wSMI values in
healthy subjects have been reported to average 0.088 (King et al.,
2013).

No reference values were identified in the literature for RPbeta
or Poincaré ERR; these features were therefore excluded from the
threshold-based proxy computation.

Based on the evidence, the following values were used
in this study as minimal thresholds for features indicative
of consciousness: RPtheta = 0.07, SEF95 = 8 Hz, LZC =
0.4, iCOH = 0.14, and wSMI = 0.088. These thresholds
were applied to construct the binary proxy matrix, from
which the average score per observation was derived and
subsequently compared against the NCL output to evaluate
its agreement with established neurophysiological markers
of consciousness.

2.4.3 Statistical analysis
2.4.3.1 Correlation between proxy conscious states and
NCL

For each patient, the association between the proxy-based
consciousness scores and the NCL output was assessed using
Spearman’s rank correlation coefficient. This method was selected
due to its ability to assess monotonic relationships without
assuming a linear relationship or normal distribution of the data,
and was implemented using MATLAB’s corr function.

2.4.3.2 Correlation between estimated NCL and
performance accuracy

The clustering results determining the patients’ NCLs were
compared with their performance when executing the EOG-
based communication task described in Section 2. The working
hypothesis being that the former is positively correlated with the
latter; in other words, high prediction accuracies are obtained when
the patient is conscious. However, since the inability to perform
voluntary eye movements do not translate to patients being
unconscious, the inverse is not true. Spearman’s rank correlation
coefficient was also used to do so (Spearman, 1904).

3 Results

The goal of this research is to assess LIS patients’ consciousness
states using an NCL measure. As there are no ground truth,
different features were computed from the patients’ EEG recordings
in order to maximize the probability of correctly determining
their states. The normalized consciousness level is obtained by
performing a soft clustering analysis on the computed features
averaged across all channels and pairs of channels. As we are
interested in conscious and unconscious states, the number
of clusters for both clustering approaches was set to two.This
choice is also supported by the Calinski-Harabasz index (CHI)
(Calinski and Harabasz, 1974), computed for each recording
session separately for each patient. This indicated two as the
optimal number of clusters in most cases for both algorithms (see
Supplementary material). The results obtained from each patient is
presented in this section.

3.1 Normalized consciousness levels

3.1.1 Patient P11
Figure 3 shows the NCL estimations for Patient P11 during

all his recording sessions. The data of this patients consisted
of EEG and EOG recordings from March 2018 to March 2019,
consisting respectively of 6 and 4 different days of experiments.
The predicted consciousness levels were very variable from session
to session. During March and May 2018, high NCL values were
observed, averaging to 0.9070. Lower values were then obtained
for August and September, with an average value of 0.2136, but in
November, the NCL average value reached 0.6490 then decreased
again in December (average: 0.1152). As can be observed on the
figure, NCL values were continuously low from January 2019 on.
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FIGURE 3

Consciousness levels estimations during all sessions for Patient P11. The ticks in the x-axis represent the start of each recording session.

A decrease in consciousness level as time progresses could suggest
cognitive decline.

3.1.2 Patient P13
The data of Patient P13 were recorded in 2018 (2 days) and

2019 (3 days). Figure 4 shows his NCL during all days and sessions
of recording. The levels are very variable from session to session.
High values were observed at first, but then consistently decrease
afterwards. More precisely, the average NCL value for this patient
in 2018 was 0.5549, and decreased to an average of 0.3663 in 2019.

3.1.3 Patient P15
The data available for this patient consist of 4 days in 2019.

The obtained NCL are shown in Figure 5. Overall, its average value
during all sessions is 0.4703 and the values do not vary much. This
suggests that the patient was relatively in the same state (conscious
or unconscious) throughout the experiments.

3.1.4 Patient P16
A total of 3 days recordings from 2019 were available for Patient

P16. Figure 6 illustrates the NCL during all sessions. There are three
different patterns observed: at first, the NCL average value is 0.3335
in March 2019, then its values decreased to values lower than 0.1.
During the last days of experiments, an increase was observed with

an average value of 0.8158. This suggests that the patient was only
conscious during the last days of experiments.

3.2 Correlation between NCL and features

Correlation coefficients between the features and the NCL
were computed for each session, and the results are illustrated in
Figure 7.

