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Objective: Neurosurgical intelligent question-answering (Q&A) systems

offers a novel paradigm to enhance perceptual intelligence—simulating

human-like cognitive processing for contextual understanding and emotion

interaction. While retrieval-based models lack perceptual adaptability to

rare clinical scenarios, and generative LLMs, despite fluency, fail to ground

outputs in domain-specific neurosurgical knowledge or doctor expertise.

Hybrid frameworks struggle to emulate clinician perceptual workflows (e.g.,

contextual prioritization, empathy modulation). These present challenges

for further improving the semantic understanding, memory integration, and

trustworthiness of intelligent Q&A systems in neurosurgery.

Approach: To address these challenges, we propose a Multi-Task Knowledge

Graph-Augmented Answer Generation model (MT-KGAG), designed to enhance

perceptual fidelity. It uses a hybrid attention mechanism to introduce

neurosurgical knowledge graph and doctor features in the answer generation

model to prioritize clinically salient information akin to human perceptual

workflows. Simultaneously, the model employs a multi-task learning framework,

jointly optimizing answer generation, candidate answer ranking, and doctor

recommendation tasks aligning machine outputs with clinician decision-making

patterns while embedding safeguards against hallucination or inappropriate

emotional mimicry. Experiments utilize real-world data from a Chinese online

health platform, validated through perceptual coherence metrics and ethical

robustness assessments.

Results: The MT-KGAG model outperformed all baselines. It achieved an

Embedding Average of 0.9439, DISTINCT-2 of 0.2681, and a medical entity

density of 0.2471. Medical experts rated patient safety at 4.02/5 and health

outcomes at 3.89/5. Additionally, it attained MRR scores of 0.6155 for candidate

answer ranking and 0.6169 for doctor recommendation, confirming its multi-

task synergy.

Discussion: MT-KGAG pioneers perception-aware AI in neurosurgery,

where LLMs transcend text generation to simulate clinician-like contextual

reasoning and ethical judgment. By fusing LLM’s generative adaptability
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with domain-specific knowledge graphs, the model navigates complex

trade-offs between empathetic interaction and perceptual safety—delivering

responses that are both contextually nuanced and ethically constrained. This

work highlights the transformative potential of perceptual intelligence in

medical AI, enabling systems to “interpret” patient needs, “recall” specialized

knowledge, and “prioritize” clinical relevance while mitigating risks of

anthropomorphic overreach.

KEYWORDS

neurosurgery care, intelligent question and answering system, knowledge graph, multi
task learning, medical answer generation

1 Introduction

The complexity of postoperative care in neurosurgery
has escalated significantly in recent years, driven by global
demographic shifts toward aging populations and a rising
prevalence of chronic diseases. These factors amplify clinical
challenges (Dufour and Rousseau-Ventos, 2020). Compounding
these issues, a persistent shortage of specialized neurosurgeons
continues to hinder access to timely and adequate care,
exacerbating unmet demand in healthcare systems (Gebeyehu
et al., 2024). To address this challenge, AI-powered medical
question-answering (Q&A) systems are emerging as a potential
solution. Within the realm of patient care, individuals can engage
with AI-powered medical Q&A systems to acquire comprehensive
information pertaining to their condition, available treatment
options, and postoperative care (Kuang et al., 2023). At their core
is the medical answer generation module (MAG) which parses
users’ questions and produces appropriate responses in natural
language (Iovine et al., 2020). Notably, the clinical adoption of such
systems hinges on their ability to emulate human-like perceptual
intelligence: contextual understanding, domain-specific reasoning,
trustworthiness and ethically constrained interaction—capabilities
that remain underdeveloped in current frameworks (Wang et al.,
2023). Thus, improving the performance of MAG has been an
active area of research (Yang Z. et al., 2021).

MAG models generally fall into three categories. The first
category involves retrieval-based Q&A models (Li and Yao, 2022),
which operate by matching user questions against pre-constructed
question-answer repositories to deliver controlled and interpretable
responses (Yang Z. et al., 2021). While delivering controlled
responses from predefined repositories, they lack the perceptual
adaptability to handle rare cases or dynamic clinical narratives,
reflecting rigid knowledge boundaries (Ni et al., 2022). The
second category employs generative models that utilize pre-trained
large language models (LLMs) as encoder-decoder frameworks
(Li L. et al., 2021). They generate contextually coherent and
personalized responses through sequential decoding of dialogue
history (Schmidgall et al., 2024; Wang et al., 2024). However,
their output quality substantially degrades when operating with
insufficient training corpora, particularly manifesting as factual
inaccuracies or hallucinated content in low-resource clinical
contexts. The third category is hybrid models, which combine
retrieval-based and generative models to improve accuracy.
Typically, retrieval-based models first retrieve candidate answers,

while generative models generate new responses, and a ranking
model then selects the final output. Early ranking methods relied
on feature engineering (Song et al., 2018), but recent approaches
increasingly use deep learning (Glass et al., 2022; Yang et al., 2019),
enhancing flexibility and accuracy.

While hybrid models have gained research attention, they
exhibit two critical limitations. First, prevailing approaches
narrowly focus on textual question-answer matching while
neglecting perceptual anchors—structured neurosurgical
knowledge graphs and physician expertise profiles—that
clinicians inherently rely on to contextualize decisions. This
oversight severely restricts models’ ability to emulate human-like
domain awareness, leading to degraded accuracy when handling
complex queries requiring multisource knowledge integration.
Second, traditional frameworks isolate retrieval and generative
components, reducing answer selection to a binary choice rather
than enabling cognitive synergy. Clinicians, conversely, interleave
evidence retrieval (e.g., guidelines) with adaptive reasoning (e.g.,
patient history) in a fluid perceptual loop. Current models fail
to mirror this integration, resulting in fragmented semantic
representations that struggle to resolve long-tail queries like
rare complication scenarios. These gaps underscore the need for
architectures that emulate clinician-like perceptual synthesis—
seamlessly fusing domain knowledge, contextual cues, and ethical
constraints to navigate neurosurgery’s cognitive complexity
(Izhar et al., 2025).

To address these challenges, the study proposes the Multi-Task
Knowledge Graph-Augmented Answer Generation model (MT-
KGAG), which pioneers perception-aware AI for neurosurgical
Q&A. The model introduces two innovations. One, it enhances
domain-specific understanding by incorporating neurosurgical
knowledge graphs (Varshney et al., 2023; Zhao et al., 2022) and
doctor features (Shen et al., 2023) into the model. Specifically, an
improved relational graph attention network (RGAT) encodes the
knowledge graph and feeds it into the decoder, while a hybrid
attention mechanism considers doctor features when encoding
questions and candidate answers. The neurosurgical knowledge
graph provides rich contextual information about medical entities
and their relationships (Zhang et al., 2019), while doctor features
help assess the expertise and reliability of different doctors in
addressing specific medical questions, thereby akin to clinician
perceptual reasoning (Shen et al., 2023).

Two, MT-KGAG adopts a multi-task learning (MTL)
framework, jointly training question-answer matching, answer
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generation, and doctor recommendation tasks. MTL is a machine
learning paradigm that enhances generalization and performance
by enabling models to share knowledge across related tasks, thereby
reducing overfitting and improving real-world effectiveness (Ide
and Kawahara, 2021; M. Yang Z. et al., 2021; Zhang and Yang,
2021). In recent years, MTL has been widely applied across fields
such as computer vision and natural language processing (Wang
et al., 2022; Xu et al., 2021), demonstrating particular potentials
in Q&A systems and generative tasks (Li Y. et al., 2021; Liu et al.,
2024; Zhao et al., 2023). Under this framework, MT-KGAG can
align machine outputs with clinician decision-making patterns, the
model ensures responses balance factual precision (retrieval) and
contextual adaptability (generation), while embedding safeguards
against hallucination or inappropriate emotional mimicry—critical
for maintaining ethical robustness in patient interactions.

