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Equivariant spherical CNNs for
accurate fiber orientation
distribution estimation in
neonatal di�usion MRI with
reduced acquisition time

Haykel Snoussi* and Davood Karimi

Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA,

United States

Early and accurate assessment of brain microstructure using di�usion Magnetic

Resonance Imaging (dMRI) is crucial for identifying neurodevelopmental

disorders in neonates, but remains challenging due to low signal-to-noise

ratio (SNR), motion artifacts, and ongoing myelination. In this study, we

propose a rotationally equivariant Spherical Convolutional Neural Network

(sCNN) framework tailored for neonatal dMRI. We predict the Fiber Orientation

Distribution (FOD) from multi-shell dMRI signals acquired with a reduced

set of gradient directions (30% of the full protocol), enabling faster and

more cost-e�ective acquisitions. We train and evaluate the performance of

our sCNN using real data from 43 neonatal dMRI datasets provided by the

Developing Human Connectome Project (dHCP). Our results demonstrate that

the sCNN significantly outperforms a Multi-Layer Perceptron (MLP) baseline

across multiple quantitative metrics, including Mean Squared Error (MSE), Peak

Signal-to-Noise Ratio (PSNR), Angular Correlation Coe�cient (ACC), angular

error, and peak match rate, indicating superior FOD estimation accuracy. More

importantly, it yields FODs and tractography that are quantitatively comparable

and qualitatively highly similar to those from a reliable Hybrid-CSD ground truth,

despite using only 30% of the full acquisition data. These findings highlight

sCNNs’ potential for accurate and clinically e�cient dMRI analysis, paving the

way for improved diagnostic capabilities and characterization of early brain

development with shorter scan times.

KEYWORDS

di�usion MRI, spherical CNNs, neonatal brain, fiber orientation, geometric deep

learning, tractography

1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive neuroimaging
technique that provides unique insights into the microstructure of the brain and spinal
cord tissue bymeasuring the diffusion of water molecules. By quantifying the directionality
and magnitude of water diffusion, dMRI enables the mapping of white matter tracts and
the characterization of microstructural changes associated with development (Snoussi
et al., 2025; Karimi et al., 2024), aging (Luckey et al., 2024; Snoussi et al., 2023b), and
various neurodegenerative diseases (Snoussi et al., 2023a). A typical dMRI acquisition
involves acquiring a reference image with no diffusion weighting (b = 0 s/mm2) and a
series of diffusion-weighted images. These are obtained by applying diffusion-sensitizing
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gradients in numerous orientations, represented by q-vectors that
are carefully sampled across the surface of a sphere to capture the
angular information of water diffusion within tissues.

Early identification of white matter abnormalities in neonates
and accurately estimating microstructural parameters from dMRI
are crucial for understanding brain architecture and identifying
biomarkers for neurodevelopmental and neurological disorders
(Kebiri et al., 2024). However, neonatal dMRI presents unique
challenges, such as small brain size, low signal-to-noise ratio (SNR),
motion artifacts, and ongoingmyelination, that significantly hinder
traditional analysis methods.

Traditional approaches to extracting microstructural
information from dMRI, such as multi-shell multi-tissue
constrained spherical deconvolution (MSMT-CSD) (Jeurissen
et al., 2014), rely on fitting complex biophysical models to the
dMRI signal. While effective with dense sampling, applying these
methods to data acquired with a reduced number of diffusion
directions often leads to less reliable Fiber Orientation Distribution
(FOD) estimation due to increased noise sensitivity and model
instability. This reliance on extensive data acquisition presents
significant challenges for the healthcare system, increasing
scanning costs, and limiting scanner throughput, thereby
highlighting a critical clinical need for faster protocols.

Deep learning has emerged as a promising alternative for dMRI
analysis, offering faster and potentially more robust parameter
estimation (Karimi et al., 2021a, 2024; Kerkelä et al., 2024;
Kebiri et al., 2024). Among these various methods, spherical
convolutional neural networks (sCNNs) (Cohen et al., 2018;
Esteves et al., 2018) have shown particular promise due to
their inherent rotational equivariance. sCNNs are designed to
be SO(3)-equivariant (i.e., rotating the input changes the output
according to the same rotation) artificial neural networks that
perform spherical convolutions with learnable filters. They enable
rotationally equivariant processing of spherical data, making them
well-suited for predicting microstructural parameters like the FOD
from dMRI data.

While recent deep learning approaches, particularly sCNNs,
have shown promise for dMRI analysis, their direct applicability
to the unique challenges of neonatal imaging with highly
constrained acquisition protocols remains largely unexplored.
For instance, Kerkelä et al. (2024) explored sCNNs for general
brain microstructure estimation using simulated and adult human
data. Similarly, Sedlar et al. (2021) applied sCNNs to estimate
Neurite Orientation Dispersion and Density Imaging (NODDI)
parameters from adult Human Connectome Project (HCP) data,
emphasizing the rotational equivariance of these networks. While
these foundational studies highlight the power of sCNNs in
handling the spherical nature of dMRI data and processing
subsampled inputs, they generally focus on adult populations
or scalar parameter estimation, and do not explicitly target the
specific challenges of neonatal dMRI or the clinical implications
of significantly reduced acquisition protocols for time-sensitive
clinical use.

