
TYPE Original Research

PUBLISHED 19 June 2025

DOI 10.3389/fnins.2025.1604751

OPEN ACCESS

EDITED BY

Hanliang Fu,

Xi’an University of Architecture and

Technology, China

REVIEWED BY

Zhenghui Hu,

Zhejiang University of Technology, China

Kongming Jiang,

Chongqing University, China

*CORRESPONDENCE

Lihua Zhang

lihuazhang@fudan.edu.cn

RECEIVED 02 April 2025

ACCEPTED 22 May 2025

PUBLISHED 19 June 2025

CITATION

Wang Z, Liang J, Shi S, Zhai P and Zhang L

(2025) Time-variant Granger causality analysis

for intuitive perception collision risk in driving

scenario: an EEG study.

Front. Neurosci. 19:1604751.

doi: 10.3389/fnins.2025.1604751

COPYRIGHT

© 2025 Wang, Liang, Shi, Zhai and Zhang. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Time-variant Granger causality
analysis for intuitive perception
collision risk in driving scenario:
an EEG study

Zhe Wang1, Jialong Liang1, Shang Shi2, Peng Zhai1 and

Lihua Zhang1,3*

1Academy for Engineering and Technology, Fudan University, Shanghai, China, 2Department of

Computer Science, University College London, London, United Kingdom, 3Engineering Research

Center of AI and Robotics, Fudan University, Shanghai, China

Intuition is a rapid and unconscious cognitive process that is widely utilized in

driving scenario. The current study examines the neural mechanisms behind

intuitive driving by performing a time-varying Granger causality analysis on

source-domain EEG data. We construct an innovative experimental setup that

utilizes immersive driving simulation videos to elicit intuitive decision-making

alongside with neural activities. We performed Granger causality analysis on

a sliding window basis that resulted in a directed connectivity model. By

examining the node strength, we identify that the experienced drivers increase

activation in intrinsic functional networks associated with visual attention and

decision-making, which can be considered as the evidence for possessing better

collision risk perception when compared to novice drivers. We also identify that

experienced drivers exhibit a more stable and dispersed connectivity, especially

in the beta band. In contrast, novice drivers exhibited more complex and less

e�cient connectivity, which can be interpreted as evidence of more e�cient

neural strategies for rapid decision-making in experienced drivers. This work

not only advances the understanding of intuitive driving but also o�ers valuable

insights for developing intelligent driving hazard perception systems. By targeting

individual di�erences, we pave the way for personalized training programs to

enhance driving safety and performance.
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1 Introduction

In everyday life, we face numerous situations that require decisions, with many
of the simpler choices being based on gut instinct, or “intuition" (Kahneman, 2011).
Theoretically, intuition stands as a cornerstone of human cognition, intricately guiding
our decision-making and problem-solving endeavors (Hosseinzadeh Lotfi et al., 2023).
Intuitive decision-making is quick and effortless, but it can introduce biases that
undermine the logical soundness and accuracy of the decisions (Newell and Shanks,
2014). The dual-process theory posits that human cognition operates via two distinct
systems: System 1, characterized by rapid, intuitive, and automatic thinking, and System 2,
which involves slower, analytical, and deliberate processing (Alter et al., 2007). Newell and
Shanks (2014) propose a framework suggesting that decision-makers perceive the world
through a “lens of cues," which mediates the relationship between environmental stimuli
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and internal perceptions. In 1977, Nisbett and Wilson’s study
indicates that individuals often lack introspective awareness of
the cognitive processes underlying their intuitive judgments,
suggesting a phenomenon where people are unaware of the
existence of influential stimuli and the responses they elicit. Dane
and Pratt describe intuition as judgments emerging from swift,
non-conscious, and holistic associations (Dane and Pratt, 2007).
Evans et al. (2010) characterize intuition as an immediate form
of understanding that contrasts with analytical reasoning. In their
study employing an investment game paradigm, they discovered
that when participants’ self-control resources are depleted, they
tend to favor default options (Evans et al., 2011). Jia et al.
investigate the influence of cognitive limitations and contextual
induction on intuitive decision-making through a questionnaire-
based experiment. Participants answered eight multidisciplinary
single-choice questions while their behavioral patterns and EEG
responses were recorded and analyzed. In the post-processing
stage, EEG data were analyzed using machine learning techniques,
specifically k-nearest neighbors (kNN), for offline classification
(Jia et al., 2023). Results indicate that individuals exhibit different
decision-making styles–rational, mixed, or intuitive–based on the
context and their cognitive resources. However, the study does not
fully consider individual differences that could influence decision-
making patterns. While intuitive decision-making is efficient, it
may sometimes clash with analytical reasoning, potentially giving
rise to cognitive challenges such as selective attention bias, the
endowment effect, and framing biases. However, when cognitive
resources are limited and deliberate analysis is impractical, relying
on intuitive processing can actually enable quicker and, in some
cases, more precise evaluations.

Driving intuition is a fundamental example of human cognitive
intuition in real-world scenarios and serves as a critical subject of
study for understanding themechanisms underlying the emergence
and development of intuition in complex environments (Kuoch
et al., 2018; Duma et al., 2017). Road traffic injuries represent
a significant public health challenge and are among the leading
causes of death and disability worldwide. In the meantime,
according to the World Health Organization (WHO), these
incidents claim over 1.3 million lives annually, equating to one
fatality every 25 s, with a disproportionate impact in low- and
middle-income countries (Rajčević et al., 2024; DeNicola et al.,
2016). In light of these statistics, several studies have focused on
driving intuition to better understand the brain mechanisms and
potentially mitigate such tragedies. Chang et al. developed a multi-
layer brain network (MLBN) model combined with oscillatory
envelope-based functional connectivity metrics to analyze the
dynamic process of driving, focusing on steering actions (left,
right turns, and straight movements at intersections) while EEG
signals were recorded. Results showed significant differences in
MLBN structure and parameters among the steering conditions,
suggesting the feasibility of using dynamic MLBN for driving
behavior recognition (Chang et al., 2022), similar works are also
in the detection of driver braking intention (Nguyen and Chung,
2019; Ju et al., 2022). Jiang et al. (2025) investigate the neural
mechanisms of driver hazard recognition in rear-end collisions
using EEG-based complex brain networks and proposes a two-
stage threshold method for sparse representation of these networks