The performance of MT-KGAG is evaluated through
comparative analysis and ablation studies. The comparative
analysis involves four baseline models: MKGA-DM-NN (Shen
et al., 2023), MedPIR (Zhao et al., 2022), AliMe Chat (Qiu et al.,
2017), and HybridNCM (Yang et al., 2019). The first model is a
retrieval-based Q&A model, the second is a generative model,
while the third and fourth are hybrid models. These baselines
provide a strong benchmark for assessing the MT-KGAG model’s
effectiveness. To further validate the contributions of different
components, three ablation versions are designed for comparison:
(i) removing multi-task learning, (ii) removing the medical
knowledge graph, and (iii) removing doctor-specific features. By
conducting these ablation studies, this chapter analyzes the impact
of each component on answer quality and further demonstrates
the model’s advantages across Q&A matching, answer generation,
and doctor recommendation tasks.

This research holds both theoretical and practical significance.
Theoretically, the proposed MT-KGAG model it advances medical
answer generation (MAG) systems beyond text generation to
simulate holistic perceptual workflows—interpreting patient
queries through neurosurgical knowledge graph, recalling
analogous clinical cases from doctor expertise profiles, and
recommending contextually relevant specialists, thereby mirroring
the cognitive synthesis inherent to expert decision-making.
Practically, the MT-KGAG model provides a more intelligent
and efficient automated medical Q&A system for neurosurgery.
By dynamically aligning user questions with domain-specific
knowledge graphs and clinician historical data, the system
improves precision in answer generation—enabling postoperative
patients to access tailored, evidence-based guidance with
minimal latency (Yan et al., 2024). Furthermore, its advanced
recommendation engine employs context-aware personalization,
analyzing individual patient histories and clinical nuances to
identify optimal physician matches, thereby fostering more
relevant and empathetic doctor-patient dialogues.

2 Methodology

2.1 Framework

To address the limitations mentioned in the introduction, this
section proposes the MT-KGAG model. The model consists of

three components: (i) candidate answer retrieval, (ii) encoding,
and (iii) multi-task training. The encoding and multi-task training
components of the model have two distinctive features.

The first feature of the MT-KGAG model is that it effectively
integrates medical knowledge graphs and doctor characteristics
into the model to enhance its medical understanding capabilities.
Specifically, in the first step, this model employs a BERT
encoder to encode the questions, candidate answers, and candidate
doctors, transforming textual representations into deep semantic
vectors, while using an improved Relational Graph Attention
Network (RGAT) encoder to encode the knowledge graph. In
the second step, after processing by the encoders, the model’s
attention mechanism combines self-attention and cross-attention
mechanisms to enable deep interaction between the questions,
candidate answers, and candidate doctors. This strengthens the
model’s understanding and utilization of medical knowledge and
doctor characteristics. Through these two designs, the model can
effectively extract key information from the knowledge graph
and interact with patient questions and doctor information,
enabling model-generated answers to better understand patients’
needs, simulate doctors’ perceptions, and improve patients’
perceived trust.

The second feature of the MT-KGAG model is its adoption
of a multi-task training strategy to emulate clinician decision-
making, jointly training the tasks of answer generation, candidate
answer ranking, and doctor recommendation. Specifically, A
GPT-based decoder with a dynamic gating mechanism balances
generative creativity and evidence-based retrieval, akin to doctors
weighing protocols against patient-specific factors. Concurrently,
fully connected layers compute relevance scores for answers and
doctors, simulating associative memory retrieval and expertise
prioritization. This triadic synergy—grounded in knowledge
graphs and physician credibility metrics—ensures outputs adhere
to neurosurgical best practices while mitigating hallucination
risks, embodying ethical perception through transparent, patient-
aligned interactions.

By combining these three major components, the MT-KGAG
model not only improves the overall performance in question-
answer matching and answer generation but also provides more
personalized services for OHP, particularly in complex medical
scenarios. It simultaneously addresses long-tail problems, doctor
recommendations, and accurate answer generation. A schematic
diagram of the MT-KGAG model is shown in Figure 1.

2.2 Retrieve candidate answer

The retrieval process consists of two sequential stages: disease
category classification followed by candidate answer retrieval. In
the first stage, both user questions and Q&A pairs from the
database are classified into specific disease categories through two
complementary methods:

Regular Expression-based Method: This approach employs
keyword pattern matching to identify correspondences between
question/answer content and named entities in the medical
knowledge graph. When matches are detected (e.g., “glioblastoma”
or “intracranial aneurysm” in neurosurgical contexts), the system
assigns the corresponding disease category. For example, a question
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FIGURE 1

Schematic diagram of MT-KGAG.

containing “persistent headache” would be associated with “brain
tumor” through the knowledge graph entity linking “headache”→
“brain tumor” in neurosurgical ontology.

Semantic Soft Matching Method: When exact pattern matching
fails, we implement semantic similarity computation. Taking a user
question q as an example, the following is the calculation procedure:

Use word2vec to vectorize the words wq
i in q and the

named entities vj in the knowledge graph, eq
i = Word2vec(wq

i ),
ev

j = Word2vec(vj);
Calculate the cosine similarity of eq

i and ev
j by Equation 1 to

measure how similar they are:

sim(eq
i , e

v
j ) =

eq
i · e

v
j∣∣eq

i
∣∣ · ∣∣∣ev

j

∣∣∣ (1)

Select the most matching disease categoryC: Among all the cosine
similarities of eq

i and ev
j , select the named entity with the highest

similarity, whose disease category is the disease category for
question q:

C = argmaxsim(eq
i , e

v
j ) (2)

Once q is classified into category C (as per Equation 2), the system
retrieves the top K most similar questions from the Q&A database
q1, q2, , qi, , qn, all of which belong to C. The corresponding

answers to these questions serve as candidate responses. The
retrieval process involves the following steps:

(1) Vectorized questions, the words of each question in the
Q&A database are vectorized by Word2vec, and the vectorized
representation of the whole question is obtained by taking the
average value. For each question qi, its vector representation is Eqi .

(2) Calculate the cosine similarity between user question q and
each question qi:

sim
(
Eq,Eqi

)
=

Eq · Eqi∣∣Eq
∣∣ · ∣∣Eqi

∣∣ (3)

(3) The above cosine similarities calculated by Equation 3 are
ranked and the answers to the K questions with the highest cosine
similarity are selected as candidate answers:

Topk = X1,X2, ...,Xk,≥ sim((Eq,Eq1) =

sim((Eq,Eq2) ≥ ... ≥ sim((Eq,Eqk) (4)

2.3 Encoder

In the initial encoding phase, the model encodes the question,
candidate answers, doctor text, and knowledge graph. Candidate
answers and doctors are obtained from Equation 4. For question,
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candidate responses and doctor text, the BERT encoder is utilized to
encode question, candidate responses and doctor text. Specifically,
for question q, its embedding is Hq = {h

q
t

Tq
}t = 1 = Bert(Xq),

where Xq represents the word sequence of question q, Tq denotes
the sequence length, and hq

t corresponds to the encoded vector of
the t -th word in q. Similarly, each candidate answer Xk(1S k = K)

is encoded as {hk
t

Tk
}t = 1 = Bert(Xk), with Tk being the length

of Xk and hk
t representing the encoded vector of the t -th word

in candidate answer Xk. For doctor text associated with each
candidate answer, the encoding is derived from the top 100
high-frequency words in the doctor’s historical answers, yielding

{hdk
t

Tdk
}t = 1 = Bert(Xdk), where Tdk indicates the length of Xdk

and hdk
t stands for the encoded vector of the t -th word in doctor

dk. This comprehensive encoding scheme establishes a robust
foundation for subsequent processing.