For Patient P11, frequency-based features (RPβ and SEF95)
and LZC complexity contribute most positively to the final
results, while connectivity features, particularly wSMI, have
the least impact. SEF95 (median: 0.8431) was the highest
contributor, whereas wSMI (-0.0075) had the lowest influence.
For Patient P13, Figure 7b shows the correlation coefficients
between features and NCL. As with Patient P11, RPβ , SEF95,
and LZC exhibit the strongest correlations. RPθ also plays a
significant but negative role, aligning with existing literature,
as theta rhythms typically emerge during deep sleep when
cortical neurons are not involved in information processing
(Niedermeyer, 2005). Similarly, for Patient P13, SEF95 (median:
0.8092) had the highest contribution, while wSMI (0.0964) had
the lowest. For Patient P15, Figure 7c presents the correlation
coefficients between features and NCL across all recording
sessions, confirming the trends observed in Patients P11 and
P13. Frequency-based features (RPβ and SEF95) and the
complexity feature LZC show the strongest positive correlations,
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FIGURE 4

Consciousness levels estimations during all sessions for Patient P13. The ticks in the x-axis represent the start of each recording session. The shown
dates are the starting dates of each visit, each visit comprises several days.

while wSMI contributes minimally. For Patients P15 and
P16, RPβ had the highest impact (median: 0.8281 and 0.7947,
respectively), whereas wSMI had the least influence (−0.0178 and
0.0233, respectively).

To summarize, frequency-related features (RPβ and SEF95) and
complexity (LZC) appear to be the most significant contributors
for all patients. A reduction in β power suggests a shift toward
a resting-state brain, whereas an increase indicates heightened
brain engagement in information processing (Gazzaniga et al.,
2018; Niedermeyer, 2005). Furthermore, SEF95 values below
7 Hz are typically associated with deep anesthesia, signifying
low-consciousness states (Touchard et al., 2019). Additionally,
lower complexity values reflect less random and therefore
less intricate brain signals. Higher levels of consciousness
are associated with increased signal complexity, while lower
complexity corresponds to reduced conscious states (Górska et al.,
2021).

On the other hand, the less contributing factors appear to be
the connectivity features. Specifically, for Patient P11, the wSMI
feature has a median correlation value of −0.075. Similarly, for
Patient P13, the iCOH feature shows a median correlation value of
0.0964. In the case of Patient P15, the ERR feature has a median
correlation value of −0.0178. Lastly, for Patient P16, the wSMI
feature presents a median correlation value of 0.0233. During
wakefulness, efficient information processing is associated with
increased connectivity values. However, alterations in connectivity
values may lead to disrupted functional connectivity patterns,

which could contribute to impaired sensory processing in states
of reduced consciousness (Desjardins et al., 2017). This suggests
that the previous observation that connectivity features, such as
wSMI and iCOH, appear to be less contributing factors in specific
patients, may indicate a potential link between altered connectivity
and reduced cognitive function.

3.3 Correlation between NCL and proxy
conscious states

Given the absence of an objective ground-truth for
consciousness in patients with LIS and CLIS, the performance of
the proposed consciousness assessment method was initially
evaluated using proxy-based consciousness scores. This
evaluation involved computing Spearmans rank correlation
coefficient between the NCL values and the proxy scores for each
individual patient.

For Patient P11, the analysis revealed a Spearman correlation
coefficient of ρ = −0.0517, with a highly significant p-value of
6.43 × 10−55. Although this result is statistically significant, the
very low magnitude of the correlation suggests that there is no
meaningful relationship between the NCL and the proxy-based
conscious state score in this case. The statistical significance is likely
a consequence of the large number of data points rather than a
reflection of an actual association.
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FIGURE 5

Consciousness levels estimations during all sessions for Patient P15. The ticks in the x-axis represent the start of each recording session.

In contrast, Patient P13 showed a strong positive correlation
between the NCL and the proxy scores, with a Spearman coefficient
of ρ = 0.7417 and a p-value of zero. This result indicates a
clear and statistically robust monotonic relationship, suggesting
that increases in the NCL are reliably associated with increases in
the proxy-based estimate of consciousness for this patient.

A similar pattern was observed for Patient P15, where the
Spearman correlation coefficient was ρ = 0.7661, also with a
p-value of zero. This strong positive correlation again supports
the validity of NCL as a marker of consciousness, at least in this
individual case.

For Patient P16, the correlation coefficient was ρ = 0.4971,
with a p-value of zero. Although weaker than in Patients P13
and P15, this moderate positive correlation still indicates a
meaningful relationship between the two measures, suggesting
partial alignment between NCL and the proxy consciousness index.