to develop a deep learning model for hazard recognition state
detection. Mora and Pino (2023) proposed a simplified prediction
method for detecting emergency braking intentions using EEG
signals and a convolutional neural networks (CNN) trained with
a 2D matrices tensor arrangement. Hernandez et al. demonstrate
the feasibility of using EEG signals to detect the intention to
perform emergency braking under realistic driving conditions,
where drivers experience cognitive states such as stress, workload,
and fatigue. They achieve classification through support vector
machine (SVM) and CNN, with a prediction accuracy of 71.8%
(Hernández et al., 2018). Li et al. (2022) investigate drivers’ EEG
responses during emergency collision avoidance through a driving
simulator experiment, analyzing EEG data across four stages of
collision avoidance and finding significant changes in EEG activity,
including gender differences in delta and alpha power ratios that
indicate higher mental arousal in female drivers. The study’s
limitation of using a single collision event to avoid participant
speculation and learning effects highlights the need for analyzing
multiple emergency events to identify common brain patterns
in collision avoidance. The rapid decision-making in response
to danger encountered during driving, referred to as physical
system intuition, differs significantly between experienced drivers
and novices. Therefore, the intuitive neurophysiological differences
between experienced drivers and novices represent an important
area of research. Especially when exposed to immersive first-person
perspective driving videos that simulate potential risks, the rapid
collaborative decision-making and dynamic connectivity across
various brain regions induced in these individuals provide valuable
insights into the neural mechanisms underlying intuitive processes,
which is of significant importance for subsequent studies.

In cognitive neurosciences, functional connectivity of brain
network is conventionally estimated by classical methods, such
as coherence, correlation, and synchronization metrics, based
on temporal or frequency analysis over the EEG node space
(Bowyer, 2016; Chiarion et al., 2023). Coherence, correlation,
and synchronization metrics measure the similarity of oscillatory
activity between brain regions, reflecting synchronized neuronal
activity and functional interactions. However, these metrics do not
reveal the directionality between neuronal firing and reception
(Gao et al., 2015). Some techniques have been capable of
estimating time-varying connectivity patterns without accounting
for observational noise and non-stationarity (Gao et al., 2015).
A comprehensive, data-driven modeling framework integrates
state-space modeling with autoregressive models featuring time-
varying coefficients, facilitating the estimation of time-resolved,
renormalized partial directed coherence (PDC) in the frequency
domain. This methodology quantifies both the direction and
magnitude of dynamic network connectivity without presupposing
the nonlinearity, non-stationarity, or stochasticity inherent in
brain signals. However, identifying causal relationships among
neural processes is often challenged by time-varying dynamics
and observational noise. By applying Granger causality to phase
shift events, researchers can achieve high temporal resolution in
measuring directed connectivity, effectively distinguishing between
periods of synchrony and desynchrony in neural activity (Baccalá
and Sameshima, 2001; Marshall et al., 2014). The general concept
of causality can be expressed in terms of expectability, with Granger
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causality typically computed by fitting a multivariate autoregressive
(MVAR) model (Ding et al., 2000; Liang et al., 2000). Although
MVAR model can be used to provide detailed characterization of
dynamic relationships, it still has drawbacks, such as high model
complexity, difficulty in parameter estimation, limitations of model
assumptions, and computational cost. Additionally, model order
selection is crucial in the analysis and is often determined using
criteria such as the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC). These criteria offer several
advantages, including balancing fit and complexity, preventing
overfitting, and providing clear numerical indicators for easy
comparison (Hesse et al., 2003). Among them, AIC tends to be
more robust in situations with relatively small sample sizes when
there are relatively few time series observations (Brewer et al.,
2016). Moreover, AIC enhances the reliability and interpretability
of Granger causality results by selecting the most concise model
that sufficiently captures the temporal dependencies in the data,
thereby balancing model fit with complexity to avoid overfitting.
An alternative to using AIC for model order selection is to
employ model order itself as a metric for Granger causality.
Specifically, we define the causality relationship between maximum
lag order and AIC as the difference in minimum description length
between the restricted (only the past can influence the future) and
unrestricted model (Hu et al., 2021). Previous research has shown
that this approach (unified Granger causality analysis, uGCA)
has been successfully applied to dynamic brain networks, and
appear to have better stability than the traditional approach (Li
et al., 2023). We chose to select the traditional Granger causality
approach mainly for its ecological validity, but uGCA is a highly
suitable metric alternative in follow-up research. In addition,
it quantifies the time-dependent network connectivity without
relying on any a priori assumptions about the nonlinear, non-
stationary, and stochastic nature of brain signals. The efficacy of the
AIC-based Granger causality approach has been corroborated in
the study.

The main contributions of the current study are as follows:

• Naturalistic control of intuition use: the current study
innovatively utilizes an objective measure (the possession of
a driving license) to control for the level of real-life driving
experience.

• Innovative design of immersive driving stimuli: the current
study utilized realistic first-person perspective driving videos
that require rapid decision making. This mimics real-world
driving conditions well.

• Directed graph network to track causal effects: the study
innovatively utilized Granger causality analysis in a dynamic
network. This allows us to examine how the functional
network organization changes across the decision making
process.

2 Materials and methods

In this section, we describe the experimental procedure and
data analysis procedure of the current study.

2.1 Subjects

The current study recruited 23 right-handed volunteers (23.57
± 2.39 years old). Among them, 12 (seven males and fiv females)
held a valid driver’s license, while the remaining 11 participants
(six males and five females) do not. We considered gender
during the participant recruitment phase to ensure that each
group includes both males and females, thereby minimizing the
potential confounding effects of gender. There were 40 trials
in the experiment. Each trial began with a 3-s black screen as
a preparation phase, followed by the video presentation phase.
Participants were instructed to watch the video and anticipate
potential car collisions. They were instructed to press the spacebar
when they consider a collision to be inevitable, and the reaction
time were recorded. When perceiving a collision risk event,
volunteers were asked to press the spacebar to record the reaction
time, with their hand resting on the spacebar to minimize
movement-induced interference. Additionally, participants are
informed that each video randomly contains a hazardous event
with a 50% probability. To reduce fatigue effects, a 5-min break
is provided at the midpoint of the experiment. All participants
provided written informed consent before the study commenced,
which detailed the experimental procedures and study duration to
ensure full understanding and voluntary participation. This study
was approved by the Ethics Committee of Fudan University for
biomedical research projects (Approval No. FE241791).

2.2 Experiment design

The video stimuli that used to induce participants’ intuitive
driving predictions were crucial to the success of research on video-
induced driving intuition. In this study, we employed the non-
commercial BeamNG.drive vehicle simulation tool to generate a
series of video clips, which were then presented to participants to
elicit intuitive driving responses. Specifically, 47 car collision and 49
non-crash original video clips were initially recorded from a first-
person driving perspective using screen recording. Considering
that clips featured low driving speeds and a more cautious driving
style, a subset of the footage was excluded. Ultimately, we retained
20 clips depicting accident scenarios and 20 clips illustrating
smooth, incident-free driving clips until completion, resulting in
a total of 40 video clips. Finally, these video clips (trials) were
presented in a randomized order to reduce expectation bias,
enhance result applicability and balance emotional responses.