The encoding of the knowledge graph is divided into two stages.
In the first stage, medical knowledge subgraph was extracted for
each dialogue history Gq

m = {V
q
m, Eq

m} ∈ Gm. The CMeKG tool
is used to extract medical entities from CMeKG, a knowledge
graph. It takes every question as an input, and then extracts an
approximate match in the set of strings from CmeKG, and finally
returns the nodes, which are presented in the medical knowledge
graph. Then, these nodes are used as central nodes and the parts
with a one-hop relationship are selected to form the subgraph Gq

m.
In the second stage, an improved RGAT was used to encode GC

m.
It can aggregate neighbor node information based on relation-types
and highlight key neighbor node information through an improved
attention mechanism to fully grasp the internal relationships
between nodes. This stage is divided into three steps. In the first
step, the input to the encoder is the initial node embedding (VC

m)0,
and the embedding method is Bert. The second step calculates
the attention weight of each node. The number of RGAT layers
is denoted as L. Let the input vector of layer l be (VC

m)l−1, then
the computation of attention weights in traditional graph attention
networks is based only the features of the nodes in Equation 5:

βr
ij = LeakyRelu(aT(Wk(vc

mi)
l−1
||Wk(vc

mj)
l−1) (5)

where, βr
ijis the attention score, vc

mi and vc
mj denotes the center and

neighbor nodes, respectively, ||denotes the connectivity operation,
a is trainable attention weight vector, Wk is weight matrices that
are shared linear transformations of the features of each node, and
LeakyRelu(ea is the activation function.

However, this method is unable to take into account
the different importance of nodes due to different types of
edges between nodes in the attention mechanism, therefore, an
improvement is made to the calculation of the attention weights
with the following Equations 6, 7:

βij = LeakyRelu(aT(Wk(vc
mi)||Wk(vc

mj)||Wrer
ij) (6)

αij = softmaxj(βij) =
exp(βij)∑

j′∈N (i) exp(βij′)
(7)

where, eris the edge embedding, the embedding method is Bert.
Wris the trainable matrix. αr

ijis the attention weight, by normalizing
β r

ij.

In the third step, the node embedding (vc
mi)

l
∈ (VC

m)l is
updated. The formula as follows in Equation 8:

(vc
mi)

l
= σ

( ∑
j∈N (i)

αij((vc
mj)

l−1
+Wrer

ij)
)

(8)

where σ is the activation function, Wris the trainable matrix. The
edge embedding er

ij is set as the initial embedding by Bert of the
edge between node i and j. The node embedding (vc

mi)
l is first

calculated by the weighted sum of αij and the node embedding
(vc

mj)
l−1 and er

ij, and then throughout σ. The final knowledge
subgraph is encoded as a concatenation of all node encodings, i.e.,
HGq

m
= concat(Vq

m).

2.4 Attention mechanism layer

Inspired by Shen et al. (2023), the attention layer is divided into
two components: a self-attention mechanism and an interaction-
attention mechanism. The self-attention mechanism enables the
model to determine the importance of each word within the
question, candidate answers, and doctor text. Meanwhile, the
interaction-attention mechanism captures the mutual importance
among these three elements.

2.4.1 Self-attention mechanism
Specifically, in the self-attention mechanism, a knowledge

association matrix M is introduced into the standard self-attention
computation to mine medical relationships in sentences. It is
constructed to mine the medical relationships embedded in each
sentence. The rows and columns of the matrix are the words in
each sentence while the elements represent the medical relationship
between the words. The approach is to first match the words
with the nodes in the knowledge graph and then determine if
there are edges between the nodes. If so, this means there exists a
medical relationship between the words. Taking q as an example,
the expression of the matrix is as follows in Equation 9:

mq
ij =

{
eri,j , if i	 j
0, if i� j

(9)

where, i	 j denotes i, j are the nodes that can be retrieved in
the knowledge graph and there is an edge between the two. i� j
denotes that i, j are not the nodes that can be retrieved in the
knowledge graph or that there is no edge between the two. The self-
attention score for question q is calculated as follows in Equations
10–14:

Qq
self = HqW

q
q (10)

Kq
self = HqW

q
k (11)

Vq
self = HqW

q
v (12)

α
qij
self = softmax(tanh(qq

self i
||kq

self j
||Wr

qmq
ij)) (13)

hq
self ∈ Hq

self =
∑
j=1

α
qij
self vq

self j
(14)
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where, Wq
q,Wk

q,Wv
q are trainable matrices, with qq

self i
∈ Qq

self and

kq
self j
∈ Kq

self . α
qij
self represents the self-attention weight score for

question q, indicating the importance of other words to word i
within q. mq

ij is an element of the knowledge association matrix
Mq for question q. The elements of Mq reflect the strength and
nature of medical relationships between word pairs, rather than
syntactic relationships. This matrix is tailored specifically for the
medical domain. Hq

self is the question encoding obtained through
the self-attention mechanism.

Similarly, the self-attention scores for candidate answer Xk and
its associated doctor information dk can be expressed as α

kij
self and

α
dkij
self , with their respective encodings represented as Hak

self and Hdk
self .

2.4.2 Interaction-attention mechanism
First, for question q, considering that each candidate answer

may contribute differently to the question and that each word
within an answer may have varying relevance to the question, we
employ a two-layer attention mechanism: global interaction and
word-level interaction. Global interaction computes the overall
relevance between each candidate answer and the question. Word-
level interaction captures the association between individual words
within an answer and the question.

The formula for global interaction is as follows in Equations
15–17:

Qq
global = Hq

globalW
q
qglobal (15)

Kak global = Hak
globalW

ak
k global (16)

α
qak
global = softmax(

Qq
globalKak global
√

d
) (17)

where, Wq
qglobal,W

ak
k global are trainable matrices, while

Hq
global,H

ak
global represent the averaged word encodings of question

q and candidate answer Xk, respectively, obtained through the
encoder. α

qak
global denotes the global cross-attention score for

candidate answer Xk.
For word-level interaction, the knowledge association matrix

Mqak is incorporated to account for medical relationships when
computing attention weights. In this context: The rows of Mqak

correspond to words in question q. The columns represent words
in candidate answer Xk. Each element indicates the medical
relationship between word pairs. The formula is as follows in
Equations 18–22:

Qq
inter = HqW

q
qinter (18)

Kak
inter = HakW

ak
k inter (19)

Vak
inter = HakW

ak
v inter (20)

α
qakij
inter = softmax(tanh(qq

inter i||k
ak
inter j||W

r
qak

mqak
ij )) (21)

hq
inter

k
∈ Hq

inter
k
=

∑
j=1

α
qakij
intervak

inter j (22)

where, Wq
qinter,W

ak
k inter are trainable matrices, α

qakij
inter denotes

the word-level cross-attention score for candidate answer Xk.
Hq

inter
k represents the encoded question features after word-level

cross-attention processing. By combining with the global cross-
attention mechanism, the final encoded representation of question
q through the cross-attention mechanism can be expressed as:
hq

inter ∈ Hq
inter =

∑
k = 1 α

qak
globalh

q
inter

k. Figure 2 illustrates the
schematic diagram of the interaction-attention mechanism for the
question.

