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Objectives: This study aimed to evaluate the efficacy of diffusion tensor imaging 
(DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density 
imaging (NODDI), and mean apparent propagator-magnetic resonance imaging 
(MAP-MRI) in detecting CST injury caused by GBM and to compare their 
performances.

Materials and methods: We enrolled 76 patients diagnosed with GBM with 
motor weakness (MW, n = 22) or normal motor (NM, n = 54). Bilateral CSTs 
were reconstructed, and a comparative analysis of diffusion parameters was 
performed based on four imaging models between affected and healthy sides. 
Relative diffusion parameters were assessed in the MW and NM groups. Statistical 
analyses were performed using SPSS software.

Results: Significant alterations in most diffusion parameters of DTI, DKI, NODDI, 
and MAP-MRI were observed in the affected CST group compared to the healthy 
CST group (p < 0.05). Notable differences in the relative diffusion parameters 
were observed between the MW and NW groups across all four imaging models 
(p < 0.05). Specifically, DKI-based relative mean kurtosis (MK) exhibited a higher 
area under the curve (0.813), demonstrating greater sensitivity and specificity, 
which significantly positively correlated with muscle strength. DeLong’s test 
revealed a significant performance difference between DKI and DTI.

Conclusion: Diffusion parameters from DTI, DKI, NODDI, and MAP-MRI are 
useful for evaluating CST injury. While DKI-derived MK and NODDI-derived ICVF 
achieved identical high AUC values, MK exhibited a more balanced sensitivity-
specificity profile for assessing microstructural alterations in CST injury, this 
advantage of DKI may better address clinical demands, potentially aiding in 
surgical planning and preserving motor function in patients with GBM.
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Introduction

Gliomas, originating from glial cells, are the most common 
primary brain tumors (Brown et al., 2016; Przybylowski et al., 2021). 
Notably, glioblastoma (GBM), a severe subtype of gliomas, tends to 
invade white matter fibers (Cruz et  al., 2022). Among these, the 
corticospinal tract (CST) stands out as a vital neural pathway for 
motor function, governing the voluntary motion of limbs. CST injury 
can lead to motor dysfunction (Lemon, 2008). Despite surgical 
resection remains the cornerstone of glioma management and the 
extent of resection is a major prognostic factor, it is critical to 
recognize that preserving patients’ quality of life and long-term 
survival depends on avoiding postoperative motor deficits (Bush et al., 
2017; Sales et al., 2022). Resection of gliomas in or close to motor areas 
carries a high risk of surgery-related deficits. Therefore, preoperative 
assessment of CST involvement is essential for surgical planning to 
mitigate surgical damage to this crucial pathway and to strike a 
balance between maximum tumor removal and preserving function 
(Gunnarsson et al., 2002; Kreth et al., 2013).

Over the past decade, diffusion magnetic resonance imaging 
(dMRI) has become a crucial tool for assisting surgical planning. 
Diffusion tensor imaging (DTI) has gained widespread clinical 
application in non-invasively detecting microstructural alterations in 
the CST (Jeurissen et al., 2019; Yang et al., 2021; Henderson et al., 
2020). Notably, fractional anisotropy (FA) is a biomarker for the 
integrity of white matter fibers, with a reduction in FA correlating with 
CST injury resulting from brain tumors (Bucci et al., 2013; Essayed 
et  al., 2017). However, DTI relies on the assumption that water 
molecules conform to a Gaussian distribution (Jelescu et al., 2016). 
Given that DTI only assesses a single diffusion direction within each 
voxel, it frequently fails to resolve cross/kissing fibers and other 
intricate fiber structures (Fernandez-Miranda et al., 2012; Bopp et al., 
2021). The limitation leads to an underestimation of FA in regions 
containing crossing fibers compared to those without, potentially 
resulting in an inaccurate assessment of compromised fiber structural 
integrity—a significant challenge for clinicians (Oouchi et al., 2007).