In this experiment, the experimental procedure was developed
using the MATLAB-based Psychtoolbox (Misirlisoy, 2016).
MATLAB, a powerful programming language, offers flexible data
processing and precise timing control capabilities. Psychtoolbox,
specifically designed for psychological and behavioral experiments,
provided efficient functions for visual stimulus presentation,
response collection, and experimental workflow management.
By integrating MATLAB with Psychtoolbox, we achieved precise
control over the playback, pause timing, and decision intervals of
each video segment, ensuring consistency across all experimental
phases. When assessing participants’ intuitive car collision risk
abilities, Psychtoolbox facilitated accurate pause control and
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FIGURE 1

Experimental process of the car collision-induced car collision experiment: (a) Car collision prediction scenario; (b) Two repeated experimental

stages; (c) Schematic diagram of the experimental procedure with EEG recording.

decision duration settings for the videos, maintaining high
experimental precision.

Regarding equipment, this study utilized an Alienware 15R4
laptop with 32 GB of RAM and an NVIDIA GeForce GTX
1070 graphics card. An external 27-inch 4K 60Hz monitor was
used to display experimental content to participants. The 4K
resolution ensured clear video imagery, allowing participants to
observe minute details, especially when determining the direction
of a ball’s trajectory. The laptop’s built-in display served for
operational control, presenting the experimental progress and
control interface to ensure smooth execution. Combining high-
performance hardware with precise software control effectively
ensured the quality and accuracy of the experiment. The
experimental process of the car collision induced driving intuition
is illustrated in Figure 1.

2.3 Data pre-processing

In this study, EEG data are acquired using a standard 10–
10 system cap equipped with 64 Ag-AgCl electrodes. The average
potential across all electrodes served as the reference signal. Data
collection is performed with the ASA-lab EEG system (ANTNeuro,
Enschede, Netherlands), applying a amplifier gain of 20× and
appropriate filtering. EEG signals are digitized at a sampling rate of
1 kHz and recorded for offline analysis. Prior to each experiment,
electrode impedances are checked and adjusted as necessary to
maintain values below 10 k�, ensuring optimal signal quality. In
addition to EEG recording, the timestamps of keypresses made
by participants during decision-making tasks are logged, starting
from the initiation of video playback. This behavioral data facilitate
the assessment of decision accuracy and reaction times, enabling
further analysis of the relationship between neural activity and
decision performance.

During data pre-processing, the raw EEG signals are first down-
sampled to 500 Hz to reduce data volume and enhance processing
efficiency. A bandpass filter is then applied to extract alpha and beta
frequency bands by removing irrelevant frequency components.
Epochs were segmented around critical events, defined as the
midpoints of videos showing collisions or non-collisions. Each
epoch captured the period from 2 s before to 1 s after the event.
Only trials with correct predictions are included in the following

graph network analysis, and trials with errors are excluded to
ensure data integrity, as errors could introduce noise affecting
subsequent analyses. Independent Component Analysis (ICA)
is employed to identify and remove artifacts from ocular and
muscular sources, and ICA decomposition is performed using
the Infomax algorithm, which seeks to maximize the statistical
independence of source signals, effectively separating mixed EEG
data into independent components. Artifact components are
identified based on their temporal and spatial characteristics and
subsequently removed. The ICA process is optimized using the
Faster and Adjust plugins to enhance artifact correction. Following
ICA, interpolation and re-referencing procedures are applied to
ensure consistent reference across all channels. Specifically, the
Adjust plugin automatically classifies these components based
on predefined spatial and temporal criteria. The Faster plugin
statistically evaluates components using z-scores of features such
as kurtosis, power spectrum deviation, and correlation with EOG
channels, with a default rejection threshold of |z| > 3. Components
flagged by either plugin were reviewed and removed prior to further
analysis. After pre-processing, data from two participants in the
no-driving-license group are entirely excluded due to excessive
artifacts or technical issues, resulting in a final dataset suitable for
analysis. It should be noted that the two excluded participants were
female. Although the exclusion of these two female participants
from the novice group may raise potential concerns, we address
these in two ways. On the one hand, this study does not involve any
gender-related comparisons. On the other hand, the EEG data from
these two female participants were of poor quality due to excessive
movement and frequent blinking, as confirmed during a review of
their EEG recordings.

2.4 Dynamic functional network
construction

In this subsection, we detail the theoretical framework
employed to construct and analyze dynamic brain networks. Here,
we outline the process of constructing and analyzing dynamic brain
networks. This procedure typically involves estimating node and
graph metrics, as well as performing time-window sliced graph
network analysis to examine connectivity patterns. The dynamic
brain network includes both directed and undirected metrics, such
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as node strength, clustering coefficient, and betweenness centrality
for undirected networks, as well as transfer entropy and Granger
causality for directed networks. In this study, we primarily focus on
the directed metric, specifically Granger causality, which enables
the identification of directional influences between brain regions
over collision prediction time.

Intrinsic networks, also known as intrinsic connectivity
networks, refer to large-scale brain networks that maintain
functional organization even in the absence of external tasks or
stimuli. The Default Mode Network (DMN) is a well-known
example of an intrinsic network, but other networks such as the
Dorsal Attention Network (DAN), Ventral Attention Network
(VAN), Frontoparietal Control Network (FCN), Limbic Network,
Somatomotor Network, and Visual Network also exhibit intrinsic
connectivity patterns. FCN also show task-dependent activity,
meaning they can be recruited dynamically based on cognitive
demands. Thus, while these networks are often part of the intrinsic
system, their engagement can be both spontaneous (intrinsic) and
task-evoked (extrinsic). In this study, we specifically focus on the
car collision task-evoked brain region activation.

2.5 Directed functional connectivity
analysis

In this subsection, we describe the techniques for computing
directed network metrics, which allow for tracing the temporal
evolution of brain connectivity during car collision trials.