Second, for candidate answer Xk, two types of interactions
are considered. One type is Answer-Question Interaction. It
captures the relevance between the answer and the original
question. The other type is Answer-Doctor Interaction. It
incorporates the influence of the doctor’s expertise into the
answer representation.

Taking the Answer-Question Interaction as an example, the
interaction attention is calculated as follows in Equations 23–26:

Qak
inter = HakW

ak
q inter (23)

Kq
inter = HqW

q
kinter (24)

Vq
inter = HqW

q
vinter (25)

αakqij inter = softmax(tanh(qak
interi
||kq

inter j||W
r
akqmakq

ij )) (26)

where, makq
ij denotes elements of the knowledge relevance matrix

between candidate answer Xk and question q.
Similarly, the interaction attention for Answer-Doctor

Interaction is denoted as α
akdkij
inter . The final encoded

representation of candidate answer Xk after cross-attention is:

hak
inter ∈ Hak

inter = Linear
(
[
∑

j = 1 α
akqij
intervq

inter;
∑

j = 1 α
akdkij
inter vdk

inter j]
)
.

This operation concatenates the outputs of both attention
mechanisms and reduces dimensionality via a linear layer to
produce a unified fused representation.

Third, for doctor dk, each doctor has their own specialization,
and doctors tend to answer questions within their expertise. Thus,
the interaction attention mechanism must account for the role of
the question in the doctor’s encoding. The interaction attention is
calculated by Equations 28–30:

Qdk
inter = HdkW

dk
q inter (27)

Kq
inter = HqW

q
kinter (28)

Vq
inter = HqW

q
vinter (29)

α
dkqij
inter = softmax(tanh(qdk

i ||k
q
j ||W

r
dkqmdkq

ij )) (30)

where, mdkq
ij represents elements of the knowledge association

matrix between candidate doctor dk and question q. The encoded
representation of candidate doctor dk after cross-attention is:
hdk

inter ∈ Hdk
inter =

∑
j = 1 α

dkqij
intervq

j .
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FIGURE 2

Schematic diagram of the interaction-attention mechanism of the question.

2.4.3 Fusion of self-attention and
interaction-attention mechanisms

The encodings obtained from the self-attention mechanism and
interaction-attention mechanism are fused to produce a combined
representation. Taking question q as an example, the fusion is
calculated by Equation 31:

Hq
fusion = g �Hq

self + (1− g)�Hq
inter (31)

where, gating coefficient gis learned through a gating network,
g controls the weight of the self-attention encoding, while 1
– gcontrols the weight of the cross-attention encoding. The
coefficient g is calculated using a two-layer MLP by Equations 32,
33:

z = [Hq
self ;H

q
inter] (32)

g = σ(W2ReLU(W1z + b1)+ b2) (33)

where, z ∈ R2d represents the concatenated vector of self-
attention and cross-attention encodings, with d being the encoding
dimension. The parameters W1 and b1 correspond to the
first layer’s weight matrix and bias, while W2 and b2 belong

to the second layer. The ReLU activation function introduces
nonlinearity, and the sigmoid function σ scales the output to the
range [0, 1] to produce the gating coefficient g. Similarly, the fused
encodings for candidate answer Xk and doctor dk are denoted as
Hak

fusion and Hdk
fusion, respectively.

2.5 Output layer

In the design of the output layer, the main objective is to
combine the ability of the model to generate answers with the
mechanism of candidate answer selection, so as to optimize
the answer generation process and the results of the doctor’s
recommendation. Therefore, the output layer has a total of three
parts. The first part is the decoding layer, the second part is the
candidate answer sorting output layer, and the third part is the
doctor selection output layer. Detailed descriptions and formulas
for each part are given below.

The first part is the decoding layer, which employs GPT as
the decoder and incorporates a dynamic balancing mechanism
to flexibly choose between generating new words and retrieving
words from the candidate answer. The process involves two
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operational modes and a gating mechanism to dynamically
harmonize generation and retrieval. The first mode is the
generation mode. In this mode, the decoder generates words
autonomously based on the encoded question semantics and
knowledge graph context. The decoder generates each word
yt , with the vocabulary generation distribution defined as
pgen(yt) = softmax(GPT(st−1,H

q
fusion, v

q
mt

Tmq

t = 1)). The second
mode is copy mode, which involves copying words from
the candidate answer, where the probability of generating a
word ww is given by pcopy(w) = softmax(st

THakmax
fusion). Here,

softmax(st
THak

fusion) measures the similarity between the decoder’s

hidden state and the candidate answer Xk. The indicator function
∃(w ∈ Xakmax ) determines whether the word w exists in the
candidate answer Xk. A trainable gate dynamically determines the
trade-off between generation and copying. The specific formula is
as follows in Equations 34, 35:

ggen = σ(Wgate[H
q
fusion;H

akmax
fusion] (34)

pfinal(yt) = ggen × pgen(yt)+ (1− ggen) × pcopy(yt) (35)

where, Wgate and b are trainable parameters. Hakmax
fusion is the encoding

of the best answer computed by the candidate answer ranking layer.
The second part is the Candidate Answer Ranking Layer, which

computes a ranking score for each candidate answer based on
its relationship with the input question. The question q and each
candidate answer Xk are fed into a fully connected layer to obtain
their combined representation, from which the ranking score is
derived. The formula is as follows in Equation 36:

fak =Wak
rank •

[
Hq

fusion;H
ak
fusion

]
+ bak

rank (36)

where,
[
Hq

fusion;H
ak
fusion

]
denotes the concatenation of the

question and candidate answer encodings, and Wrank represents
trainable parameters.

The ranking probability for each candidate answer is calculated
by Equation 37:

prank(ak) =
exp(fak)∑K

k=1 exp(fak)
(37)

where, prank(ak) indicates the probability that the candidate answer
kk is ranked as the best answer.

The third component is the Physician Selection Layer, which
integrates the question q, candidate answer Xk, and doctor dk

through a fully connected layer to generate their combined
representation. This representation is then used to compute the
ranking score for physician selection. The formula is defined as
follows in Equation 38:

fdk =Wdk
rank •

[
Hq

fusion;H
ak
fusion;H

dk
fusion

]
+ bdk

rank (38)

where,
[
Hq

fusion;H
ak
fusion;H

dk
fusion

]
denotes the concatenation of the

question, candidate answer, and corresponding doctor encodings,
while Wdk

rank represents trainable parameters.
The selection probability for each physician is calculated by

Equation 39:

prank
(
dk
)
=

exp(fdk)∑K
k=1 exp(fdk)

(39)

where, prank(ak) indicates the probability that doctor dk is selected
as the recommended doctor.