The development of non-Gaussian models for dMRI has 
substantially overcome the limitations inherent in DTI, thereby 
enabling a more precise characterization of the tissue microstructure. 
Diffusion kurtosis imaging (DKI), serving as an extension of DTI, 
provides a more comprehensive understanding of tissue 
microstructure (Steven et  al., 2014; Jensen et  al., 2005). DKI 
outperformed DTI in delineating subtle alterations in white matter 
integrity, as evidenced in the study of patients with amyotrophic 
lateral sclerosis (Anand et al., 2023). Furthermore, neurite orientation 
dispersion and density imaging (NODDI), a novel tissue-specific 
compartment model, has been developed to uncover mechanisms of 
white matter integrity impairment unexplained by FA and to quantify 
microstructural changes with heightened specificity (Zhang et al., 
2012). NODDI serves as a complementary tool to DTI, providing 
additional biological insights into the microstructural integrity of the 
CST in children with unilateral cerebral palsy (Nemanich et al., 2019). 
When applied to investigate CST pathology in patients with high-
grade gliomas, NODDI has exhibited performance comparable to DTI 
(Jiang et al., 2021). Mean apparent propagator-magnetic resonance 
imaging (MAP-MRI), another recently introduced diffusion model 
based on the q-space information, can calculate the probability density 
function of molecular displacement and comprehensive quantitative 

indicators, potentially offering a more sensitive imaging biomarker 
(Ozarslan et al., 2013; Avram et al., 2016). Jiang et al. claimed that 
MAP-MRI was an effective approach for evaluating microstructural 
changes in CST injury (Jiang et  al., 2021). Collectively, the 
aforementioned studies underscore the immense promise of 
non-Gaussian models in characterizing the microstructure of tissues.

However, to date, research on exploring non-Gaussian models for 
assessing CST injury in patients with glioma, especially within the 
context of a small sample, has been limited. Primarily, these studies 
have focused on individual non-Gaussian models, with a paucity of 
research dedicated to CST injury in GBM. Therefore, this study aimed 
to evaluate the application of different diffusion models (DTI, DKI, 
NODDI, and MAP) in CST injury induced by GBM and compare 
their performance to provide valuable clinical guidance.

Materials and methods

Study participants

This retrospective study was approved by scientific research and 
clinical trial ethics committee of the first affiliated hospital of 
Zhengzhou university (2019-KY-231), and informed consent was 
waived. Between April 2019 and June 2023, patients with a 
pathological diagnosis of GBM adjacent to or located in the CST 
pathway were included in this study. Destruction to the CST may 
decrease muscle strength. Neurosurgeons utilized the British Medical 
Research Council grading (MRC) system for motor function 
assessment, which quantitatively evaluated muscle strength on a scale 
ranging from 0 to 5 (Dyck et al., 2005). The value of 0 represents no 
muscle contraction and 5 indicates normal muscle strength. The MRC 
grading system, as a validated and reliable instrument for motor 
strength assessment, has been extensively adopted in clinical 
neurosurgical practice. The weakest limb strength assessment in each 
patient was used for statistical analysis in this study. Other clinical 
characteristics, including age, sex, Karnofsky performance status 
(KPS), tumor location and tumor size were recorded. Inclusion 
criteria consisted of (Brown et al., 2016) pathologically confirmed 
GBM according to the World Health Organization 2021 classification 
criteria, (Przybylowski et al., 2021) age ranging from 18 to 75 years, 
and (Cruz et al., 2022) acquisition of diffusion-weighted MRI obtained 
within 2 weeks before surgery and antitumor treatment. Exclusion 
criteria included: (Brown et  al., 2016) prior biopsy or antitumor 
therapy before MRI examination, (Przybylowski et al., 2021) presence 
of obvious artifacts or motion artifacts in MR images, and (Cruz et al., 
2022) larger tumors involving bilateral CSTs. Finally, 76 patients with 
GBM, including those with motor weakness (MW; n = 22) and normal 
motor function (NM; n = 54), were enrolled in this study.

MR imaging acquisition

All images were acquired using a 3 T MR scanner (MAGNETOM 
Prisma, Siemens Healthineers, Erlangen, Germany) equipped with a 
64-channel head and neck coil. Structural MRI protocols included 
T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), axial T2 
dark-fluid imaging, and contrast-enhanced axial/sagittal/coronal 
T1W imaging. The acquisition parameters for diffusion-weighted 
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imaging (DWI) using single-shot echo-planar imaging were as 
follows: TR = 3,700 ms, TE = 72 ms, matrix = 110 × 110, number of 
slices = 100, slice thickness = 2.0 mm, FOV = 220 mm × 220 mm, 99 
diffusion directions, and 10 different b-values (b = 0, 350, 650, 1,000, 
1,350, 1,650, 2000, 2,650, 2,700, 3,000 s/mm2). The acquisition time 
for DWI was 6 min 37 s.