Building on the principles of directed network analysis,
this study leverages Granger causality to investigate directional
influences in continuous EEG data for enhanced car collision
prediction. Granger causality is a statistical method that evaluates
whether past values of one time series can improve the forecasting
accuracy of another time series, thereby indicating a directional
influence from the former to the latter (Granger, 1969). It serves
as a fundamental technique for identifying predictive relationships
between temporal signals. Here, we assume the presence of two
stationary EEG time series, Xt and Yt , within a multi-dimensional
signal. To illustrate how incorporating the historical data of one
signal can enhance the prediction of another, we employ both
univariate and bivariate autoregressive (AR) models on the data.
In the context of univariate AR modeling, we have

Xt =

p
∑

i=1

α1iXt−i + ε1t (1)

Yt =

p
∑

i=1

α2iYt−i + ε2t (2)

where the prediction errors ε1t , ε2t depend only on the past of the
own signal Xt ,Yt . In contrast to univariate AR modeling, bivariate
AR modeling explicitly incorporates the lagged values of both Xt

and Yt , as shown

Xt =

p
∑

i=1

αiXt−i +

p
∑

j=1

βjYt−j + ǫ1t (3)

Yt =

p
∑

i=1

αiYt−i +

p
∑

j=1

βjXt−j + ǫ2t (4)

where p denotes the model order, αi and βj represent the
coefficients, and ǫ1t , ǫ2t indicate the residuals of the bivariate
models. If incorporating the past values of Yt results in a significant
reduction in the prediction error (i.e., when the variance of ǫ1t is
notably lower than that of ǫ2t), it is concluded that Yt Granger-
causes Xt . In other words, the prediction of a signal is generally
based on its own historical data as well as the past values of the other
signal. In both instances, prediction accuracy is quantified by the
variance of the one-dimensional prediction errors when modeling
6Xt |X

−
t ,Y−

t
and 6Yt |Y

−
t ,X−

t
, which can be given by:

6Xt |X
−
t ,Y−

t
= var(ǫ1t) (5)

6Yt |Y
−
t ,X−

t
= var(ǫ2t) (6)

If signal Yt influences signal Xt , the variance of the prediction
error reduces when a two-dimensionalmodel is used, incorporating
the past values of Yt to predict Xt . The Granger causality from Yt

to Xt , representing the linear dependence between the two signals,
which can be defined as:

FYt→Xt = ln

(

6Xt |X
−
t

6Xt |X
−
t ,Y−

t

)

= ln

(

var(ǫ1t)

var(ǫ2t)

)

(7)

when applying Granger causality using a temporal sliding
window approach to EEG data, each analyzed individually
to capture dynamic changes in directional connectivity
over time. The maximum value between the two terms,
FXY = max (FY→X , FX→Y ), serves as a straightforward
measure of the strength of directional and/or bidirectional
interactions. Specifically, the evaluation process leverages
vector autoregressive (VAR) models and integrates a range of
methodological approaches, including the Yule-Walker equations,
information criterion methods (e.g., AIC, BIC), structured VAR
(SVAR), and machine learning-based techniques. In this work,
AIC is utilized to determine the model parameters, which can be
described as: In this work, we used AIC to determine the max-lag
value used in the model, which can be defined as:

AIC = n · ln

(

RSS

n

)

+ 2k (8)

where n is the number of observations, RSS is the residual sum of
squares, k is the parameter number. We calculated every AIC value
over each channel pair, trial and time sliding window. The final
reported AIC values are averaged across trials and sliding windows.
For more details, please see the result Section 3.1.

In Granger causality analysis, selecting the optimal lag order
p0 (i.e., max_lag) for mean AIC is critical. For each epoch
across the two groups, Equation 8 iterates through a range of lag
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orders, computing AIC for each. The AIC balances model fit and
complexity, and the lag order that minimizes the AIC is selected
as p0. This approach effectively captures the causal relationships
within the EEG data while minimizing the risk of overfitting. The
trend of AIC values across lag orders is visualized graphically,
highlighting the optimal lag order. In summary, the strategy for
selecting the numerical value of p0 is outlined as follows:

1. For each experimental condition (e.g., experienced drivers vs.
novices), the first five trials of car collision risk events are
selected.

2. Within each trial, AIC values are calculated for every pair of
frequency bands (i.e., α,β , γ ), resulting in anN×N matrix after
performing source localization of brain regions.

3. The AIC values are then averaged across the collected trials.
4. This process is repeated for different values of p, and p0

corresponds to the lowest average AIC is selected.

2.6 Granger causality over sliding windows

In this work, a sliding window approach is employed to analyze
the temporal fluctuations in EEG signals, thereby uncovering the
dynamic processes that underlie the integration and reorganization
of the brain’s functional networks. Specifically, car collision events
occur randomly, with an overall incidence rate of 50% across all
video clips. The continuous EEG data is segmented into trial-
segmented epochs. Since Granger causality identifies predictive
relationships over time, applying it to segmented time windows
allows for the analysis of how causal interactions over brain regions
change over all car collision risk stages. For each trial, Granger
causality analysis yields directional measures that differentiate
between inbound and outbound causal influences. In this study,
EEG trials corresponding to actual car collisions are segmented
around the baseline time point, tc, and subsequently extended in
both temporal directions: the preceding time period (tc−tahead) and
the following time period (tc + tafter). This results in a time window
expressed as tepoch ∈ [tc − tahead, tc + tafter]. Temporal sliding
windowswith a time interval of twdw are applied to capture dynamic
shifts in brain activity during the car collision risk event. Moreover,
these sliding windows are applied with overlap, allowing for
continuous tracking of the brain region interactions and ensuring
a high temporal resolution across the entire event duration. This
overlapping approach enables the detection of transient causal
influences and captures rapid changes in brain connectivity during
car collision event.

2.7 Directed connectivity network
quantification

In brain connectivity analysis, various metrics such as
eigenvector centrality, betweenness centrality, closeness centrality,
and clustering coefficient are employed to assess different aspects
of a node’s influence and position within the network. In this
section, we focus on the application of the network metric known
as node strength (NS) within EEG brain network research utilizing
Granger causality analysis. NS quantifies the cumulative weight of

all connections that a specific node has with every other node,
effectively measuring its overall connectivity within the dynamic
brain network. By computing the sum of the weights of both
incoming and outgoing connections, NS offers insights into the
prominence and role of a node in information transmission.
Mathematically, the node strength (Si) of node i, which can
be classified by in-strength Sini and out-strength Souti , can be
symmetrically given by:

Sini =

N
∑

j=1

Fj→i (9)

Souti =

N
∑

j=1

Fi→j (10)

where Si represents the node strength of channel i, Fij is the Granger
causality weight between node i and j, and the summation extends
over all nodes j connected to node i. In directed networks, a node’s
in-degree represents the number of edges directed toward it, while
the out-degree denotes the number of edges originating from it.
Regarding the practice of representing NS by summing its in-
strength and out-strength, i.e., Si = Sini + Souti , this approach
offers a comprehensive measure of the node’s overall NS. During
visualization, we selected only the edges with the top 5% highest
connection strength in each plot (each band, collision condition,
participant condition, and time window).