2.6 Loss function

In the MT-KGAG model, since it involves three tasks (answer
generation, candidate answer ranking, and doctor selection), it is
necessary to define an independent loss function for each task and
combine these loss functions with weighted summation to form the
final total loss for joint training. This multi-task learning approach
enables the simultaneous optimization of the objectives of all three
tasks. The loss function for the answer generation task typically
employs cross-entropy loss to measure the discrepancy between the
model-generated answers and the ground truth answers. The loss
function for the answer generation task can be defined by Equation
40:

Lgen = −
1
N

N∑
n=1

logpfinal(yt) (40)

where, N is the sample size of the training dataset, and Lgen
represents the cross-entropy between the predicted answer tokens
and the gold answer tokens. Similarly, the loss function for the
candidate answer ranking task is defined by Equation 41:

Lrank = −
1
N

N∑
n=1

logprank (ak) (41)

The loss function for the doctor selection tash is defined by
Equation 42:

Ldoc = −
1
N

N∑
n=1

logprank(dk) (42)

Finally, the total loss of the MT-KGAG model is a weighted
combination of Lgen, Lrank, and Ldoc, defined as follows in
Equation 43:

L =
1

2α2 Lgen +
1

2β2 Lrank +
1

2γ2 Ldoc (43)

where, α, β, γ are trainable parameters, which can be automatically
adjusted during training using the method proposed by Liebel and
Körner (2019).

3 Experiment

3.1 Datasets and knowledge graph

The study employed the dataset from Shen et al. (2023). This
dataset was derived from the “Questions and Answers” section of
an online health platform.1 This platform encompasses a total of
13 primary departments and 46 secondary departments, having
accumulated approximately 1.16 million Q&A data. Each response
offers insight into the physician’s expertise. By clicking on the
doctor’s avatar, users can access the doctor’s homepage and view
the doctor’s detailed information, including 100 pairs of recently

1 http://www.xywy.com/
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answered Q&As. The comprehensive collection of Q&A records
on the platform, including those specific to neurosurgery, is
of paramount importance. This comprehensive data collection
process establishes the foundation for the existing Q&A repository.
A total of 26,625 Q&A records were collected, involving 3,840
unique user questions. For model development, 60% of the data
was used for training, 20% for validation, and the remaining 20%
for testing. Based on parameter settings, the number of retrieved
candidate answers was set to K = 4, meaning each user question
is associated with 4 candidate answers and 4 candidate doctors.
Table 1 shows the statistical description of the dataset.

The knowledge graph selected is the neurosurgery component
of CMeKG. The CMeKG framework facilitates the identification
of medical relationships between words and statements within
the historical context of medical discourse. This enables the
construction of a knowledge association matrix and a knowledge
subgraph of the conversation history. Figure 3 offers a partial
illustration of the KG. Each node in the graph represents a named
entity, with edges denoting the relationships between these entities.
The relationships can be broadly classified into nine categories,
including UMLS, ICD-10, clinical symptoms and features, site of
onset, examination, English name, department, cause of disease,
and treatment options.

3.2 Baselines

In order to systematically evaluate the proposed model,
several representative models from existing studies were selected
as baselines. The first model is MKGA-DM-NN (Shen et al.,
2023), which can be regarded as the current state-of-the-art
Q&A matching model. For the purposes of this study, the model
framework was adopted, with modifications to the Q&A matching
task, which was altered into an answer ranking task. The model’s
first-ranked answer was utilized as the generated response for the
metrics calculation. The second model is MedPIR (Zhao et al.,
2022), which can represent the current state-of-the-art answer
generation model. For this model no calculations are made for
candidate answers and doctor choices. The third model is AliMe
Chat (Qiu et al., 2017), an open-domain chatbot engine that
integrates the joint results of Information Retrieval (IR) and
Sequence-to-Sequence (Seq2Seq) based generative models. AliMe
Chat employs a Seq2Seq-based fine-grained reordering model
to optimize the joint results. The fourth model is HybridNCM
(Yang et al., 2019). This model is a hybrid neural dialogue model
with response retrieval and generation capabilities. It uses a
remote supervision approach to automatically infer the labels of
retrieved/generated candidate responses. A rigorous comparison
of these four models with the MT-KGAG model can provide a
nuanced understanding of their relative strengths and weaknesses.

3.3 Evaluation dimension and metrics

In order to assess the performance of each method, the
evaluation metrics selected in this chapter focus on eight
key dimensions. The first four of these dimensions, accuracy,
diversity, knowledge utilization, and fluency, were assessed from
a language perspective. Two of the dimensions-patient safety

and health outcomes-are evaluated from a healthcare perspective.
The last two dimensions-Candidate Answer Ranking Ability and
Physician Selection Ability-were assessed from two ancillary task
perspectives. The first three dimensions use the embedding mean,
DISTINCT, and healthcare named entity density, respectively,
which are metrics typically applied to generative models. Fluency,
patient safety, and health outcomes are closely related to
user experience and cannot be accurately measured by fixed
computational metrics, and are therefore evaluated by manual
assessment. Candidate answer ranking capability and doctor
selection capability are measured utilizing MRR.

Specifically, Embedding Average measures the cosine similarity
between the text vectors of the answer generation and the text
vectors of the real answers, and DISTINCT quantifies the number
of unique n-grams in the answer generation. Medical Named Entity
Density calculates the ratio of the number of medical named entities
to the total number of words. Fluency evaluates the smoothness
of answer generation. Patient safety (Denecke and Warren, 2020)
examines whether the answer generation causes any harm or risk
to the patient. Health outcomes focus on the appropriateness and
validity of the answers for the patient. Evaluation of these metrics
was independently scored on a scale from 1 (poor) to 5 (excellent)
by five evaluators with graduate medical degrees and experience in
text mining annotation tasks. The final score was averaged across
them. MRR is concerned with where the first relevant element
appears in the sorted result. If the first relevant element appears in a
higher position, the value will be larger. This is calculated by taking
the smallest value of the relevant element in the inverse position in
the sorted list, and then averaging these values.

3.4 Implementation details

In the Retrieve Candidate Answers step, K=4, i.e., selecting 4
candidate answers for each question. It can preserve the model
performance while keeping the model complexity within acceptable
limits. All experiments are implemented by Pytorch. For the
knowledge subgraph encoder, the node embedding size and speaker
embedding size are both 768, and the graph is encoded using 2-layer
KRGAT. The learning rate is initialized to 10−5. Adam optimizer
is used and the learning rate is warmed up in the first 3,000
steps and the learning rate decays linearly. The model generates
the response through a beam sampling algorithm where the beam
size and top-k are set to 5 and 64, respectively. Other generation
hyperparameters are kept at default settings. NVIDIA A100 is used
as the computational infrastructure in this chapter. In the future,
when our GPUs are equipped with greater memory capacities,
such as 50GB, it will become feasible to conduct large-scale model
experiments with more than 14B parameters.

4 Results and discussion

4.1 Comparative analyses

From Table 2, it can be observed that the proposed MT-
KGAG model outperforms other baseline models across multiple
evaluation metrics. From a linguistic perspective, it achieves the
highest scores in accuracy, diversity, and knowledge utilization.
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TABLE 1 The statistic of datasets.

Datasets \ Attribute Number of user
questions

Number of
candidate answers

Average length of
questions

Average length of
answers

Training dataset 2,304 4 32 66

Development dataset 768 4 38 68

Test dataset 768 4 44 69

Total 3,840 15,360 36 68

FIGURE 3

Illustration of the knowledge graph.

