AUTHOR=Snoussi Haykel , Karimi Davood TITLE=Equivariant spherical CNNs for accurate fiber orientation distribution estimation in neonatal diffusion MRI with reduced acquisition time JOURNAL=Frontiers in Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1604545 DOI=10.3389/fnins.2025.1604545 ISSN=1662-453X ABSTRACT=Early and accurate assessment of brain microstructure using diffusion Magnetic Resonance Imaging (dMRI) is crucial for identifying neurodevelopmental disorders in neonates, but remains challenging due to low signal-to-noise ratio (SNR), motion artifacts, and ongoing myelination. In this study, we propose a rotationally equivariant Spherical Convolutional Neural Network (sCNN) framework tailored for neonatal dMRI. We predict the Fiber Orientation Distribution (FOD) from multi-shell dMRI signals acquired with a reduced set of gradient directions (30% of the full protocol), enabling faster and more cost-effective acquisitions. We train and evaluate the performance of our sCNN using real data from 43 neonatal dMRI datasets provided by the Developing Human Connectome Project (dHCP). Our results demonstrate that the sCNN significantly outperforms a Multi-Layer Perceptron (MLP) baseline across multiple quantitative metrics, including Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Angular Correlation Coefficient (ACC), angular error, and peak match rate, indicating superior FOD estimation accuracy. More importantly, it yields FODs and tractography that are quantitatively comparable and qualitatively highly similar to those from a reliable Hybrid-CSD ground truth, despite using only 30% of the full acquisition data. These findings highlight sCNNs' potential for accurate and clinically efficient dMRI analysis, paving the way for improved diagnostic capabilities and characterization of early brain development with shorter scan times.