Image processing and analysis

Eddy current and motion corrections were applied to all 
diffusion-weighted images using the Diffusion Kit Eddy tool1 (Xie 
et  al., 2016). Subsequently, parameter fitting for DTI, DKI, 
MAP-MRI, and NODDI was conducted using NeuDiLab software 
developed in Python, based on the open-sourceDIPY (diffusion 
imaging in the Python) tool2 (Garyfallidis et  al., 2014). DTI 
parameters included axial diffusivity (AD), FA, mean diffusivity 
(MD), and radial diffusivity (RD); DKI parameters included axial 
kurtosis (AK), radial kurtosis (RK), mean kurtosis (MK); MAP 
parameters included mean squared displacement (MSD), 
non-Gaussianity (NG), NG axial (NGAx), NG radial (NGRad), 
Q-space inverse variance (QIV), return to the origin probability 
(RTOP), return to the axis probability (RTAP), return to the plane 
probability (RTPP); NODDI parameters included intracellular 
volume fraction (ICVF), isotropic volume fraction (ISOVF) and 
orientation dispersion index (ODI).

Bilateral corticospinal tracts (CSTs) were reconstructed in DSI 
Studio3 using generalized q-sampling imaging (GQI) with a diffusion 
sampling length ratio of 1.25. The GQI algorithm was selected for its 
superior capability in resolving complex fiber geometries (e.g., 
crossing fibers) near pathological regions compared to diffusion 
tensor imaging (DTI). Preprocessed diffusion data (eddy-current 
and motion-corrected) underwent fully automated tractography 
with default parameter. To ensure anatomical fidelity, all automated 
CST reconstructions underwent rigorous quality assessment by two 
independent neuroradiologists (20 and 10 years of experience). They 
evaluated tract continuity, spatial alignment with neuroanatomical 
landmarks, and absence of aberrant streamlines violating CST 
topography. Discrepancies (observed in <5% of cases) were resolved 
by consensus; no manual corrections were applied to retain 
algorithmic objectivity. The positional relationship between the 
affected CST and tumor was also recorded. The CST was considered 
to be located within the CST pathway if the distance to the tumor/
infiltrating edema was zero; otherwise, it was classified as being 
located near the CST pathway. The displacement of the ipsilateral 
CST (affected side) in relation to the tumor was measured based on 
the position of the contralateral CST (healthy side) at the level of the 
maximum tumor size (Supplementary Figure S1). Subsequently, the 
values of the AD, FA, MD, RD, AK, RK, MK, MSD, NG, NGAx, 
NGRad, QIV, RTOP, RTAP, RTPP, ICVF, ISOVF, and ODI along the 
bilateral CSTs were calculated. To relieve the impacts of age and 
inter-individual differences on diffusion parameters, the relative 
values of these parameters were computed as the ratios of the metric 

1 https://diffusionkit.readthedocs.io/

2 https://www.dipy.org

3 http://dsi-studio.labsolver.org

values of the affected CST to those of the healthy CST. In this study, 
CST displacement in the MW group ranged from 5.17 mm to 
21.80 mm. In contrast, in the NM group, it ranged from 1.50 mm to 
21.00 mm; given that the CST displacement of 17 patients in the NM 
group was less than the minimum value observed in the MW group 
(5.17 mm), a subsequent subgroup analysis was conducted to 
exclude confounding bias. This analysis focused on patients (n = 37) 
with CST displacements ≥5.17 mm, following Jiang et  al.’s 
methodology (Jiang et al., 2021).

Statistical analysis

All statistical analyses were performed using SPSS (version 29.0; 
SPSS Inc., Chicago, IL, USA) and MedCalc software (version 22.001; 
MedCalc Software Ltd., Ostend, Belgium). The normality of 
continuous data was assessed using the Shapiro–Wilk test. Data were 
presented as mean ± standard deviation (SD) or median (interquartile 
range). The Mann–Whitney U test was used to compare age, 
Karnofsky performance status (KPS), tumor size, and CST 
displacement between the groups. The chi-square test was used to 
compare sex, tumor location, and the positional relationship between 
the ipsilateral CST and the tumor. Paired t-tests or Wilcoxon tests 
were used to compare the diffusion parameter values between the 
affected and healthy CST. The relative diffusion parameter values of 
the CST were compared between the MW and NM groups using the 
Mann–Whitney U test or independent t-test. All p-values were 
corrected for multiple comparisons via the Benjamini-Hochberg 
procedure to control the false discovery rate (FDR). Receiver 
operating characteristic (ROC) analysis was used to evaluate the 
performance of the relative diffusion parameter values of the CST 
between the MW and NM, and DeLong’s test was used to compare 
their performance. The Spearman’s correlation was used to examine 
the association between the relative diffusion parameter and muscle 
strength assessed by MRC system. A significance level of p < 0.05 was 
set for statistical significance.