This indicates that: First, in terms of answer correctness or
relevance, MT-KGAG generates more reliable results by effectively
integrating knowledge learned from both retrieval and generative
models. Second, MT-KGAG better avoids repetitive or formulaic
expressions and leverages candidate answers to provide richer and
more flexible phrasing. Third, it successfully incorporates external
medical knowledge into the answer generation process, thereby
enhancing the professionalism and specificity of responses, which
significantly improves knowledge utilization. In terms of fluency,
MT-KGAG ranks second, trailing only slightly behind MKGA-DM-
NN. This suggests that the model not only ensures the correctness
of answers but also produces syntactically coherent and natural
language expressions.

In comparison, MKGA-DM-NN, while achieving relatively
high accuracy, exhibits lower diversity, indicating that its responses
are constrained by the answer repository, limiting richness and

flexibility. MeREAN performs well in diversity but suffers from
lower accuracy, reflecting shortcomings in generation quality.
HybridNCM approaches MT-KGAG in accuracy but falls short
in diversity and knowledge utilization, suggesting its inability
to leverage knowledge graphs to enhance the professionalism of
generated answers.

From a healthcare perspective, MT-KGAG demonstrates the
best performance in patient safety and health outcomes. This
confirms its ability to provide more authoritative and rigorous
responses to medical queries, delivering accurate and useful
health advice or information. This ethical perceptual rigor stems
from its physician feature integration, which filters answers
based on specialist credibility, akin to clinicians vetting peer
recommendations. MKGA-DM-NN performs poorly in patient
safety and health outcomes, indicating that relying solely on
candidate answer ranking is insufficient for offering precise medical
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TABLE 2 Performance for all the models.

Model \
Evaluation

Linguistic perspective Healthcare perspective Auxiliary task perspective

Accuracy
(embedding

average)

Diversity
(distinct)

Knowledge
utilization
(medical

entity
density)

Fluency Patient
safety

Health
outcome

Candidate
answer

MRR

Docter
selection

MRR

MKGA-DM-
NN

0.8204 0.0957 0.2158 4.56 3.28 3.56 0.5441 −

MeREAN 0.7825 0.2245 0.2069 3.86 3.72 3.63 − −

AliMe Chat 0.8070 0.1783 0.1772 3.95 3.81 3.72 0.4834 0.4512

HybridNCM 0.8351 0.1457 0.1864 2.79 3.05 2.66 0.5017 0.5074

MT-KGAG 0.9439 0.2861 0.2471 4.05 4.02 3.89 0.6155 0.6169

Bold values indicate the best performance for each metric (column-wise comparison).

recommendations and may produce seemingly professional but
clinically irrelevant answers. HybridNCM scores significantly lower
in healthcare-related metrics, likely due to inadequate coverage of
specialized knowledge in its hybrid retrieval-generation approach.

From an auxiliary task perspective, MT-KGAG far surpasses
baseline models in both candidate answer MRR and doctor
selection MRR, demonstrating that its multi-task design effectively
improves the ranking quality of candidate answers and doctor
recommendations. AliMe Chat shows moderate performance in
these auxiliary tasks but remains limited in professional domains
due to its generative nature. HybridNCM performs moderately in
auxiliary tasks but still lags behind MT-KGAG overall.

In summary, MKGA-DM-NN is primarily a QA matching-
based ranking model that directly outputs the top-ranked answer,
relying heavily on similarity modeling while neglecting diversity
and flexible knowledge application. MeREAN represents a more
advanced generative dialogue model but struggles with fluency
and accuracy. AliMe Chat and HybridNCM combine retrieval
and generation capabilities but still face limitations in medical
knowledge utilization and diversity modeling. In contrast, MT-
KGAG, through more effective knowledge graph integration and
multi-task collaboration, ensures high answer accuracy and health
outcomes while also improving diversity, fluency, and adaptability
to medical scenarios. Additionally, it provides a basis for doctor
recommendations, making it suitable for future expansion into
medical Q&A and recommendation systems.

In conclusion, by embedding perceptual intelligence into
every layer—from knowledge fusion to multi-task optimization—
MT-KGAG sets a new standard for medical AI, where technical
excellence aligns with clinician-like reasoning and ethical
accountability. Its performance validates a paradigm shift: systems
that “think” like physicians, not just “answer” like databases, are
pivotal to scaling trustworthy neurosurgical care globally.

4.2 Ablation studies

To evaluate the relative contributions of each component in
MT-KGAG to task performance, we conducted an ablation study
using the dataset. Specifically, we independently removed multi-
task learning, the medical knowledge graph, and doctor features,

then compared the performance of each modified model with that
of the complete MT-KGAG model. Table 3 presents the results of
the ablation study.

Removing multi-task learning led to declines in accuracy,
knowledge utilization, fluency, patient safety, and health
outcomes for the generation task. This indicates that multi-
task learning plays a crucial role in enhancing the model’s overall
performance. Specifically, the candidate answer ranking task
directly improves the accuracy and practicality of generated
responses by optimizing the relevance and quality of candidate
answers. The candidate doctor ranking task enhances the model’s
adaptability to personalized medical scenarios by incorporating
doctor features.

Multi-task learning strengthens the model’s ability to handle
complex medical scenarios by simultaneously optimizing both
candidate doctor ranking and candidate answer ranking tasks.
Without multi-task learning, the model loses its joint optimization
capability for these tasks, resulting in an inability to fully
leverage doctor features and candidate answer relevance during
response generation. This ultimately reduces the accuracy and
professionalism of the responses. Additionally, multi-task learning
improves the model’s ability to integrate medical knowledge
through shared representations and parameter optimization.
Its removal leads to decreased knowledge utilization, further
degrading response quality.

Removing the medical knowledge graph caused significant
declines in the generation task’s accuracy, diversity, knowledge
utilization, fluency, patient safety, and health outcomes. This
demonstrates the critical importance of the medical knowledge
graph. Without it, the model fails to effectively recognize
and represent medical named entities and their relationships,
impairing its ability to generate professional medical knowledge.
Furthermore, performance on both candidate answer ranking and
doctor selection tasks also deteriorates.

The medical knowledge graph provides rich medical
background knowledge for candidate answer ranking, enabling the
model to more accurately assess answer relevance and quality. Its
removal deprives the model of medical knowledge dependencies,
reducing ranking accuracy. Similarly, the knowledge graph supplies
relationship information between doctors and medical entities for
doctor ranking, allowing better incorporation of doctor features.
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TABLE 3 Performance of ablation study.

Model \
Evaluation

Linguistic perspective Healthcare perspective Auxiliary task perspective

Accuracy
(embedding

average)

Diversity
(Distinct)

Knowledge
utilization
(medical

entity
density)

Fluency Patient
safety

Health
outcome

Candidate
answer

MRR

Docter
selection

MRR

MT-KGAG 0.9439 0.2861 0.2471 4.05 4.02 3.89 0.6155 0.6169

w/o multi task
learning

0.9300 0.3201 0.1929 4.00 3.52 3.46 − −

w/o medical
knowledge
graph

0.6354 0.1083 0.1047 3.26 3.01 3.13 0.6120 0.6098

Bold values indicate the best performance for each metric (column-wise comparison).

This confirms that the medical knowledge graph not only enhances
response quality but also plays a vital supporting role in candidate
answer and doctor ranking tasks.

Removing doctor features impaired the generation task’s
accuracy, diversity, knowledge utilization, fluency, patient safety,
and health outcomes. Doctor features encompass not only
professional background information but also capture interaction
patterns between doctors and patients as well as individual
treatment preferences. These elements are essential for accurately
representing candidate answers.