Other related works include those by Elaldi et al. (2024),
who introduced an unsupervised rotation-equivariant spherical
deconvolution framework for sparse FOD estimation. These
methods leverage advanced spatial and spherical equivariance to
improve deconvolution, but operate on an unsupervised training

FIGURE 1

Distribution of the postmenstrual ages for the 43 neonatal dMRI

datasets included in the study.

paradigm and are not primarily evaluated on neonatal data or the
impact of significantly reduced acquisition protocols. Furthermore,
while Karimi et al. (2021b) demonstrated that MLPs could estimate
FODs from undersampled data with improved accuracy over
traditional methods, their approach lacks the inherent rotational
equivariance of sCNNs, which is critical for robust performance in
diverse orientations.

In this work, we aim to bridge these gaps by developing
and rigorously evaluating a novel sCNN framework uniquely
tailored for the challenging domain of neonatal dMRI. Leveraging
data from the Developing Human Connectome Project (dHCP)
(see Figures 1, 2), our approach seeks to achieve accurate FOD
estimation using a substantially reduced set of gradient directions.
This directly addresses the critical need for faster, more feasible
dMRI scans in neonates, which can significantly reduce scanning
costs, improve patient comfort, and facilitate earlier diagnosis and
intervention for neurodevelopmental disorders. We evaluate the
performance of our framework using quantitative and qualitative
metrics to demonstrate the downstream impact of accurate
microstructural parameter estimation on connectomics analyses.
The complete implementation, including training scripts, model
architectures, and evaluation tools, is publicly available at: https://
github.com/H-Snoussi/sCNN-FOD-neonatal.

2 Materials and methods

The methodology employed in this study encompasses several
key stages, from data representation and preprocessing to model
development, training, and evaluation. A comprehensive overview
of the entire process, including the processing of neonatal dMRI
datasets, FOD estimation, sCNN architecture, and the network’s
outputs, is presented in Figure 3.

2.1 Neonatal dMRI data acquisition and
preprocessing

This study utilized a carefully selected subset of 43 high-
quality neonatal dMRI datasets from the Developing Human
Connectome Project (dHCP). This subset was chosen to
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FIGURE 2

Sagittal, coronal, and axial views of representative examples of data from neonatal dMRI in the dHCP dataset.

FIGURE 3

Flowchart illustrates the entire data processing and analysis pipeline, including the use of neonatal dMRI datasets, FOD estimation, data simulations,

the sCNN architecture, and the outputs of the sCNN.

ensure a representative distribution across postmenstrual
ages (Figure 1) and to maintain manageable computational
demands for our deep learning pipeline, collectively yielding over
4.5 million FOD samples for training, validation, and testing.
Figure 2 provides two representative examples of the neonatal
dMRI data.

The dHCP neonatal dMRI acquisition protocol was designed
to optimize data acquisition for the unique properties of the
developing brain. It employed a uniformly distributed set of
gradient directions across three b-value shells (Edwards et al.,
2022). The protocol comprised 20 volumes at b = 0 s/mm2, 64
volumes at b = 400 s/mm2, 88 volumes at b = 1000 s/mm2,
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and 128 volumes at b = 2600 s/mm2. The temporal ordering
of the acquired directions was strategically planned to maximize
efficiency, mitigate the risks of infant motion artifacts, and adhere
to gradient duty cycle constraints. Data were acquired with in-plane
resolution of 1.5 × 1.5 mm, and 3 mm slices with 1.5 mm overlap.
Image reconstruction was performed using a dedicated algorithm
(Hutter et al., 2018; Cordero-Grande et al., 2018).

The dataset underwent a comprehensive preprocessing
pipeline, including denoising, brain masking, dynamic distortion
correction, and slice-to-volume motion correction using a
multi-shell spherical harmonics and radial decomposition
(SHARD) representation (Christiaens et al., 2021). Simple intensity
normalization was performed by setting negative values to zero
and clipping high values at the 95th percentile.

2.2 Ground truth FOD estimation

Ground truth FODs were estimated using a hybrid multi-tissue
constrained spherical deconvolution (Hybrid-CSD) approach
implemented in MRtrix3 (Tournier et al., 2019). This approach
decomposes the diffusion-weighted signal into contributions from
white matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF) compartments (Jeurissen et al., 2014). Response functions for
GM and CSF tissues were estimated using the dhollander algorithm
(Dhollander et al., 2019).