Results

Patient demographics

A total of 76 patients were enrolled in this study, with 22 clinically 
evaluated as having motor weakness, while the remaining 54 
exhibited normal motor function. The clinical data are presented in 
Supplementary Table S1. There were no significant differences in age, 
sex, tumor location, or positional relationship of ipsilateral CST and 
tumors between the MW and NM groups (p > 0.05). However, the 
KPS score was significantly lower in the MW group than in the NM 
group, and a more pronounced CST displacement was observed in 
the MW group (p < 0.05).

Comparison of CST diffusion parameters 
between affected and healthy sides

In the MW group, all CST diffusion parameters, except 
ISOVF (p = 0.168) and ODI (p = 0.528), significantly differed 
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between the affected and healthy sides. Compared with the 
healthy side, the affected side exhibited a significant increase in 
AD, MD, RD, MSD, QIV (all p < 0.05), and a noteworthy decrease 
in FA, AK, MK, RK, NG, NGAx, NGRad, RTAP, RTOP, RTPP, 
ICVF (all p < 0.05). In the NW group, significant differences were 
found only for AD, AK, MK, RK, and ICVF between the affected 
and healthy sides (all p < 0.05). Detailed results are presented in 
Table 1.

Comparison of relative CST diffusion 
parameters between MW and NM groups

All relative CST diffusion parameters were significantly 
different between the MW group and NW group, except for relative 
AD (p = 0.119), relative RTPP (p = 0.128), relative ISOVF 
(p = 0.131), and relative ODI (p = 0.162). Compared to the NW 
group, the MW group had significantly higher relative MD, relative 
RD, relative MSD, relative QIV (all p < 0.01), and significantly 
lower relative FA, relative AK, relative MK, relative RK, relative 

NG, relative NGAx, relative NGRad, relative RTAP, relative RTOP, 
relative ICVF (all p < 0.01). After the adjustment for multiple 
comparisons, the relative diffusion parameters remained 
significantly statistical difference between two groups, except for 
relative AD, RTPP, ISOVF and ODI. Table  2 presents detailed 
results. Figures 1, 2 depict data from two representative patients, 
emphasizing the distinctions in CST characteristics between 
patients with motor weakness and those with normal 
motor function.

Comparing the performance of relative 
CST diffusion parameters in evaluating the 
CST injury

ROC curve analyses were conducted to assess the performance 
of the relative CST diffusion parameters in the MW and NM groups. 
Table  3 and Figure  3 shows the ROC analyses of the significant 
diffusion parameters. Notably, relative MK and ICVF attained the 
highest area under the curve (AUC) (AUC = 0.813). Relative MK 

TABLE 1 Comparison of CST diffusion parameters between affected and healthy sides.

Diffusion 
parameters

MW (n = 22) NM (n = 54)

Affected CST 
(n = 22)

Health CST 
(n = 22)

t/Z p Affected CST 
(n = 54)

Health CST 
(n = 54)

t/Z p

AD (10−3 mm2/s) 1.580 (1.038–1.951) 0.925 (0.873–1.917) −2.224 0.026* 0.905 (0.872–0.971) 0.887 (0.855–0.929) −2.286 0.022*

FA 0.310 ± 0.067 0.376 ± 0.073 −3.024 0.006* 0.377 (0.342–0.408) 0.379 (0.343–0.405) −0.469 0.693

MD 

(10−3 mm2/s)

0.768 (0.674–0.932) 0.620 (0.560–0.665) −3.620 <0.001* 0.636 (0.607–0.672) 0.614 (0.593–0.669) −1.735 0.083

RD (10−3 mm2/s) 0.629 (0.549–0.828) 0.499 (0.446–0.567) −3.490 <0.001* 0.503 (0.469–0.535) 0.489 (0.455–0.547) −1.063 0.288

AK 0.666 (0.592–0.695) 0.753 (0.712–0.761) −4.042 <0.001* 0.724 (0.689–0.762) 0.752 (0.732–0.768) −2.484 0.013*

MK 0.796 (0.678–0.825) 0.915 (0.877–0.954) −3.945 <0.001* 0.895 (0.856–0.932) 0.924 (0.891–0.956) −2.475 0.013*

RK 0.933 ± 0.155 1.115 ± 0.139 −5.578 <0.001* 1.114 (1.041–1.178) 1.152 (1.068–1.199) −2.054 0.040*

MSD 

(10−5 mm2/s)