Moreover, removing doctor features further diminishes the
generation task’s ability to utilize candidate answers. In the
complete model, doctor features help filter candidate answers that
align with physician preferences, yielding responses better suited
to clinical needs. Without this capability, the model generates less
professional, personalized, and practical responses. For instance, it
may fail to recognize a doctor’s preference for specific treatment
plans, producing clinically inappropriate answers. This deficiency
reduces response accuracy and knowledge utilization while limiting
diversity, as the model defaults to generating more generic and
conservative replies.

The ablation study conclusively demonstrates that MT-KGAG’s
performance hinges on its biomimetic design—each component
replicating a facet of clinician cognition. Just as neurosurgical
expertise requires years of integrated knowledge, mentorship,
and case exposure, the model’s multi-task, knowledge-aware
architecture enables it to “learn” clinical perception systematically,
offering a scalable template for human-aligned medical AI.

4.3 Case study

To intuitively demonstrate how MT-KGAG works, this chapter
presents a case study. A sample was randomly selected from the
test dataset, where MT-KGAG was used to generate an answer,
select the most appropriate candidate answer, and recommend
a suitable doctor. The candidate answers and candidate doctors
were retrieved using the model’s retrieve candidate answer
component, as introduced in Section 2.2. The sample includes the
patient’s question, four candidate answers, four candidate doctors’
descriptions, and the ground truth answer. Table 4 presents the
full sample details and the responses generated by various models.

Words copied from the candidate answers are highlighted in blue,
while the true labels (i.e., Candidate Answer 1 and Candidate
Doctor 1) are highlighted in yellow, indicating the highest-ranked
answer and doctor.

MT-KGAG leverages a multi-task learning framework to
collaboratively perform medical Q&A through three core modules.
First, multi-task learning includes ranking candidate answers
and doctors, enabling the model to match questions with the
most appropriate doctors and their expert responses. Second, the
model incorporates external medical knowledge via a neurosurgical
knowledge graph, enhancing its reasoning capabilities and medical
specificity. Finally, by introducing doctor features, the model
strengthens the representation of both the question and the
candidate answers. In this case, MT-KGAG successfully identified
Candidate Doctor 1 as the most suitable responder and ranked
Candidate Answer 1 as the best answer, supported by joint training.
During answer generation, the model utilized the knowledge graph
for medical reasoning and accurately copied domain-specific terms
from the candidate answers, resulting in high-quality medical
advice. The joint training of sub-tasks improved each component’s
performance, producing responses that are both professional and
highly targeted.

When multi-task learning was removed, the model could
no longer optimize candidate doctor and answer ranking
simultaneously, leading to overall performance degradation.
Specifically, without shared representations and joint optimization,
the model failed to effectively link doctor features with answer
relevance. As a result, the generated answers became more generic
and less actionable. For instance, in a cerebral hemorrhage case,
the model without multi-task learning might generate vague
suggestions like “seek medical attention promptly” instead of
providing concrete treatment or rehabilitation guidance, reducing
its ability to handle complex medical scenarios.

Removing the medical knowledge graph had little impact
on ranking performance, as the model could still correctly rank
Candidate Answer 1 and Candidate Doctor 1, suggesting that
the ranking tasks rely primarily on semantic matching between
the question and candidate texts. However, answer generation
quality dropped significantly. Without the knowledge graph, the
model lacked the ability to perform informed reasoning and could
only copy words from the candidate answers mechanically. The
knowledge graph offers rich background knowledge that supports
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TABLE 4 Each model’s response to patient questions.

Item Content

Question My mother has suffered a cerebral hemorrhage. The right side of her body is paralyzed, and her speech is unclear. She has been hospitalized for 3 days with
little improvement. What should I do? On October 26, 2011, she became immobile, began foaming at the mouth, and lost the ability to speak.
Approximately 20 ml of blood was discharged. She is currently being treated at Chaoyang Hospital in Liaoning Province.

Candidate
answer 1

Case Analysis: Hello, based on your description, a cerebral hemorrhage requires prompt and effective treatment. Delays in hospital intervention may lead
to long-term complications. Recommendation: It is strongly recommended that the patient seek care at a certified secondary or tertiary hospital for proper
treatment. The priority should be to stop the bleeding promptly. If bleeding occurs, medications that promote blood circulation and help absorb the
hematoma may be considered. However, it is best to consult with the attending physicians at the hospital where the patient is receiving treatment. Please
note that this is an online consultation platform—professional advice from the treating hospital is essential.

Candidate
answer 2

Case Analysis: Hello, this condition carries a high risk of long-term complications, such as hemiplegia (paralysis on one side of the body) and speech
difficulties. Recommendation: If feasible, consider seeking treatment in a top-tier hospital located in major cities such as Beijing or Shanghai. Notable
institutions include Beijing Tiantan Hospital and Huashan Hospital in Shanghai, both of which are among the leading neurology centers in China.

Candidate
answer 3

Case Analysis: Hello, this may be a sequela of cerebral hemorrhage. Unfortunately, full recovery is often difficult. A follow-up cranial CT scan is
recommended to assess the current condition. Recommendation: If the scan shows no major issues, consider initiating long-term rehabilitation exercises.
In addition, medications that promote blood circulation and reduce blood stasis may be beneficial. It is also important to actively manage blood pressure
and blood sugar levels, and to avoid greasy or high-fat foods. Visiting the rehabilitation department of a reputable local public hospital is advised to develop
a personalized recovery plan. In most cases, noticeable improvement may take 6 months to a year, though full recovery is rarely achieved.

Candidate
answer 4

Case Analysis: Hello, based on the information you’ve provided, it is strongly recommended that the patient be admitted to the neurology department of a
hospital for inpatient treatment. Recommendation: After the symptoms of cerebral hemorrhage are brought under control, the patient should begin
rehabilitation therapy under the guidance of a hospital’s rehabilitation department. With consistent and structured treatment, recovery is possible. In daily
life, it is important to maintain a balanced diet, avoid overly salty foods, engage in appropriate physical activity, and closely manage both body weight and
blood pressure.

Candidate
doctor 1

attention treatment cooperate rest surgery eat food recheck fatigue take infection medicine appropriate timely examination conservative sequela cerebral
hemorrhage exercise physical therapy acupuncture spicy irritating rehabilitation observation control avoid absorb have a check prevention disinfection
greasy relatively severe recuperation drug treatment normal nerve wound mood bleeding massage relieve catch cold blood pressure activity bend over
compression drink more water persist diet formal lumbar spondylosis maintain not good hygiene promote blood circulation and remove stasis vegetables
serious hot compress hospitalization improvement eat some confirm nutrition injury keep warm exclude attending doctor

Candidate
doctor 2

oral administration treatment relieve surgery capsule external use eat injury every day 1 month normal handle apply irritation warm water related this is
food fatigue try to rest pain cephalosporin fusidic acid ointment obvious no need two examination not severe convenient MRI exercise prolonged sitting
disinfection monthly change especially fixation 1 week rotator cuff 2 weeks jumping lumbar disc bending local bed rest defecation living habits squat 2 min
habit prevention constipation chili alcohol soak spicy worried infection buy running six times five compression long-term activity hit stay up late foreskin
self-healing get up early squat toilet regularly develop vegetables fruits banana