Our choice of this hybrid strategy stems from observations
tailored to neonatal dMRI. While GM and CSF response functions
were estimated using the robust dhollander algorithm (Dhollander
et al., 2019), the WM response function required a more specific
approach. In our experience, Dhollander’s default WM voxel
selection often underperforms in neonatal data: regions expected
to exhibit complex fiber crossings are underrepresented, as the
anisotropic signal can be erroneously absorbed into the GM-
like compartment. In contrast, for WM, we followed the iterative
procedure for single-fiber voxel selection described by Tournier
et al. (2013). This method reliably identifies high-FA, single-fiber
WM voxels, particularly in coherent tracts such as the corpus
callosum. We applied a fractional anisotropy (FA) threshold of 0.5
for initial WM versus GM-CSF separation; this higher threshold
was selected after empirical testing (including values like 0.3 and
0.35), as it consistently produced more anatomically plausible
tractography in our neonatal data.

From amodeling standpoint, multi-tissue CSD decomposes the
diffusion signal as a linear combination of response functions from
distinct tissue compartments (WM, GM, CSF), each convolved
with their respective FODs. These compartments are assumed
to be independent and separable in both signal characteristics
and anatomical location. Therefore, the response functions do
not necessarily need to be estimated jointly or via the same
method, as long as each function accurately reflects the diffusion
profile of its target tissue. The Dhollander method, on the other
hand, is well-suited for unsupervised estimation of GM and CSF
response functions using multi-shell data due to its design, which
intentionally decouples WM, GM, and CSF voxel selection, making
it amenable to modular integration. This combined approach
ensures robust and anatomically faithful ground truth FODs for our
neonatal dataset.

TABLE 1 Summary of dataset splits and number of di�usion directions.

Split Subjects Voxels Di�usion MRI
directions

Ground
truth

Training

Training 35 3,703,986 280 83

Validation 4 358,015 280 83

Testing 4 483,950 280 83

Ground truth FODswere estimated using the full acquisition (280 directions), while the sCNN

was trained on reduced data (30%, 83 directions).

WM FODs obtained via this Hybrid-CSD approach were
represented in the spherical harmonics (SH) basis up to (lmax =

8), yielding 45 SH coefficients per voxel. The neonatal WM FOD
datasets were divided into training (35 subjects), validation (4
subjects), and testing (4 subjects) sets.

2.3 Generation of reduced dMRI training
data

To facilitate faster and more cost-effective neonatal dMRI
analysis, we generated training data using only the first 30% of the
full dHCP acquisition protocol’s gradient directions. This reduced
protocol consisted of 19 volumes at b = 400 s/mm2 (compared to
64 in the full protocol), 26 volumes atb = 1000 s/mm2 (compared
to 88), and 38 volumes at b = 2600 s/mm2 (compared to 128).
The b = 0 s/mm2 volumes are not considered in the computation
of SH. For each b-value shell, SH coefficients were extracted from
the diffusion-weighted data up to lmax = 8, resulting in 45 SH
coefficients per shell. A summary of the dataset splits and the
number of diffusion directions for both ground truth and training
data is provided in Table 1. As detailed in the table, our training data
utilized 83 diffusion directions, a significant reduction from the 280
directions used for ground truth estimation.

2.4 sCNN model for FOD estimation

The core of this study is a Spherical Convolutional Neural
Network (sCNN) designed to estimate WM FOD from a reduced
set of dMRI measurements. The sCNN architecture is optimized
for spherical signals, leveraging spherical convolutions to exploit
the rotational properties of diffusion signals. This approach ensures
a more structured and efficient learning process, maintaining
consistency across different orientations.

2.4.1 sCNN architecture and shell attention
mechanism

The proposed sCNN model is built upon a hierarchical,
shell-specific feature extraction strategy, incorporating attention
mechanisms to enhance feature fusion across different diffusion
shells. The architecture is illustrated in Figure 3.

Shell-specific convolutions are applied independently to the
input diffusion-weighted data at different shells using three

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1604545
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Snoussi and Karimi 10.3389/fnins.2025.1604545

spherical convolutional layers. Each layer extracts relevant features
from its corresponding shell before passing them to the next
stage. To improve feature integration across shells, a shell attention
module is employed, assigning dynamic weights to different shells
to enhance the learning of critical structures by prioritizing the
most informative features.

Shell-specific convolutions are applied independently to the
input diffusion-weighted data at different shells using three
spherical convolutional layers. Each layer extracts relevant features
from its corresponding shell before passing them to the next
stage. To improve feature integration across shells, a shell attention
module is employed, assigning dynamic weights to different shells
to enhance the learning of critical structures by prioritizing
the most informative features. Specifically, for each shell-specific
feature map Xi ∈ R

B×16×C (where B is the batch size and C

is the number of spherical harmonic coefficients), global average
pooling is applied across the SH dimension to form a 48-
dimensional feature vector z ∈ R

B×48 by concatenating z =
[

mean(X1), mean(X2), mean(X3)
]

. The resulting feature vector z ∈
R
48 is passed through a two-layer feedforward network to generate

shell attention logits l ∈ R
3:

l = W2 · σ (W1z+ b1) + b2, (1)

where W1 ∈ R
24×48, W2 ∈ R

3×24, and σ (·) is a Leaky Rectified
Linear Unit (Leaky ReLU) non-linearity with negative slope 0.1.
The attention weights a ∈ R

3 are then computed using the softmax
function:

ai =
exp(li)

∑3
j=1 exp(lj)

for i = 1, 2, 3, (2)

ensuring that
∑

i ai = 1 and ai ≥ 0. These weights are broadcast
and applied multiplicatively to each shell-specific feature map
before concatenation. This mechanism enables the model to assign
higher importance to more informative shells on a per-sample
basis, rather than treating all shells equally.