To comprehensively assess the diversity of network topologies,
we employed several key metrics: the node clustering coefficient,
which quantifies the degree of local interconnectedness among a
node’s neighbors; global efficiency, measuring the overall efficiency
of information transfer across the entire network; and characteristic
path length, indicating the average shortest path between all pairs of
nodes, thereby reflecting the network’s integration level. Firstly, the
node clustering coefficient, which quantifies the degree to which a
node’s neighbors are interconnected, is defined as follows:

Cw
i =

∑

j,k wijwikwjk
∑

j,k wijwik
(11)

where wij is the weight of the edge between node i and j.
Secondly, the global efficiency metric, which quantifies the

overall efficiency of information exchange across a network, is
defined as follows:

Eglobal =
1

n(n− 1)

∑

i6=j

1

dij
(12)

Thirdly, the characteristic path length, which quantifies the
average shortest distance between all pairs of nodes in a network,
is defined as follows:

L =
1

n(n− 1)

∑

i6=j

dij (13)

where n is the number of nodes in the network, dij is the shortest
weighted path between node i and j, and path length is defined as
the inverse of cumulative weight.
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2.8 Statistical methods

2.8.1 t-tests for global network metrics
As for t-tests for global network metrics, specifically for global

network metrics (global efficiency, modularity, and characteristic
path length), we employ Welch’s t-tests to compare experienced
drivers with novices across conditions and time windows. This
approach accommodates potential unequal variances between
groups and provides robust statistical inference for whole-
network properties. We compare mean value between licensed
and unlicensed participants for each sliding window separately to
capture temporal dynamics in network integration and segregation
processes.

2.8.2 Mixed-e�ects ANOVA for node-level
metrics

For node-level metrics (in-strength, out-strength, and
clustering coefficient), we implement a mixed-effects analysis
of variance (ANOVA) model with driving experience (license
status) as a between-subjects factor and brain region as a within-
subjects factor. This approach offers substantially enhanced
sensitivity compared to the alternative method of averaging
node-level metrics across regions followed by t-tests, which would
obscure regional-specific effects and reduce statistical power. The
mixed-effects model can be formulated as:

Yijk = µ + αi + βj + (αβ)ij + ǫijk (14)

where Yijk represents the network metric value for subject k with
experience level i in brain region j, µ is the grand mean, αi is
the main effect of driving experience, βj is the main effect of
brain region, (αβ)ij is their interaction, and ǫijk is the error term.
Our primary focus was on the main effect of driving experience
(αi), as this directly addresses our hypothesis regarding qualitative
differences in neural processing between experienced drivers and
novices.

2.8.3 Node-level t-tests
Following significant ANOVA results indicating main effects of

driving experience on node-level metrics, we conduct follow-up t-
tests for individual nodes to identify which specific brain regions
contributed to the observed group differences. Due to the high
dimensionality of these results (multiple metrics×multiple regions
× multiple time windows), direct interpretation of all node-level
statistics would be unwieldy. Therefore, we aggregate significant
findings by functional network affiliation (Visual Network, DMN,
VAN, FCN) and time window to identify patterns of group
differences across neural systems and temporal dynamics.

This approach allowed for the systematic mapping of group
differences onto established functional brain networks, facilitating
interpretation within existing neurocognitive frameworks of
attention, visual processing, and cognitive control.

2.8.4 Multiple comparison correction
To control the family-wise error rate across multiple statistical

tests, we implement False Discovery Rate (FDR) correction with
a threshold of α = 0.05. The FDR procedure ranks all p-values
in ascending order and determines significance thresholds that
control the expected proportion of false positives among all rejected
null hypotheses, providing an optimal balance between Type I error
control and statistical power. For visualization purposes, significant
effects are denoted with asterisks where single (*), double (**), and
triple (***) asterisks indicate FDR-corrected p-values less than 0.05,
0.01, and 0.001, respectively.

3 Results

3.1 Granger causality model order

Figure 2 presents a representative example of AIC-based model
order selection for determining p0. Specifically, for each subject
across all EEG electrodes, the optimal Granger causality model
order is identified by minimizing the AIC within the range 1 ≤ p ≤

15. The results indicate that the AIC consistently yielded reliable
model order estimates across all trials. In this study, based on the
trend observed in Figure 2, the optimal lag order is determined to
be p0 = 12.

Figure 2a illustrates the results of the AIC-based model order
selection procedure for determining the optimal maximum lag for
Granger causality across all conditions. It should be emphasized
that, after EEG source localization, AIC values were computed
over the maximum lag value to strike a balance between model
performance and computational complexity across all electrode
pairs. Initially, we tested maximum lag values ranging from 1 to
15 using a small subset of trials. Subsequently, we refined the range
to 10 ≤ p ≤ 15 to identify a precise local optimum. Ultimately, the
selected AIC values stemmed from a random selection of 10% of all
sampled trials, thereby reducing computation time while traversing
all electrode pairs.

3.2 Granger causality-derived node
strength in directed connectivity networks

Figure 3 illustrates the five overlapping sliding windows across
all car collision trials. Specifically, “SW #1" through “SW #5"
designate sliding windows spanning from [–2, –1] s to [0, 1] s, with
each adjacent window overlapping by 50%. To balance temporal
resolution and model estimation stability, five overlapping 1-s
sliding windows (50% overlap) were applied across the following
intervals: [–2, –1], [–1.5, –0.5], [–1, 0], [–0.5, +0.5], and [0, +1]. At
a 500 Hz sampling rate, each window contained 500 data points,
sufficient for the specified model order (p = 12). The overlapping
design ensured temporal continuity and improved sensitivity to
transient changes in brain connectivity.

Figures 4, 5 present the summed in-strength and out-strength
Granger causality metrics during car collision trials (with a 50%
occurrence rate) for two groups: novice and experienced drivers in
car collision risk situations. Granger causality is used to trace and
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FIGURE 2

(a) The relationship between maximum sample lag and the mean AIC after traversing and averaging all 64-channel EEG channel pairs (ED-C,

experienced drivers with collisions; ED-NC, experienced drivers with no collision; ND-C, novice drivers with collisions; ND-NC, novice drivers with

no collision); (b) Boxplot showing the distribution of AIC values for di�erent maximum lags.

FIGURE 3

Granger causality based node strength networks during car collision trials in alpha band with five sliding windows, aligned with the exact car collision

timestamp (time point 0).

FIGURE 4

Node strength networks based on Granger causality in the alpha band during car collision trials for the experienced driver group.

analyze the car collision trials induced time-series EEG epochs, and
determine whether one EEG signal can help predict another.