18.634 (17.640–23.019) 16.612 (15.271–18.092) −2.734 0.006* 16.713 (15.672–17.609) 16.412 (15.715–17.927) −0.779 0.436

NG 0.230 (0.194–0.253) 0.267 (0.262–0.274) −3.750 <0.001* 0.269 (0.252–0.279) 0.272 (0.263–0.279) −1.236 0.271

NGAx 0.197 (0.162–0.219) 0.227 (0.221–0.234) −3.036 0.002* 0.228 (0.214–0.237) 0.231 (0.222–0.239) −0.788 0.431

NGRad 0.116 (0.097–0.131) 0.141 (0.135–0.146) −3.782 <0.001* 0.143 (0.132–0.153) 0.146 (0.139–0.160) −1.210 0.226

QIV 

(10−5 mm2/s)

33.644 (23.000–56.418) 19.050 (15.820–24.928) −3.328 <0.001* 20.184 (16.800–25.140) 18.851 (16.673–24.493) −1.244 0.231

RTAP 

(10−5 mm2/s)

5.579 ± 1.072 7.729 ± 1.040 −5.169 <0.001* 7.050 (6.488–7.552) 7.233 (6.651–7.851) −31.649 0.099

RTOP 

(10−5 mm2/s)

3.860 (3.218–4.443) 5.285 (4.606–5.745) −3.620 <0.001* 5.069 ± 1.029 5.219 ± 0.707 −1.379 0.174

RTPP 

(10−5 mm2/s)

5.165 ± 0.308 5.510 ± 0.198 −4.453 <0.001* 5.405 ± 0.286 5.500 ± 0.168 −1.674 0.100

ICVF 0.476 (0.397–0.508) 0.582 (0.554–0.602) −4.107 <0.001* 0.559 (0.534–0.588) 0.584 (0.568–0.609) −3.018 0.003*

ISOVF 0.253 (0.216–0.328) 0.227 (0.183–0.287) −1.308 0.168 0.231 (0.208–0.262) 0.234 (0.209–0.265) −0.392 0.695

ODI 0.322 ± 0.079 0.341 ± 0.065 −0.642 0.528 0.319 ± 0.053 0.334 ± 0.047 −1.652 0.104

MW, motor weakness; NM, normal motor; CST, corticospinal tract. AD, axial diffusivity; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity. AK, axial kurtosis; MK, mean 
kurtosis; RK, radial kurtosis. MSD, mean squared displacement; NG, non-Gaussianity; NGAx, NG axial; NGRad, NG radial; QIV, Q-space inverse variance; RTAP, return to the axis 
probability; RTOP, return to the origin probability; RTPP, return to the plane probability; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; ODI, orientation dispersion 
index. p-values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure. *p < 0.05 was considered statistically significant.
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demonstrated a sensitivity of 81.82% and specificity of 79.63%, while 
relative ICVF showed a sensitivity of 86.36% and specificity of 
72.22%. Relative RK achieved the second-highest AUC 

(AUC = 0.805), with a sensitivity of 81.82% and specificity of 85.19%. 
Relative NG ranked third in terms of AUC (AUC = 0.779), with a 
sensitivity of 81.82% and specificity of 70.37%. Relative RD had the 

TABLE 2 Comparison of relative CST diffusion parameters between MW and NM groups.