Following attention-guided fusion, the network applies a
series of spherical convolutional layers in an encoder-decoder
configuration with increasing feature channels: 16, 32, and 64.
Leaky ReLU activation functions are applied after each layer to
introduce non-linearity. The decoder progressively refines the
feature representations using a symmetric series of spherical
convolutions, which enhances feature retention and improves
reconstruction quality. Finally, the processed feature maps are
passed through fully connected layers with batch normalization and
ReLU activations to enhance learning efficiency. The output layer
produces 45 SH coefficients representing the estimated WM FODs.

2.4.2 Rotationally equivariant spherical
convolution layers

The foundational operation in our sCNN architecture is the
spherical convolution, which is specifically designed to process
functions defined on the sphere—such as the dMRI signal—
while preserving rotational structure. In diffusion imaging, signals
are naturally represented using SH, a basis for functions on the
unit sphere. SH coefficients capture both the magnitude and

directionality of signal variation, making them particularly well-
suited for modeling fiber orientation distributions.

Mathematically, a spherical convolution between a function f

and a filter h is defined as:

(f ∗ h)(x) =

∫

SO(3)
dR f (Rê3) h(R

−1x), (3)

where x is a point on the sphere, ê3 is the north pole unit vector,
and R ∈ SO(3) denotes a rotation. This operation is equivariant to
3D rotations, meaning:

If f ′(x) = f (R−1x), then (f ′ ∗ h)(x) = (f ∗ h)(R−1x),

so rotating the input results in a rotated output. This is a critical
property for diffusion MRI analysis, where fiber orientations can
vary arbitrarily in space.

In our implementation, the spherical convolution is performed
directly in the SH domain. Each degree l is associated with a
learnable scalar weight that is shared across all m-orders within
that degree. This ensures that the operation is SO(3)-equivariant, as
rotations in SH space only mix coefficients within the same degree.
These weights are stored in a tensor of shape [Cout,Cin, L], where
L is the number of SH degrees (restricted to even l for antipodal
symmetry, as is standard in diffusion MRI). A degree expansion
mask is used to broadcast these scalar weights to all orders m, and
the convolution is applied using an efficient Einstein summation.

To introduce non-linearity while preserving spherical
structure, SH coefficients are transformed to the spatial domain
using the Inverse Spherical Fourier Transform (ISFT), followed by
a Leaky ReLU activation and then mapped back to the SH domain
using the forward the Spherical Fourier Transform (SFT). While
this spatial-domain nonlinearity breaks strict SO(3) equivariance,
it preserves approximate rotation-awareness and maintains
compatibility with the SH-based structure of the data.

When the number of input and output channels match, a
residual connection is applied, which is inherently equivariant since
addition is commutative with rotation. Only even SH degrees are
used (e.g., l = 0, 2, 4, . . .), reflecting the antipodal symmetry of
diffusion signals and reducing unnecessary parameters.

In summary, our spherical convolution layers apply band-
limited, degree-wise learnable weights in the SH domain,
preserving SO(3)-equivariance. Approximate equivariant
nonlinearities are applied via ISFT/SFT transformations, ensuring
the network remains lightweight and robust to arbitrary signal
orientations. This design enables biologically and physically
informed feature learning, critical for accurate and generalizable
fiber orientation estimation in dMRI.

2.4.3 Spatial domain loss function for FOD
reconstruction

Standard Mean Squared Error (MSE) loss, when applied
directly to SH coefficients, is suboptimal for FOD reconstruction.
This is because SH coefficients do not contribute equally to the
reconstructed FOD. Lower-order coefficients primarily govern the
overall magnitude or isotropic component, while higher-order
coefficients capture finer angular details. Using a basic MSE loss
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treats all coefficients equally, potentially penalizing errors in higher-
order coefficients less than errors in lower-order ones, even though
the latter can have a more significant impact on the overall
FOD shape. Therefore, a more nuanced approach is required. We
propose a modified MSE loss calculated in the spatial domain,
rather than the SH domain, to address this issue.