Specifically, Figure 4 presents the dynamic connectivity
changes anchored to the car collision time point (set as time zero)
for the group of experienced drivers in the alpha band. In contrast,
Figure 5 illustrates the corresponding network for novice drivers,
providing a comparative perspective. Specifically, for experienced
driver group in the alpha band, the summed in-strength and

out-strength Granger causality network exhibits the following
characteristics:

• In SW #1, experienced drivers show noticeable connections
between the visual network (blue) and the default mode
network (red), but these connections appear more distributed.
From the coronal view, the connectivity in the right temporal
lobe is higher and more dense than the left.
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FIGURE 5

Node strength networks based on Granger causality in the alpha band during car collision trials for the novice driver group.

• In SW #2, connectivity between the visual network
and other networks becomes increasingly complex;
however, the connections involving the dorsal attention
network (green) and the FCN (yellow) do not show a
significant increase. Most connections still primarily involve
extensive interactions between the visual network and
other networks.

• In SW #3, network interactions become more complex, with
connections increasingly distributed acrossmultiple networks,
particularly between the default network and the visual
network. Connectivity within both temporal regions begins to
strengthen, becoming more dominant.

• In SW #4, mean connection strength increases slightly but
remains lower than that observed in the novice group, and
the lateral connectivity between left and right temporal lobe
remains robust, while whole-brain connectivity appears more
evenly distributed. Car collision time point is in the center
of this SW, visual network is more connected than adjacent
SWs. However, in contrast to novice drivers, the connection is
relatively sparse.

• In SW #5, connectivity remains relatively stable compared to
SW #4.

As for novice drivers group in the alpha band in Figure 5,
Granger causality network has prominently connectivity features,
as listed below:

• In SW #1, the connectivity between the visual network (blue)
and the default mode network (red) are notably prominent.

• In SW #2, the connectivity between visual network and
other networks becomes increasingly complex; however, the
connections involving the dorsal attention network (green)
and FCN (yellow) do not show a significant increase. Most
connections still primarily involve extensive interactions
between visual network and other networks.

• In SW #3, network interactions become more intricate,
with an increased number of connections among multiple
networks, particularly between the default network and the
visual network.

• In SW #4, the comprehensive connection density continues
to rise, with more frequent interactions occurring among
different networks.

• In SW #5, the connectivity reaches its peak over all SWs, with
highly complex interactions among multiple networks. Visual
network connectivity continues to decrease, which forms a
striking contrast with the dense connectivity observed in the
visual network of the novice driver group.

Broadly speaking, novice drivers exhibit more frequent and
complex interactions among brain networks when confronted with
danger, whereas experienced drivers demonstrate more stable and
dispersed connectivity. This pattern may indicate that experienced
drivers are able to process risk situations more efficiently by
leveraging their prior experience, thereby reducing the need for
extensive network interactions observed in novices.

Figures 6, 7 illustrate the Granger-causality-based node
strength connectivity networks across five sliding windows with
axial and coronal views in the beta band. In Figure 6, the dynamic
connectivity variation of the experienced driver group can be
summarized below:

• In SW #1, the axial view reveals dense network connections,
particularly between the DMN (red) and the visual
network (blue). The coronal view displays a relatively
uniform distribution of these connections. The strong
interhemispheric connectivity between the left and right
temporal lobes observed in experienced drivers during the
viewing of car collision videos suggests enhanced coordination
in information processing and emotional regulation. This
finding aligns with studies indicating that experienced
drivers exhibit more efficient integration of information and
reduced occurrence of "looked-but-failed-to-see" errors when
confronted with critical road events.

• In SW #2, a more intricate and denser network of connections,
with a greater number of linkages observed betweenDMN and
other networks. Meanwhile, the interhemispheric connectivity
between the left and right temporal lobes is comparably
enhanced.
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FIGURE 6

Node strength networks based on Granger causality in the beta band during car collision trials for the experienced driver group.

FIGURE 7

Node strength networks based on Granger causality in the beta band during car collision trials for the novice driver group.

• In SW #3, compared to adjacent SWs, the connectivity
remains relatively stable, and the interhemispheric
connections between the left and right hemispheres have
become more pronounced. Among all SWs, SW #3 is the
highest level of NS connections over all SWs, with extremely
dense interactions observed, particularly between DMN and
visual network.

• In SW #4, the axial view reveals a slight decrease in network
connection density; however, the connectivity between the
left and right temporal lobes remains highly concentrated
and relatively stable. The coronal view shows a consistently
uniform and strong distribution of connections.

• In SW #5, the density of network connections slightly
decreases but remains relatively high.

In Figure 7, the dynamic changes observed in novice drivers in
the beta band can be outlined as follows:

• In SW #1, the axial view reveals relatively sparse network
connections with weak connection strength comparing
to experienced drivers’ group, and the frontal eye fields
of DAN is intensively connected, which are collectively

involved in spatial attention, target localization, and
visuomotor control.

• In SW #2, although the axial view displays more connections
compared to SW #1, the overall density and strength remain
lower than experienced driver group. The dynamic functional
connection variation from SW #1 to SW #2 seems less stable
and consist for novice group. The coronal view also shows a
slight increase in connection density and strength, but it still
lags behind experienced drivers.

• In SW #3, the axial view shows a steady increase in connection
strength, yet it remain significantly lower than those observed
in experienced drivers. Consequently, the overall network
complexity and global efficiency are still limited. Meanwhile,
the coronal view reveals a noticeably denser connectivity
pattern in the left hemisphere compared to the right.

• In SW #4, the connection density continues to approach that
of experienced drivers but still exhibits noticeable differences.
Notably, within the visual network of the occipital lobe, the
connections are denser than those observed in experienced
drivers. Considering that SW #4 spans the time window
tepoch ∈ [−0.5, 0.5], centered around the car collision at time
zero, it can be inferred that novice drivers focus more on
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the collision’s outcome, engaging in self-referential thinking
and heightened sensory processing. In contrast, experienced
drivers exhibit a more balanced activation pattern, with
greater engagement of regions associated with visual attention
and decision-making, leading to more efficient car collision
perception.

• In SW #5, node connections continue to approach those of
experienced drivers, but differences remain. The connections
between right temporal lobe and visual network is prominent,
and this integration may indicate that novice drivers, when
confronted with collision scenes, show a more intense
emotional response and self-referential processing.

3.3 Statistical analysis results

3.3.1 Global network metrics analysis
As for the global network metrics analysis, the between-

group comparisons on global network metrics revealed consistent
patterns of differences between experienced drivers and novices
across various frequency bands, conditions, and time-variant
sliding windows.

The network-level analysis revealed distinct patterns of
connectivity differences between experienced and novice drivers
across major brain networks.