Relative CST diffusion 
parameters

MW (n = 22) NM (n = 54) z p

AD (10−3 mm2/s) 1.714 (0.573–2.247) 1.022 (0.990–1.084) −1.558 0.119

FA 0.849 (0.676–1.005) 1.005 (0.931–1.099) −2.944 0.003*

MD (10−3 mm2/s) 1.196 (1.040–1.511) 1.05 (0.970–1.012) −3.459 <0.001*

RD (10−3 mm2/s) 1.231 (1.071–1.656) 1.020 (0.946–1.100) −3.780 <0.001*

AK 0.896 (0.786–0.952) 0.971 (0.920–1.017) −3.573 <0.001*

MK 0.854 (0.737–0.925) 0.981 (0.929–1.022) −4.261 <0.001*

RK 0.810 (0.660–0.893) 0.973 (0.920–1.014) −4.146 <0.001*

MSD (10−5 mm2/s) 1.121 (1.026–1.356) 1.007 (1.064–1.11) −3.482 <0.001*

NG 0.854 (0.721–0.935) 0.971 (0.928–1.031) −3.803 <0.001*

NGAx 0.871 (0.731–0.948) 0.966 (0.930–1.014) −2.863 0.004 *

NGRad 0.802 (0.749–0.944) 0.957 (0.865–1.048) −2.199 0.028 *

QIV (10−5 mm2/s) 1.764 (1.103–3.234) 1.022 (0.870–1.317) −3.241 0.001*

RTAP (10−5 mm2/s) 0.794 (0.595–0.929) 0.982 (0.895–1.036) −3.447 <0.001*

RTOP (10−5 mm2/s) 0.826 (0.631–0.906) 0.973 (0.892–1.050) −3.173 0.002 *

RTPP (10−5 mm2/s) 0.958 (0.897–1.008) 0.989 (0.963–1.010) −1.523 0.128

ICVF 0.776 (0.651–0.901) 0.963 (0.886–0.999) −4.261 <0.001*

ISOVF 1.030 (0.911–1.341) 0.978 (0.871–1.097) −1.512 0.131

ODI 0.873 (0.780–1.040) 0.939 (0.869–1.032) −1.397 0.162

MW, motor weakness; NM, normal motor; CST, corticospinal tract. AD, axial diffusivity; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity. AK, axial kurtosis; MK, mean 
kurtosis; RK, radial kurtosis. MSD, mean squared displacement; NG, non-Gaussianity; NGAx, NG axial; NGRad, NG radial; QIV, Q-space inverse variance; RTOP, return to the origin 
probability; RTAP, return to the axis probability; RTPP, return to the plane probability; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; ODI, orientation dispersion 
index. p-values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure. *p < 0.05 was considered statistically significant.

FIGURE 1

A 52-year-old female patient diagnosed with glioblastoma and presented with motor weakness.
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fourth-highest AUC (AUC = 0.778), demonstrating a sensitivity of 
72.73% and specificity of 85.19%. Notably, the relative MK parameter 
exhibited significantly enhanced performance compared to the 
relative RD (Table 4).

Subgroup analysis

There was no significant difference in CST displacement between 
the MW (n = 22) and NM (n = 37) groups in the subgroup analysis. 

The results of subgroup analyses were similar to those of the overall 
analysis. The performance of relative CST diffusion parameters in 
evaluating CST injury was as follows: relative MK (AUC = 0.800, 
sensitivity of 81.82%, specificity of 75.68%), relative RK 
(AUC = 0.795, sensitivity of 81.82%, specificity of 81.08%), relative 
ICVF (AUC = 0.785, sensitivity of 86.36%, specificity of 64.86%), 
relative RD (AUC = 0.764, sensitivity of 72.73%, specificity of 
81.08%), relative NG (AUC = 0.756, sensitivity of 63.64%, specificity 
of 83.78%), in descending order. Furthermore, the efficiency of the 
relative MK was better than that of the relative RD. Detailed results 

FIGURE 2

A 57-year-old female patient diagnosed with glioblastoma presented with normal motor.

TABLE 3 The performance of relative CST diffusion parameters in evaluating the CST injury.

Relative CST diffusion
parameters

AUC (95% CI) Cut-off value Sensitivity (%) Specificity (%)

FA 0.716 (0.601–0.814) 0.488 63.64 85.19

MD (10−3 mm2/s) 0.754 (0.642–0.846) 0.450 72.73 72.22

RD (10−3 mm2/s) 0.778 (0.668–0.865) 0.5791 72.73 85.19

AK 0.763 (0.651–0.853) 0.443 59.09 85.19

MK 0.813 (0.707–0.893) 0.615 81.82 79.63

RK 0.805 (0.698–0.887) 0.670 81.82 85.19

MSD (10−5 mm2/s) 0.756 (0.644–0.847) 0.443 59.09 85.19

NG 0.779 (0.670–0.867) 0.522 81.82 70.37

NGAx 0.710 (0.595–0.809) 0.421 77.27 64.81

QIV (10−5 mm2/s) 0.738 (0.625–0.832) 0.438 86.36 57.41

RTAP (10−5 mm2/s) 0.753 (0.641–0.845) 0.525 63.64 88.89

RTOP (10−5 mm2/s) 0.733 (0.619–0.828) 0.532 77.27 75.93

ICVF 0.813 (0.707–0.893) 0.4545 86.36 72.22

AUC, area under the curve; CST, corticospinal tract. FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity. MK, mean kurtosis; RK, radial kurtosis. MSD, mean squared 
displacement; NG, non-Gaussianity; NGAx, NG axial; QIV, Q-space inverse variance; RTAP, return to the axis probability; RTOP, return to the origin probability; ICVF, intracellular volume 
fraction.
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of the subgroup analyses are presented in Supplementary Tables 
S2–S4.