Specifically, given predicted SH coefficients p ∈ R
B×45 and

target SH coefficients t ∈ R
B×45 for a batch of size B the loss

function first reconstructs the FOD signals in the spatial domain
using the ISFT:

pFOD = Up, tFOD = Ut (4)

where U ∈ R
N×45 is the ISFT matrix mapping SH coefficients back

to the spatial domain, N is the number of spatial points used to
represent the FOD. The loss is then computed as the mean squared
difference between the predicted and target FOD signals:

LMSE =
1

NB

B
∑

i=1

N
∑

j=1

(

pFOD,ij − tFOD,ij
)2

(5)

By computing the loss in the spatial domain rather than directly
in the SH coefficient space, this approach ensures that model
predictions are optimized for their impact on the reconstructed
diffusion signal rather than just the coefficient magnitudes. This
strategy improves the model’s ability to generate accurate fiber
orientation estimates.

2.4.4 Training procedure
The training procedure of the sCNN model was designed to

optimize convergence while preventing overfitting. The model was
trained using the AdamW optimizer with an initial learning rate
of 10e − 4 and a weight decay of 10e − 4. The learning rate was
adjusted using a step-based scheduler with a decay factor of 0.5
every 17 epochs. To ensure stable training, gradient clipping was
applied with a maximum norm of 10.0.

Training data consisted of diffusion-weighted images sampled
from a reduced set of gradient directions, from which SH
coefficients were extracted up to lmax = 8, resulting in 45
SH coefficients per voxel. The model was trained for 80 epochs
for one hour. The MSE loss function was used, computed
after transforming the SH coefficients into the spatial domain
using ISFT.

2.5 Comparison with multi-layer
perceptron

We compared the performance of the sCNN with a
common deep learning network, Multi-Layer Perceptron (MLP)
(Goodfellow et al., 2016). We trained an MLP with four fully
connected layers (256 nodes each) followed by batch normalization
and ReLU activations. The MLP took the normalized dMRI signals
as input and output the spherical harmonic coefficients of the
FOD. The MLP was trained using MSE as loss function and
optimizer as the sCNN but required five times more training

batches to ensure convergence due to its higher parameter count.
Despite its simplicity, the MLP provided a baseline for assessing
the effectiveness of spherical convolutions in capturing rotationally
invariant features.

2.6 Evaluation metrics

To comprehensively evaluate the performance of the proposed
sCNN model comparing to the ground truth and the baseline
method, we employed a set of quantitative and qualitative metrics.
These metrics were designed to assess both the accuracy of
the estimated FODs and their downstream impact on WM
tractography. The quantitative metrics include MSE, Angular
Correlation Coefficient (ACC), and Structural Similarity Index
Measure (SSIM), which evaluate how closely the predicted
FODs match the ground truth in both coefficient and angular
space. Additionally, we conducted tractography-based assessments
to evaluate the practical implications of FOD quality on the
reconstruction of WM pathways.

2.6.1 Mean squared error
The MSE was used as the primary metric to quantify the

discrepancy between the predicted and reference FODs. For each
voxel, the MSE was computed directly in the SH domain as the
mean squared difference between the predicted and ground truth
SH coefficients:

MSE =
1

N

N
∑

i=1

‖Ŝi − Si‖
2,

where Ŝi and Si are the predicted and ground truth SH coefficient
vectors for voxel i, and N is the number of voxels.

2.6.2 Angular correlation coe�cient
The Angular Correlation Coefficient (ACC) measures the

similarity in orientation between predicted and ground truth FODs
in the spatial domain (Anderson, 2005). For each voxel, FODs are
reconstructed by projecting SH coefficients onto a dense spherical
grid. ACC is then calculated as the cosine similarity between the
reconstructed FODs:

ACC =
〈 ˆFOD, FOD〉

‖ ˆFOD‖ · ‖FOD‖
,

where ˆFOD and FOD represent the predicted and ground truth
FOD amplitudes over the sphere. A higher ACC value indicates
better alignment of fiber orientations.

2.6.3 Structural similarity index measure
The Structural Similarity Index (SSIM) is a perceptual

metric that quantifies image similarity by evaluating three
key aspects: luminance patterns, contrast relationships, and
structural composition. For FOD evaluation, we compute SSIM
independently for each spherical harmonic coefficient channel.
This channel-wise approach preserves harmonic-specific spatial
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information and provides a comprehensive assessment of
reconstruction fidelity across all angular frequencies present in the
FOD field.

2.6.4 Angular error
Angular Error (AE) quantifies the average angular deviation

between the primary peak directions of the predicted and
ground truth FODs. For each voxel, the directions of the
principal fiber orientation are identified from the reconstructed
FODs. The angular error is then computed as the angle
between these corresponding peak directions, averaged across
all valid voxels. A lower AE indicates higher accuracy in fiber
orientation estimation.

2.6.5 Peak match rate
Peak Match Rate (PMR) represents the percentage of voxels

where the angular error between the principal peaks of the
predicted and ground truth FODs falls below a predefined
threshold (e.g., 20◦). This metric indicates the proportion of voxels
where the primary fiber direction is accurately reconstructed within
an acceptable angular tolerance. A higher PMR signifies better
fidelity in resolving fiber orientations.