Taken together, these results demonstrate that the NCL
correlates strongly with proxy-based markers of consciousness
in several cases, particularly for Patients P13 and P15. However,
the absence of a meaningful correlation in Patient P11 highlights
the presence of inter-individual variability. Such variability may
arise from differences in clinical condition, signal quality, or how
well the proxy thresholds reflect consciousness in specific patients.
These findings suggest that while NCL appears to capture relevant
aspects of conscious processing in many cases, additional patient-
specific factors may influence its effectiveness and should be further
explored in future analyses.

3.4 Correlation between NCL and
prediction accuracy

Additionally, the performance of the proposed consciousness
assessment method was also evaluated using the prediction
accuracy obtained while the patients were performing the EOG-
based communication tasks described in Section 2. The assumption
is that higher accuracy reflects a conscious state. However, low
accuracy does not necessarily mean the patient is unconscious,
especially considering the progression from LIS to CLIS. Data
on classification and prediction accuracy for the EOG-based
communication system can be found in the original publication
(Tonin et al., 2020; Jaramillo-Gonzalez et al., 2021).

Table 1 shows the correlation coefficients values between NCL
and prediction accuracy. The prediction accuracy for Patient P11
ranges between 15% and 100%, with an average accuracy of 71.82%.
A statistically significant correlation was observed between median
NCL and prediction accuracy, with a correlation coefficient of
r = 0.3779 and a p-value of 0.0053 (p < 0.05). For Patient P13,
prediction accuracy varies between 5% and 100%, with a mean
accuracy of 64.55%. The correlation between the median NCL and
the prediction accuracy is r = 0.1211, and the p-value of 0.6215
indicates a lack of statistical significance. In the case of Patient
P15, prediction accuracy fluctuates from 5% to 95%, with a median
accuracy of 64.38%. The correlation between median NCL and
prediction accuracy is negative, with r = −0.2130 and a p-value
of 0.4646, showing no significant relationship. Prediction accuracy
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FIGURE 6

Consciousness levels estimations during all sessions for Patient P16. The ticks in the x-axis represent the start of each recording session.

for Patient P16 spans from 0% to 100%, with a median value
of 66.59%. The correlation between median consciousness levels
and prediction accuracy is r = 0.1610, with a p-value of 0.4978,
indicating no statistically significant correlation.

All NCL estimations are positively correlated with the
prediction accuracies, except for Patient P15. For Patient P11, the
correlation strength is moderate and statistically significant, while
it is weak for the other patients. A moderate (or weak) increase
or decrease in NCL corresponds to a similar trend in prediction
accuracy. This correlation strength likely results from a decline
in accuracy due to the EOG-based nature of the experiment. As
patients transition to CLIS and lose eye movement capabilities,
accuracy drops, even though their cognitive functions largely
remain intact (Posner et al., 2007).

3.5 Clustering fitness

Different measures were used to assess the performance of the
clustering results. The analyses were done offline, on all available
data for each patient separately. Table 2 shows the values of the PE
and PC for all patients. Typically, PC values range from 0.5 (in this
case) to 1, while PE values range from 0 to 1. Well-defined clusters
are characterized by a high PC value and a low PE value (Bezdek,
1973, 1974, 1975). For Patient P15, PC and PE results indicate poor
clusters separation, as can also be seen in Figure 5 with the average
values of NCL. The patient was either conscious or unconscious

during all sessions. The values of the features suggest the latter
as can be seen in the upper part of Table 2. Low values of the
individual features correspond to lower consciousness states. For
the Patients P11, P13 and P16, conscious and unconscious states
were clearly separated.

4 Discussions and conclusion

This paper investigated the conscious states of four LIS
patients using their EEG and an approach providing a normalized
consciousness level value between 0 and 1 representing respectively
unconscious and conscious states. This approach was first
introduced in Adama and Bogdan (2023a,b) and was capable to
successfully estimate the consciousness level of one CLIS patient
with a correct answer rate of 88.89%. Using this approach to
analyse consciousness during sleep in patients with disorders
of consciousness, an accuracy of up to 70.11% was achieved
for patients in a vegetative state, and over 80% for those in a
minimally conscious state, relative to their eyes-open or eyes-
closed conditions (Adama and Bogdan, 2023b). By using different
sets of features, the idea is to maximize the probability of
correctly assessing these patients’ actual state considering the lack
of ground truth.

To evaluate the performance of the proposed method in
the absence of a definitive ground truth for consciousness, the
Normalized Consciousness Level was compared against a proxy-
based consciousness score derived from known physiological
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FIGURE 7

Correlation between features and estimated consciousness levels for all patients. (a) Patient P11, (b) Patient P13, (c) Patient P15, (d) Patient P16.

features, and the prediction accuracy achieved during eye
movement-based communication tasks. In addition, the quality
of the unsupervised clustering was assessed using clustering
validity indices, specifically the Partition Coefficient and the
Partition Entropy.