Candidate
doctor 3

medication treatment examination eat cooperate avoid regular but prostatitis abnormal regulate sex hormone secretion surgery food femoral head necrosis
is because and so on factors exist attention local public hospital improve kidney qi deficiency difference breast enhancement stimulation testicles
chromosomes related considered this way diet difficulty defecating complete recovery reexamination long-term rehabilitation exercise promote blood
circulation and remove blood stasis greasy half a year joint cavity help completely only method blood supply erection check out jin’gui’shen’qi’wan
medication breast size menstrual cycle theory kidney yang deficiency six items urology hormone normal endometrial

Candidate
Doctor 4

helpful analysis treatment hot water drink quit drinking quit smoking avoid eating cold spicy medication eat some regular necessary diet cold exercise eat
attention symptomatic treatment like prevention appropriate time to clarify diagnosis gastritis reasonable rest less personal hygiene local don’t eat more
control topical provide weight blood pressure too full sweet gastroenterology combine anti-inflammatory drugs hospitalization enhance physique regulate
physical condition blood lipids blood sugar omeprazole vegetables fruits increase nutrition drink some vitamin B traditional Chinese medicine TCM
Chinese herbal medicine effective rule out domperidone surgery hygiene food epilepsy child timely add clothing

Ground
truth

Hello, based on what you described, cerebral hemorrhage is confirmed. Generally, the peak period of cerebral edema occurs 3–5 days after the hemorrhage,
which is relatively dangerous, and the condition may fluctuate within 2 weeks. At present, the main goal is to stabilize the condition. Once the condition is
stable, rehabilitation treatment should be initiated. There are usually some sequelae, but with good rehabilitation, some patients can regain independence
in daily life. Recommendations: 1. Bed rest and maintaining smooth bowel movements (straining during defecation or getting out of bed can increase the
risk of re-bleeding). 2. Stabilize blood pressure. 3. Medication treatment.

MT-KGAG Top-ranked candidate answer: candidate answer 1;
Top-ranked candidate doctor: candidate doctor 1;
Generated response:
I’m sorry to hear that your mother has suffered a cerebral hemorrhage. I hope she recovers soon. Here are some suggestions and information: Consult the
attending hospital: Follow the doctor’s advice and adhere to the treatment plan, including medication, diet, and rehabilitation exercises. Try to maintain
your mother’s physical stability to support better recovery. Dietary adjustment: According to the doctor’s recommendations, ensure your mother’s diet is
healthy and balanced. Moderately increase protein and nutrient-rich foods to aid the healing process. Adequate rest: Make sure your mother gets enough
rest and sleep, which is crucial for the recovery of brain function. As for whether cerebral hemorrhage will shorten life expectancy or whether your mother
can walk or live like a normal person again, it depends on the specific case and the effectiveness of the treatment. If not treated in time, it can result in
sequelae. However, with proper treatment, it is possible to help your mother regain functionality in daily life and improve quality of life. Everyone’s
condition is different, so it is important to carry out a personalized assessment and adjustments under the doctor’s guidance.

w/o
multi-task
learning

Generated response:
Patients with cerebral hemorrhage need to seek medical attention promptly. A CT scan is recommended, and treatment should follow the doctor’s advice.
Rehabilitation training can aid in recovery, but the effectiveness varies from person to person.

(Continued)
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TABLE 4 (Continued)

Item Content

w/o
medical
knowledge
graph

Generated response:
An EEG (electroencephalogram) may be needed. If the issue is vascular and the cerebral hemorrhage has affected a certain functional area of the brain,
corresponding symptoms can appear. If the patient only has a headache, it might not be serious. If there are no other problems, medication may not be
necessary. However, if symptoms persist, doctors generally recommend oral medication and active diagnosis.

w/o
doctor
feature

Top-ranked candidate answer: candidate answer 3;
Generated response:
The treatment of cerebral hemorrhage requires timely hemostasis and reduction of intracranial pressure, and hospitalization is recommended. During the
recovery period, physical therapy and speech training can help improve motor and language functions. The prognosis of cerebral hemorrhage varies from
person to person—some patients may regain the ability to walk, but long-term rehabilitation training is often necessary.

professional reasoning during response generation. Without it,
the model struggles to explain conditions, treatment plans, or
recovery advice accurately, reducing the depth and professionalism
of its responses.

Lastly, when doctor features were removed, performance
declined in both candidate answer ranking and answer generation.
Specifically, Candidate Answer 3 was incorrectly ranked highest
instead of the correct Candidate Answer 1, indicating the critical
role of doctor features in ranking tasks. These features enhance
the model’s ability to represent interactions between patients and
doctors. Without them, the model fails to accurately assess the
relevance of candidate answers, leading to incorrect rankings.
Additionally, the generated answers lacked personalization and
practical value due to the absence of doctor-specific context.

5 Conclusion

This study proposes the MT-KGAG model, a perception-
aware intelligent Q&A framework for neurosurgery, designed to
emulate clinician cognitive workflows through two innovations: (1)
perception-anchored knowledge fusion, integrating neurosurgical
knowledge graphs and doctor expertise profiles to ground
responses in structured medical ontologies and real-world
clinical reasoning; (2) cognitive-aligned multi-task synergy, jointly
optimizing answer generation, ranking, and recommendation tasks
to mirror the integrative decision-making patterns of physicians.
Through comparative analysis and ablation studies, MT-KGAG
significantly improves the performance of the automated question-
answering system across multiple dimensions and outperforms
baseline models in ranking tasks for candidate answers and
physician selection.

At the theoretical level, this study provides profound insights
into the development of intelligent medical question-answering
systems in neurosurgery. The MT-KGAG model advances the
application research on combining retrieval models with generative
models, further enriching the technical framework in this field.
Specifically, MT-KGAG first retrieves candidate answers for
questions using a retrieval model, then encodes the question,
candidate answers, the physicians providing those answers, and the
medical knowledge graph simultaneously in the encoder. Finally,
these encoded representations are fused and input into the decoder.
This design enables the model to fully leverage information
from diverse data sources, thereby enhancing its performance
in neurosurgery. This bridges the gap between retrieval systems’

rigidity and LLMs’ hallucination risks, advancing hybrid AI toward
human-like diagnostic reasoning.

At the practical level, MT-KGAG demonstrates unique
advantages and flexibility. First, by embedding physician
characteristics in the physician recommendation task, the
system cannot only provide accurate diagnostic suggestions but
also recommend relevant experts based on patient needs, forming
a dual-service model of “AI advice + physician matching.” This
innovative service model offers users more personalized and
comprehensive medical support. Second, while maintaining
high accuracy, MT-KGAG adopts a modular decoupling
design, meaning that subtasks (e.g., retrieval, generation,
recommendation) can be flexibly configured for different
application scenarios, adapting to the digital infrastructure
of various medical institutions. This design ensures strong
generalizability and adaptability, meeting the needs of diverse
medical environments.

However, this study also has some limitations. First, the current
candidate answer retrieval employs only basic matching strategies
and does not fully account for dynamic user feedback. In the future,
a reinforcement learning-based dynamic retrieval mechanism will
be a key direction for improving system performance, enhancing
answer relevance and accuracy through real-time retrieval strategy
adjustments. Second, with technological advancements, future
research could explore migrating the MT-KGAG framework to
larger-scale pre-trained language models (e.g., DeepSeek, GPT-4)
and further optimizing its application in the medical field through
fine-tuning techniques. The advantage of large language models
lies in their powerful contextual understanding and language
generation capabilities, which could provide higher-level intelligent
support for medical question-answering systems.
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