3.3.2 Alpha band networks
In the alpha band, we observed generally no significant

differences between experienced and novice drivers across most
brain networks. Limited significant differences emerged in only a
few specific instances: the FCN in SW 5 of the collision condition
[t(303) = −2.441, p

FDR
= 0.036, Cohen’s d = –0.280], and the DAN

in SW 3 [t(308) = −2.321, p
FDR

= 0.047, Cohen’s d = –0.264] and
SW 5 [t(292) = −2.344, p

FDR
= 0.045, Cohen’s d = –0.275)] of the

non-collision condition.

3.3.3 Beta band networks
In the beta band, the Granger causality based node strength

network differences were substantial and widespread. In car
collision condition, all seven major brain networks showed
significant differences in SW 1–4, with most differences persisting
in SW 5:

• Default mode network: significant differences across all five
SWs (all p

FDR
< 0.001, Cohen’s d < –0.585)

• Dorsal attention network: significant in SW 1–4 (all p
FDR

<

0.01, Cohen’s d < –0.380)
• Frontoparietal control network: significant across all five SWs

(all p
FDR

< 0.05, Cohen’s d < –0.380)
• Limbic network: significant across all five SWs (all p

FDR
<

0.001, Cohen’s d < –0.496)
• Somatomotor network: significant across all five SWs (all

p
FDR

< 0.01, Cohen’s d < –0.432)
• Ventral attention network: significant across all five SWs (all

p
FDR

< 0.001, Cohen’s d < –0.479)

• Visual network: significant across all five SWs (all p
FDR

<

0.001, Cohen’s d < –0.698)

In the non-collision condition, five networks showed consistent
differences:

• Default mode network: significant across all five SWs (all
p
FDR

< 0.05, Cohen’s d <–0.280)
• Frontoparietal control network: significant across all five SWs

(all p
FDR

< 0.001, Cohen’s d <–0.421)
• Limbic network: significant across all five SWs (all p

FDR
<

0.001, Cohen’s d <–0.420)
• Ventral attention network: significant across all five SWs (all

p
FDR

< 0.05, Cohen’s d <–0.299)
• Visual network: significant across all five SWs (all p

FDR
<

0.001, Cohen’s d < –0.442)

Furthermore, the characteristic path length and global
efficiency metrics are also employed to comprehensively analyze
the statistical results. Specifically, In the beta frequency band,
significant group differences emerged for characteristic path length
in both experimental conditions. For the collision condition, novice
drivers exhibited significantly higher characteristic path length
values compared to experienced drivers across all sliding windows:
SW #1 [t(268) = −4.219, p

FDR
< 0.001], SW #2 [t(276) = −4.499,

p
FDR

< 0.001], SW #3 [t(296) = −4.307, p
FDR

< 0.001], SW #4
[t(320) = −4.814, p

FDR
< 0.001], and SW #5 [t(337) = −3.560,

p
FDR

= 0.002]. This pattern was similarly observed in the no-
collision condition across all windows: SW #1 [t(317) = −3.485,
p
FDR

= 0.002], SW #2 [t(285) = −3.750, p
FDR

= 0.001], SW
#3 [t(340) = −2.987, p

FDR
= 0.009],SW #4 [t(352) = −3.123,

p
FDR

= 0.006], and SW #5 [t(342) = −3.598, p
FDR

= 0.002].
The consistently lower characteristic path length in experienced
drivers suggests more efficient information transfer across brain
regions.

Global efficiency, which quantifies the network’s capacity
for parallel information processing, showed pronounced group
differences in the beta band for both experimental conditions. For
collision scenarios, novices demonstrated significantly lower global
efficiency than experienced drivers in all sliding windows: SW #1
[t(187) = −4.848, p

FDR
< 0.001], SW #2 [t(191) = −5.405, p

FDR
<

0.001], SW #3 [t(206) = −5.928, p
FDR

< 0.001], SW #4 [t(238) =

−6.094, p
FDR

< 0.001], and SW #5 [t(255) = −4.708, p
FDR

< 0.001].
Similarly, in no-collision scenarios, the effect persisted across all
windows: SW #1 [t(304) = −3.475, p

FDR
= 0.002], SW #2 [t(294) =

−3.732, p
FDR

= 0.001], SW #3 [t(308) = −3.406, p
FDR

= 0.003], SW
#4 [t(346) = −3.283, p

FDR
= 0.004], and SW #5 [t(316) = −4.037,

p
FDR

< 0.001]. These findings indicate that experienced drivers
maintain higher information integration capacity throughout the
entire collision prediction task.

Across all networks and conditions in the beta band,
novice drivers consistently demonstrated higher connectivity
values compared to experienced drivers, suggesting fundamental
differences in neural processing strategies during driving-related
decision-making. In addition, the experimental results revealed no
significant differences between groups in either reaction time or
accuracy.
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4 Discussion

In this study, we conduct a comprehensive analysis of EEG-
based dynamic brain networks using Granger causality, with node
strength employed to examine the differences between two groups.
The following sections provide a detailed discussion of the whole
brain and intrinsic functional network-based analysis.

4.1 Comprehensive discussions on
dynamics of Granger causality-based brain
network

As for the alpha band, the between-group EEG differences
suggest that these observation that experienced drivers maintain
more stable and distributed network connectivity patterns,
potentially reflecting efficient neural strategies for integrating
sensory information and decision-making during driving tasks.
In contrast, novice drivers exhibit progressively increasing
connectivity complexity, whichmay indicate a less efficient or more
effortful neural processing strategy as they respond to driving-
related stimuli.

Since the beta band EEG is closely associated with various
brain functions, including alertness, risk avoidance, attention
allocation, and motor intuition. It also has potential impacts on
cognitive control, working memory, motor coordination, motor
skill learning, emotional arousal, and stress responses. In the
following, we focus on the beta band and provide further analysis
and interpretation of the connectivity network results in Figure 4.

In our work, specifically in the beta band, the observed
differences between experienced and novice drivers offer further
insights into how brain networks function differently in each
group. The beta band is commonly associated with higher
cognitive functions, such as motor control, attention, and cognitive
processing, making it a critical band for investigating the neural
mechanisms underlying first-person car collision risk prediction
performance. In the following, we summarize a more detailed
analysis of the EEG differences between two groups, as listed below.

• Connectivity and synchronization. The beta band in
experienced drivers shows highly synchronized network
activity, particularly between DMN and the visual network. It
suggests more efficient communication between regions
responsible for self-referential thinking and sensory
processing. The greater synchronization observed in the
beta band may reflect better coordination of cognitive
processes, such as attention and visual processing, which
are crucial for quick decision-making and effective driving.
In contrast, novice drivers exhibit less synchronized. The
reduced connectivity, especially between networks like the
DMN and the visual network, could indicate slower cognitive
processing and less efficient integration of sensory and
cognitive information. This is consistent with their increased
susceptibility to distractions and delayed decision-making
during driving, as their brain networks are not as optimized
for such complex tasks.