The correlation analysis between NCL and proxy-based
consciousness scores revealed consistent and interpretable
results across most patients. Strong positive correlations
were observed in Patients P13 and P15, while Patient P16
demonstrated a moderate positive association. These findings
suggest that the NCL measure aligns well with established
neurophysiological markers that are generally considered
indicative of consciousness. Notably, the lack of correlation in
Patient P11, despite statistical significance, may indicate individual
variability or a mismatch between the proxy thresholds and the
patient’s specific neurophysiological profile. Overall, the correlation
between NCL and proxy scores provides preliminary evidence
supporting the validity of the proposed measure in capturing
consciousness-related neural dynamics, even in the absence of
explicit behavioral responsiveness.

In addition to proxy comparisons, the relationship between
NCL and EOG-based communication system prediction accuracy
was also examined. The patients’ performance during the

TABLE 1 Average correlation coefficient values between features and
prediction accuracy during the EOG-based communication for all
patients.

P11 P13 P15 P16

RPθ −0.4406 (∗) −0.0654 −0.3341 0.1321

RPβ −0.0531 0.0292 0.2960 −0.2293

SEF95 0.0820 0.1413 0.226 −0.0437

ERR 0.0858 0.4103 (∗∗) 0.1727 0.2179

LZC 0.1927 0.5020 (∗) 0.1660 0.1526

iCOH −0.2248 −0.2227 −0.0022 0.0380

wSMI −0.2 0.1237 −0.1435 −0.1435

NCL 0.3779 (∗) 0.1211 −0.2130 0.1610

(∗) means significant with p < 0.05, and (∗∗) with p < 0.1.

experiments can be found in Tonin et al. (2020); Jaramillo-
Gonzalez et al. (2021). For Patient P11, a significant positive
correlation was observed, indicating that higher NCL values
were associated with better communication performance. Patient
P13 showed a positive but less pronounced correlation, while
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TABLE 2 Median values of the different features extracted from the EEG
data for all patients.

P11 P13 P15 P16

RPθ 0.3478 0.3647 0.4269 0.3119

RPβ 0.1662 0.1952 0.1129 0.1676

SEF95 0.5642 0.6293 0.4464 0.5859

ERR 0.8114 0.5917 0.5081 0.6904

LZC 0.0995 0.0834 0.0628 0.0877

iCOH 0.2804 0.2597 0.2380 0.1481

wSMI −0.0073 −0.0130 −0.0075 −0.0194

PC 0.7998 0.7793 0.6312 0.7877

PE 0.3364 0.3639 0.5501 0.3499

Values in bold represent the lowest values inter-patients. Partition coefficient (PC) and
partition entropy (PE) values for all patients.

Patient P15 exhibited a weak negative correlation that did not
reach statistical significance. Patient P16 showed a similarly
weak but positive association. These variable results likely reflect
the influence of external factors on the EOG-based system
performance, particularly the reliance on eye movement signals. As
patients progress toward a complete locked-in state and gradually
lose the ability to generate reliable eye movements, the accuracy
of such interfaces tends to decline, even if cognitive processing
remains relatively intact. This dissociation may explain the reduced
correspondence between NCL and accuracy in some cases.

Clustering analysis further highlighted inter-patient variability.
Clear and well-separated clusters were identified for Patients P11,
P13, and P16, suggesting distinct neural states that the model could
differentiate effectively. In contrast, clustering results for Patient
P15 were notably poor, as reflected by the corresponding partition
coefficient and partition entropy values. This may indicate that the
neural activity patterns for this patient were less structured or more
variable, potentially due to lower signal quality or a less consistent
cognitive response.

Taken together, the results suggest that the proposed model
demonstrates promising performance in capturing neural markers
of consciousness and differentiating states in most patients. Its
ability to correlate with proxy-based indicators and, to some extent,
with EOG-based system performance underscores its potential as
a tool for monitoring residual consciousness in LIS and CLIS
populations. However, the variability observed across individuals
highlights the need for personalized calibration and further
validation. The limited effectiveness of the NCL approach in certain
cases likely reflects inter-subject neurophysiological variability, or a
mismatch between the fixed thresholds and the patients individual
neural signature. Additionally, a lack of motivation or engagement
during the task may also contribute. These factors highlight the
importance of a personalized and adaptive approach.