2.6.6 Peak signal-to-noise ratio
PSNR is a widely used metric to quantify the quality of

reconstruction, representing the ratio between the maximum
possible power of a signal and the power of corrupting noise. A
higher PSNR value indicates a better quality reconstruction.

2.6.7 Tractography-based evaluation
To assess the downstream utility of the predicted FODs, we

performed probabilistic tractography using the iFOD2 algorithm
(Tournier et al., 2010) implemented in MRtrix3 (Tournier et al.,
2019). Streamlines were generated with dynamic seeding based on
FOD amplitude, uniformly distributed throughout a white matter
mask. Anatomical constraints were imposed using a 5-tissue-
type (5TT) image generated from structural data. This approach
guides streamline propagation and improves anatomical realism.
Specific tractography parameters included a select limit of 100,000
streamlines, an FOD amplitude cutoff of 0.001, a step size of
0.4 mm, a maximum angle of 20 degrees, and streamline length
constraints between 5 mm and 300 mm. The resulting tractograms
were then visually inspected for anatomical plausibility, coherence,
and coverage of major white matter bundles. This qualitative
evaluation helps determine whether differences in FOD estimation
affect tract reconstruction.

2.7 Implementation details and code
availability

The sCNN and MLP models were implemented using PyTorch
(Paszke et al., 2019) and trained on an NVIDIA RTX A6000
GPU with 48 GB of memory. Training the sCNN model required

TABLE 2 Quantitative evaluation of FOD estimation for a representative

subject from the test set.

Category Metric MLP sCNN

Global scalar

MSE 0.0012 0.0001

SSIM 0.9043 0.9770

PSNR (dB) 22.310 34.402

FOD-wise

ACC 0.773± 0.132 0.984± 0.084

Peak match (20◦) 0.500± 0.007 0.970± 0.003

Mean ang. error (◦) 66.86± 66.53 6.26± 24.30

FOD-wisemetrics show statistically significant improvements for sCNN overMLP, p < 0.001.

Statistical significance for continuous metrics (ACC, Mean Angular Error) was assessed using

paired t-tests, and for PeakMatch Rate usingMcNemar’s test. Lower values are better for MSE

and Mean Angular Error.

approximately 1.1 h, while the MLP model required approximately
6 h. The source code, trained models, and scripts for reproducing
the results are publicly available at https://github.com/H-Snoussi/
sCNN-FOD-neonatal.

3 Experiments and results

3.1 Quantitative evaluation of FOD
estimation accuracy

Table 2 presents the quantitative results for FOD estimation,
comparing the sCNN and MLP models against the ground truth
(Hybrid-CSD) on a representative subject from the test set (the
same subject used in Figures 4–6). The rotationally equivariant
sCNN significantly outperformed the MLP in all metrics, with
all paired comparisons yielding p < 0.001 for the FOD-wise
metrics (statistical details provided in the table caption). For the
global metrics which are computed over the entire masked region,
sCNN reduced the Mean Squared Error (MSE) from 0.0012 to
0.0001 (-91.7%), raised the Peak Signal-to-Noise Ratio (PSNR)
from 22.31 dB to 34.40 dB, and likewise increased the SSIM from
0.904 to 0.977. Regarding the FOD-wise metrics, the ACC rose
from 0.773 ± 0.132 to 0.984 ± 0.084, and the Mean Angular
Error fell from 66.86 ± 66.53◦ to 6.26 ± 24.30◦. Peak-match rate
within 20◦ climbed from 0.500 ± 0.007 to 0.970 ± 0.003. These
gains confirm the sCNN’s superior ability to recover complex fiber
orientations.

3.2 Qualitative FOD visualization

Figures 4, 5 present visual comparisons of the FODs estimated
by the sCNN, MLP, and Hybrid-CSD (ground truth) for an
example of a test subject. Visually, the sCNN-predicted FODs
closely resemble those generated by Hybrid-CSD, demonstrating
clear and anatomically consistent fiber peaks with reduced noise
and spurious orientations. In contrast, the MLP-predicted FODs
appear notably less accurate, often exhibiting a lack of clear
directional coherence in major white matter regions such as the
corpus callosum and the corticospinal tract. A common artifact
observed in the MLP results is the presence of spurious crossing
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FIGURE 4

Representative FODs from a test subject. (Left column) FODs estimated by the MLP using the full dHCP dataset. (Middle column) FODs estimated by

the sCNN using 30% of the di�usion directions. (Right column) Ground truth FODs estimated using Hybrid-CSD with the full dHCP dataset. The

sCNN produces FODs that are visually much more similar to the ground truth than the MLP.

fibers in voxels that should predominantly exhibit a single, coherent
direction.

The sCNN FODs consistently show sharper peaks and better
delineate fiber orientations. Figure 5 provides a zoomed-in
view of specific regions of interest (ROI) to further highlight
the superior performance of the rotationally equivariant
sCNNs in preserving structural fidelity and resolving complex
fiber architectures.