• Cognitive control. The increased beta band power in the group
of experienced drivers, particularly in the axial view, suggests
that their brains are more engaged in maintaining cognitive
control. The heightened beta band power could indicate that
experienced drivers are better at suppressing irrelevant stimuli
and focusing their attention on driving tasks, which is crucial
for safe and efficient driving. Compared to this, beta power
in novice drivers, may be lower, which could reflect weaker
cognitive control mechanisms. A lower beta band power
might suggest that novice drivers struggle more with filtering
out distractions and maintaining sustained attention on the
driving task. This decreased beta activity could be linked to
their higher level of cognitive load and greater variability in
task performance, especially under complex or challenging
driving conditions.

• Network complexity and adaptability. A more complex
network connectivity observed in experienced drivers across
all SWs, indicates a higher level of adaptability and
flexibility in brain functioning. The Granger causality-based
connectivity networks are not only denser but also more
capable of dynamically switching between different cognitive
networks. This flexibility likely reflects their ability to adjust
quickly to varying car driving conditions and make decisions
with a high degree of confidence and precision. In contrast,
the networks of novice drivers remain relatively simpler
and less adaptable, particularly in the earlier time windows,
which suggests they are not capable of rapidly switching
between different brain regions and respond efficiently to
driving scenario. This could explain why novice drivers may
struggle more with unexpected situations and require more
time to react to stimuli, as their brain networks are still
developing the necessary complexity and adaptability for
optimal performance.

• Stability and consistency. The stability of beta band activity in
experienced drivers, especially in the later windows (SW #4
and SW #5), suggests that they have developed a reliable and
consistent neural framework for handling complex driving
experience tasks. Their ability to maintain relatively stable
network activity over time may reflect a well-established
neural pathway for managing cognitive demands during
driving. This stability is essential for reducing errors and
maintaining safe driving behavior under varying conditions.
Compared to that, greater variability in network connectivity
seen in novice drivers, especially in the earlier windows,
indicates that their brain networks are less stable and more
prone to fluctuations. This instability in beta band activity
could be linked to the greater cognitive load they experience
while driving. As novice drivers are still learning and refining
their driving skills, their brains may have to work harder to
process information and make decisions, leading to greater
fluctuations in their neural activity.

• Implications for training and expertise development. The
differences between the two groups suggest that brain training
could be a valuable tool for assessing driving performance, as it
not only enhances driving skills but also serves as a scientific,
objective method by measuring cognitive abilities, detecting
skill differences, optimizing training, and providing reliable
evaluation criteria for both novice drivers and examiners.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2025.1604751
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2025.1604751

FIGURE 8

Distribution of mean NS across four functional networks: (a) visual network; (b) DMN; (c) VAN; (d) FCN. *p < 0.05, ***p < 0.001.

4.2 Discussions on the dynamic functional
network

In this subsection, the dynamic intrinsic functional network
based node strength over experienced drivers and novices during
five overlapped sliding windows are investigated. Specifically, the
visual network, DMN, VAN and FCN are extensively discusses,
as shown in Figure 8. The following is a detailed analysis and
comparison of each sub-figure.

• Visual network. Novice drivers show significantly higher
node strength than experienced drivers, indicating that novice
drivers exhibit stronger or more frequent responses to danger
in the visual network.

• DMN. As for experienced drivers, node strength remains
relatively stable across all time windows, slightly lower than
that of novice drivers.

• VAN. Novice drivers show significantly higher node strength
than experienced drivers, indicating that novice drivers have
stronger or more frequent responses to danger in the ventral
attention network.

• FCN. As time progresses, the mean node strength for
experienced drivers gradually decreases. In contrast, novice
drivers exhibit an initial increase in mean node strength
followed by a decrease, accompanied by a relatively weaker
prediction of ongoing car collision events.

From the perspective of a car collision risk study, Figures 8a–8d
suggest:

• Stronger responses in novice drivers. In all four networks,
novice drivers show significantly higher NS than experienced

drivers, indicating that their brain networks respond more
strongly or more frequently to danger.

• Greater stability in experienced drivers. Experienced drivers
maintained relatively stable and lower NS across all networks,
which may indicate that they have learned to better control
and regulate their responses to danger, thereby reducing
unnecessary neural activity.

• Network differences. Although the overall trends in the
four intrinsic functional networks are similar, the specific
response patterns in each network may reflect the distinct
roles of different brain regions in processing danger-related
information. For instance, the visual network and DMN may
exhibit more prominent responses during initial perception
and in a resting state, whereas the ventral attention and
prefrontal control networks may play a more significant role
in attention allocation and control.

• Superior risk perception abilities. Experienced drivers exhibit
superior hazard perception abilities compared to novice
drivers. This difference is reflected in their brain activity,
with experienced drivers showing increased activation in
regions associated with visual attention and decision-making.
They also demonstrate higher functional connectivity between
brain areas responsible for processing visual information
and those involved in assessing the salience of potential
hazards. These neural enhancements contribute to their
improved capacity to anticipate and respond to potential car
collision events.

In summary, the beta band EEG differences between experienced
and novice drivers reflect significant differences in brain network
coordination, cognitive control, adaptability, and stability.
Experienced drivers show stronger, more complex, and more
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stable beta band activity, which facilitates better decision-making,
attention regulation, and motor control. Novice drivers, on the
other hand, exhibit less synchronized, weaker, and less stable
beta band activity, which could contribute to the cognitive
challenges they face while driving. These findings highlight
the potential of EEG-based biomarkers in understanding
the neural mechanisms of driving expertise and suggest that
targeted training could help novice drivers optimize their brain
network functioning.

5 Conclusion

In this study, we successfully demonstrated the feasibility
of using EEG-based Granger causality analysis to predict
collision risk scenarios. Experienced drivers exhibited more
stable and distributed network connectivity patterns compared
to novice drivers, indicating more efficient neural strategies for
integrating sensory information and decision-making during
driving tasks. The beta band EEG activity in experienced
drivers showed higher synchronization, particularly between
DMN and the visual network, reflecting better coordination
of cognitive processes crucial for quick decision-making
and effective driving. In particular, we identified higher
synchronization in the beta band between DMN and visual
network, which can be interpreted as evidence for better
coordination of cognitive processes during decision making.
Through this analysis, we have demonstrated that naturalistic
training alone is effective at changing functional circuits. This
allows future research to identify different biomarkers for
action/decision making detection dependent on experience
level. These findings and methodologies presented here lay a
solid foundation for future research aimed at improving driving
safety through enhanced understanding and training of intuitive
driving skills.
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