It is important to note that the dataset used in this study
does not include scores from the Revised Amyotrophic Lateral
Sclerosis Functional Rating Scale (ALSFRS-R), which is commonly
employed to evaluate the level of functional impairment in
ALS patients. However, the ALSFRS-R primarily assesses motor
function and daily activities, and it does not offer a direct or

precise measure of communication ability. For instance, even a
patient with an ALSFRS-R score of zero may retain some capacity
for communication through minimal voluntary movements, such
as eye gaze control (Tonin et al., 2020). As a result, the
absence of observable motor responses should not be equated
with the absence of conscious awareness or the inability to
communicate. Traditional behavioral assessments are similarly
limited in their ability to detect covert consciousness, especially
in patients who do not exhibit overt signs of awareness. Such
tools may fail to capture the presence of preserved cognitive
functions when voluntary motor output is severely compromised
or entirely absent.

The clinical relevance of the proposed approach lies in
its potential to provide individualized, objective indicators
of consciousness in patients who are otherwise unable to
express themselves behaviourally. By offering a patient-
specific assessment of neural activity patterns consistent
with conscious processing, this method may support more
accurate evaluations of residual awareness. This, in turn,
could assist family members and clinical staff in better
understanding the patient’s current cognitive state and guide
decisions about attempting communication, thus contributing
meaningfully to the patients quality of life in the complete
locked-in state.

Patients with LIS due to ALS, such as those included
in this study, are generally not expected to experience
functional recovery. As the disease progresses and patients
transition into CLIS, the absence of interaction with
the external environment may contribute to cognitive
decline. However, it has been shown that providing
communication means can help delay such decline (Secco
et al., 2021).

Moreover, the establishment of a reliable and functional
communication system has been shown to significantly
improve quality of life. Recent findings emphasize this
impact, with evidence demonstrating that patients who
were supported with communication technologies reported
enhanced wellbeing and sustained levels of perceived quality
of life (Voity et al., 2024). Notably, a longitudinal study
conducted between 2007 and 2013 found that 70% of
patients reported stable or improved quality of life when
given the opportunity to communicate (Rousseau et al.,
2015).

These observations underscore the critical importance of
developing and refining BCI-based communication systems
tailored for patients in advanced stages of ALS. Providing such
individuals with the ability to interact with their relatives,
caregivers, and medical staff contributes meaningfully to their
psychological and emotional wellbeing. Furthermore, continuous
monitoring of brain activity in CLIS patients may offer additional
benefits, enabling adaptive and personalized interventions
that enhance care and improve the patients overall quality
of life.

This research represents a step toward improving the care
and quality of life for CLIS patients. One of the main benefits
of NCL is that it does not require the patient to actively
perform a task. This helps reduce fatigue, which is a major
concern in severely disabled patients. It also lowers the chance
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of misdiagnosing a conscious patient as unconscious, which can
happen when tests rely too much on movement or speech. For
all these reasons, NCL should be seen as a new and separate
tool that complements existing clinical assessments by focusing on
consciousness detection in patients who cannot move or speak.
It is however important to note its limitations, given the limited
sample size and the lack of ground-truth. Indeed, the extreme
rarity of data from LIS and CLIS patients is largely due to
the low prevalence of the condition. The prevalence of ALS is
approximately 4.42 per 100,000 people (Xu et al., 2020). Incidence
rates vary by country, ranging from 0.26 (Ecuador) to 23.46 per
100,000 person-years (Japan) (Wolfson et al., 2023). LIS following
ALS is even rarer, with no known exact incidence or prevalence
(Schnetzer et al., 2023). Additionally, only a small number of
cases consented to take part on the experiments. Nonetheless,
further investigation with more patients is needed to validate
these findings.

In addition, another limitation concerns the use of clustering.
Given the predefined number of cluster (two in this case),
this approach will always partition the data into two clusters
regardless of whether the underlying data genuinely reflect
distinct states. This means that even if a patient remained in a
stable state throughout a session, clustering would still impose
artificial divisions. Although clustering metrics may indicate poor
partition quality in such scenarios, some result will always be
produced. The distributions of proxy features associated with
consciousness were then evaluated to mitigate this, providing
important contextual information to support the interpretation of
clustering outcomes.

This study includes features previously validated in sleep
and anesthesia research. Using diverse feature types aims to
improve the accuracy of predicting patients’ states. Hence, future
works will focus on investigating other potential meaningful
features based on frequency and complexity, such as gamma
relative powers, fractal dimension, and entropy as frequency
and complexity-based features appeared to be the most
meaningful characteristics in this research, as opposed to the
connectivity measures.
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