3.3 Tractography analysis

Tractography, while a powerful tool for visualizing whitematter
pathways, is inherently sensitive to the quality of the underlying
FOD estimates. Figure 6 shows representative tractography results
generated from the FODs produced by each method for a test
subject. The sCNN-based tractograms, derived from the reduced
acquisition data, demonstrate a high degree of visual similarity
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FIGURE 5

Zoomed-in views of regions of interest (ROIs) with complex fiber configurations, highlighting di�erences between FODs predicted by MLP, sCNN,

and Hybrid-CSD (ground truth). The sCNN preserves anatomical structure and closely resembles the ground truth, whereas the MLP exhibits

increased noise and reduced structural clarity. These ROIs correspond to those shown in Figure 4.

and anatomical plausibility when compared to the Hybrid-CSD
ground truth tractography. The sCNN successfully reconstructs
major white matter pathways, such as the corpus callosum and

the corticospinal tract, with greater fidelity and fewer spurious
streamlines than theMLP. In contrast, theMLP tractogram exhibits
considerable noise and largely fails to accurately represent these
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FIGURE 6

Representative tractography results. (Left) Tractogram generated using MLP-predicted FODs. (Middle) Tractogram generated using sCNN-predicted

FODs. (Right) Tractogram generated using ground truth FODs (Hybrid-CSD).

key pathways, showing a clear lack of directional coherence and
anatomical fidelity.

4 Discussion

This study demonstrates the significant potential of rotationally
equivariant sCNN for accurate and efficient FOD estimation in
neonatal dMRI, using a substantially reduced acquisition protocol.
Our sCNN approach produces results that are quantitatively
comparable and qualitatively highly similar to those obtained
using a reliable Hybrid-CSD ground truth, despite utilizing
only 30% of the full acquisition data. This striking finding,
which we elaborate on below, stems from the sCNN’s ability
to learn a robust representation that effectively mitigates the
known limitations of model-based approaches in challenging
neonatal data. These findings have important implications
for the analysis of neonatal dMRI data and its potential
for earlier, more accurate, and more efficient diagnosis of
neurodevelopmental disorders.

4.1 FOD estimation accuracy and fidelity

Our quantitative results (Table 2) demonstrate that the
proposed sCNN model achieves significantly superior Fiber
Orientation Distribution (FOD) estimation accuracy compared to
the MLP baseline across a comprehensive set of metrics, including
MSE, SSIM, PSNR, ACC, Mean Angular Error (MAE), and Peak
Match Rate (PMR). These substantial improvements highlight the
effectiveness of the sCNN’s architecture in reconstructing FODs
from reduced diffusion data.

Beyond quantitative measures, qualitative visual inspection
(Figures 4, 5) provides compelling evidence of the sCNN’s
enhanced FOD fidelity. The sCNN-predicted FODs consistently
exhibit sharper peaks, better delineate fiber orientations, and show
a clear reduction in noise and spurious orientations compared to
the MLP. Notably, in regions of complex fiber configurations, the
sCNN maintains structural fidelity and resolves these architectures
more effectively, while the MLP often produces less accurate FODs
with a lack of directional coherence and spurious crossing fibers in
seemingly unidirectional voxels.
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4.2 Model design and performance drivers

The performance of the sCNN is attributable to several key
factors inherent to its design. First, the sCNN’s core property
of rotational equivariance ensures that it learns features that
are intrinsically invariant to the orientation of the head within
the scanner. This is a fundamental requirement for dMRI
analysis, as the diffusion signal’s orientation directly reflects
the underlying fiber orientation. The MLP, lacking this built-
in equivariance, must learn rotational invariance from the data,
which is a more challenging task that typically requires larger
datasets and more complex model architectures. Second, the
shell attention mechanism allows the sCNN to dynamically
weight the contributions of different b-value shells, which may
vary depending on the degree of myelination. Third, the use
of spherical convolutions allows the sCNN to operate directly
on the SH representation of the diffusion signal. This avoids
the need for interpolation or resampling, which can introduce
artifacts and degrade the accuracy of FOD estimation. Fourth, the
spatial-domain loss function, computed after transforming the SH
coefficients to the spatial domain, emphasizes perceptually all SH
orders without neglecting the finer angular details captured by
lower-order coefficients. This ensures that the model optimizes for
the shape of the FOD, not just the SH coefficient values. Our model
applies spherical convolutions in the SH domain on a voxel-wise
basis, without incorporating spatial information from neighboring
voxels. Therefore, the model does not introduce spatial smoothing
across voxels. Instead, it learns to denoise FODs by operating
directly on the SH representation, capturing consistent angular
patterns while suppressing noise.