Correlation analysis between the relative 
MK parameter and muscle strength

As Figure 4 shows, in 76 patients with GBM, the relative MK value 
in CST was significantly positively correlated with the MRC (r = 0.577, 
p < 0.001). The results of subgroup analyses were similar to those of 
the overall analysis (r = 0.576, p < 0.001).

Discussion

GBM is the most common primary malignant tumor in adults, 
characterized by diffuse infiltration of surrounding white matter tracts 
(Lapointe et al., 2018). This study aimed to explore the application of 
multiple diffusion models––DTI, DKI, NODDI, and MAP in assessing 
CST injury induced by GBM while also comparing their performance. 
Our findings suggest that diffusion parameters obtained from DTI, 
DKI, NODDI, and MAP can effectively evaluate corticospinal tract 
injury. Among these models, DKI-based relatives MK demonstrated 
superior performance, exhibiting heightened sensitivity and 
specificity, and which significantly positively correlated with 
muscle strength.

Compared to the healthy CST, the diffusion parameters of the 
affected CST were altered, regardless of whether they were in the MW 
or NM group. These changes can be attributed to the invasive nature 
of GBM, which tends to invade existing extracellular structures. 
Previous studies have indicated that GBM typically utilizes nerve 
fibers as a guide for infiltration, leading to abnormalities in the 
microstructure of these fibers (El Ouadih et al., 2022; Li et al., 2023), 
including those within the CST. Specifically, in the MW group, all CST 
diffusion parameters (except for NODDI-based ISOVF and ODI) 
showed significant differences between the affected and healthy sides. 
In the NM group, DKI-based AK, MK, and RK exhibited significant 
differences between the affected and healthy sides, while only AD 

FIGURE 3

The receiver operating characteristic (ROC) analysis of the relative CST diffusion parameters. ROC curves of the relative CST diffusion parameters 
based on DTI, DKI, NODDI, and MAP-MRI (A–D).

TABLE 4 Comparing the performance of relative CST diffusion 
parameters in evaluating the CST injury.

Relative CST features DeLong’s test
(p value)

RD vs. MK 0.031*

RD vs. NG 0.930

RD vs. ICVF 0.237

MK vs. NG 0.059

MK vs. ICVF 1.000

NG vs. ICVF 0.161

CST, corticospinal tract. RD, radial diffusivity. MK, mean kurtosis; RK, radial kurtosis. NG, 
non-Gaussianity. ICVF, intracellular volume fraction. *p < 0.05.
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based on DTI and ICVF based on NODDI demonstrated changes. 
This suggests that the relevant DKI-derived parameters are more 
sensitive in detecting microstructural alterations compared to other 
diffusion parameters such as FA, MD, and so on.

Quantitative assessment of white matter tracts remains a 
significant challenge. Previous DTI studies on aging have reported 
an increase in MD and a decrease in FA with age, alongside 
significant individual variability (Bennett et al., 2010; Molloy et al., 
2021). Therefore, we employed relative CST diffusion parameters 
in this study to mitigate the effects of age and inter-individual 
differences (Min et al., 2017). The results revealed that the MW 
group exhibited significantly heightened relative MD, RD, MSD, 
and QIV, along with diminished relative FA, AK, MK, RK, NG, 
NGAx, NGRad, RTAP, RTOP, ICVF compared to the NW group. 
It is worth noting that there was no statistical difference in terms 
of relative ISOVF and ODI between the MW group and the NW 
group. ISOVF – a metric derived from an isotropic diffusion signal 
from the cerebrospinal fluid (CSF) compartment, reflecting 
CSF-like free water diffusion. The absence of significant intergroup 
differences in ISOVF may suggest that GBM-induced CST damage 
primarily alters axonal integrity rather than expanding extracellular 
free water compartments (Nemanich et al., 2019). ODI reflects the 
spread of neurite orientation, which effectively captures neurite 
dispersion in crossing or dispersed fibers. However, its utility in 
assessing highly aligned white matter such as the CST may 
be constrained, where inherently low orientation dispersion limits 
the discriminatory power (Zhang et  al., 2012). GBM may only 
cause minor changes in dispersion of CST. Critically, the 
displacement of the CST constituted a significant confounding 
factor. Patients with motor weakness exhibited substantially greater 
displacement distances than those with normal motor function, 
suggesting that the greater the displacement distance, the higher 
probability of CST damage. To eliminate the influence of this 
confounding factor, we further selected cases of glioblastoma with 
significant displacement of the corticospinal tract for subgroup 
analysis, in order to balance the two groups. The subgroup analysis 
results aligned with the overall study, showing that relative MK and 
RK had higher AUCs, demonstrating higher sensitivity and 

specificity. Furthermore, the performance of the relative MK was 
superior to that of the relative RD. These findings suggest that DKI 
offers greater promise in assessing microstructural alterations in 
CST injury than traditional DTI metrics.