4.3 Tractography and diagnostic quality

The tractography results, presented in Figure 6, highlight
the downstream utility of the predicted FODs. sCNN-based
tractography, generated from only 30% of the acquisition
data, demonstrates a high degree of visual similarity and
anatomical plausibility when compared to the Hybrid-CSD
ground truth tractography. Specifically, we observe similar tract
configurations and coherence in major white matter pathways
such as the corticospinal tract, the corpus callosum (particularly
visible in the coronal view), and the superior corona radiata
(axial view). It is important to note that, as discussed by
Pietsch et al. (2019), the Hybrid-CSD FODs, while a widely
accepted model-based reference, possess inherent limitations in
the challenging neonatal context. These include difficulties in
accurately separating tissue types and fully resolving complex fiber
configurations in immature brains, often leading to sparse or
noisy representations.

In contrast, the MLP-based tractography appears relatively
noisy, with some directions and colors of tracts inconsistent
with those observed in the Hybrid-CSD reference. This indicates
a clear lack of directional coherence and anatomical fidelity
compared to both the sCNN and the ground truth. The sCNN’s
superior performance, therefore, suggests that it is capable of
effectively denoising the diffusion signal and learning amore robust

representation of the underlying white matter architecture, which
translates into more reliable tractography.

4.4 Shell-attention mechanism and
multi-shell robustness

Our sCNN architecture was specifically designed to optimally
leverage multi-shell diffusion data, incorporating shell-attention
layers that learn to adaptively weight the contribution of each shell
during training. In our internal experiments, removing this shell-
attention mechanism led to a clear degradation in performance,
underscoring the importance of multi-shell input for robust FOD
estimation. While our primary training and evaluation were
conducted on reduced, multi-shell data (83 volumes), this shell-
attention mechanism also offers a degree of flexibility: if only a
single shell is available, the model can still be applied using the
corresponding learned weights for that shell.

4.5 Clinical impact and translational
relevance

The fact that accurate FOD estimation and tractography can
be achieved using only 30% of the full dHCP acquisition protocol
has substantial practical implications. Reducing scan time is crucial
in neonatal imaging, as it improves patient comfort, minimizes
the risk of motion artifacts, and increases scanner availability,
making dMRI more accessible for routine clinical use. This finding
underscores the sCNN’s ability to extract more information from a
limited amount of data, a critical advantage in challenging imaging
scenarios. Our reduced acquisition protocol holds strong potential
for enabling unsedated scanning during natural sleep cycles, critical
for monitoring preterm infants at risk for cerebral palsy. This
could triple scanner throughput in the Neonatal Intensive Care
Units (NICUs) while reducing parental anxiety from prolonged
separations.

Beyond the immediate application to neonatal dMRI, our
findings suggest that sCNNs have broader potential for improving
dMRI analysis in other populations and applications. The
challenges of motion artifacts and scan time constraints are even
more pronounced in fetal and pediatric dMRI, making the sCNN
approach potentially even more valuable in these contexts. The
public release of our training pipeline, including the trained models
and data processing scripts, facilitates the rapid translation of
this methodology to other vulnerable populations and encourages
further research in this area.

4.6 Limitations and future work

Despite these promising results, this study has some limitations.
While the sample size of 43 subjects is larger than many previous
studies in dMRI, future work should validate these findings on
larger, more diverse datasets, including subjects with different
clinical conditions.
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Second, while Hybrid-CSD remains a reliable approach for
FOD estimation, its application to neonatal data presents known
limitations (Pietsch et al., 2019). Specifically, Hybrid-CSD can
struggle in regions of complex fiber architecture and in accurately
separating tissue compartments, a concern well-documented in
recent literature. Distinguishing tissue types like GM and WM
based on signal decay is particularly challenging in neonates, where
the average signal in cortical GM can be nearly indistinguishable
from parts of the corpus callosum, and WM signal characteristics
exhibit strong age dependence. These evolving microstructural
properties suggest that models based on fixed response functions
or those optimized for mature brains may not fully capture the
complex, developing properties of neonatal tissue. Third, the
reduced acquisition protocol used in this study (30% of directions)
was chosen empirically. Future work should investigate the optimal
acquisition protocol for sCNN-based FOD estimation, potentially
using active learning strategies to identify the most informative
diffusion directions. Fourth, while our goal was not to introduce
a novel sCNN architecture, future studies could benefit from a
more extensive comparison to alternative spherical CNN models
and an ablation study of architectural components. Such analyses
would provide a deeper understanding of which aspects of the
network architecture most influence performance in neonatal FOD
reconstruction.

5 Conclusion

This study contributes to the growing body of research on
deep learning for medical image analysis by demonstrating the
feasibility and potential of sCNNs for accurate and efficient
FOD estimation in neonatal dMRI. The proposed sCNN model
outperforms a standard MLP in terms of both quantitative
metrics and tractography results, highlighting the benefits
of rotational equivariance and shell-specific processing. The
ability to achieve accurate FOD estimation with a reduced
acquisition protocol has significant implications for clinical
practice, potentially leading to faster, more cost-effective, and less
burdensome neonatal dMRI scans. This research paves the way
for improved characterization of early brain development and
earlier, more accurate diagnosis of neurodevelopmental disorders,
contributing to improved clinical outcomes for vulnerable
neonatal populations.
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