The performance of the advanced diffusion model, DKI, in 
evaluating CST damage was better than that of DTI, potentially 
attributed to the inherent limitations of DTI. The actual brain 
microstructure is complex and does not follow a Gaussian 
distribution. DKI specifically takes into account the complexity of 
brain microstructure by assessing kurtosis (Wu and Cheung, 2010). 
MK, which represents the average kurtosis across all diffusion 
directions, reflects microstructural complexity, with reduced 
values indicating compromised cellular integrity and enhanced 
membrane permeability (Steven et al., 2014; Lee et al., 2013). RK, 
measuring the kurtosis along the radial direction and higher in 
white matter, is sensitive to the integrity of myelin and cellular 
membranes (Raab et al., 2010). A decline in RK indicates impaired 
myelin and cell membrane integrity (Oliviero and Del Gratta, 2021; 
Rosenkrantz et al., 2015). In cases where GBM invades the CST 
pathway, impairing diffusion barriers and decreasing 
microstructural complexity, there are marked decreases in MK and 
RK. Additionally, in recent studies, NODDI and MAP have been 
used to assess CST injury in glioma, achieving performance 
comparable to that of DTI (Jiang et al., 2021; Jiang et al., 2021), 
which is consistent with our results. Although based on technical 
principles, NODDI and MAP may be  able to provide more 
abundant information on the CST than DTI and DKI, these 
advantages are on the basis of indirect results lacking further 
histological validation (Gao et  al., 2022). Moreover, while 
DKI-based MK and NODDI-based ICVF obtained identical AUC 
value in our results, the Youden index of MK is higher than that of 
ICVF (0.614 vs. 0.585), suggesting its more balanced sensitivity-
specificity profile may better meet clinical requirements. Our 
results did not demonstrate the superiority of MAP over DTI; 
however, RTAP based on MAP demonstrated the highest 
specificity. RTAP is a parallel scalar along the white matter tract, 
which reflects the restrictive barriers in the radial orientation 
(Ozarslan et al., 2013; Fick et al., 2016). As mentioned above, CST 

FIGURE 4

The correlation between the relative MK parameter and muscle strength assessed by MRC. (A) Overall analysis; (B) Subgroup analysis.
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injury may lead to the destruction of diffusion barriers, and our 
findings revealed that RTAP, as the radial component of MAP, may 
have a high capability to detect white matter tract damage, 
providing additional insights into understanding CST injury. 
Given the more balanced performance of DKI, DKI-derived 
metrics enable precise preoperative mapping of CST integrity loss 
near tumors. By integrating these quantitative parameters into 
intraoperative navigation systems surgeons can dynamically adjust 
resection margins to spare functionally critical fibers, reducing 
iatrogenic motor deficits.

This study has some limitations. First, a recognized 
shortcoming is the absence of a uniform protocol for tracking 
white matter tracts, and the impact of mass effects including white 
matter displacement, edema-induced diffusion alterations, and 
tumor infiltration, which may prematurely terminate streamlines 
or distort local orientation estimates. We  chose the advanced 
tractography with GQI algorithm to map white matter tracts more 
accurately, complete CST visualization remains challenging in 
severe mass effect scenarios. Second, our study lacks a longitudinal 
analysis of the surgical impact on motor function in patients with 
GBM, a critical aspect that should be addressed in future studies. 
Third, our sample size was somewhat limited; however, it is 
important to note that we exclusively selected patients with GBM, 
in contrast to previous studies encompassing various types of brain 
tumors. Future studies should aim to recruit a larger population 
for a more comprehensive investigation. Finally, acquiring 
advanced model parameters requires specialized post-processing 
software, which may be  inconvenient for clinical applications; 
however, future developments in the production and automation 
of post-processing technology are anticipated to solve 
this limitation.

Conclusion

In conclusion, diffusion parameters derived from DTI, DKI, 
NODDI, and MAP prove effective in assessing CST injury. While 
DKI-derived MK and NODDI-derived ICVF achieved identical high 
AUC values, MK exhibited a more balanced sensitivity-specificity 
profile for assessing microstructural alterations in CST injury, this 
advantage of DKI may better address clinical demands, potentially 
aiding in surgical planning and preserving motor function in patients 
with GBM.
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