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Introduction: Aristotle illusion is a well-known tactile illusion which causes 
the perception of one object as two. EEG analysis was employed to investigate 
the neural correlates of Aristotle illusion, yet was limited due to low spatial 
resolution of EEG. This study aimed to identify brain regions involved in the 
Aristotle illusion using functional magnetic resonance imaging (fMRI) and deep 
learning-based analysis of fMRI data.

Methods: While three types of tactile stimuli (Aristotle, Reverse, Asynchronous) 
were applied to thirty participants’ fingers, we collected fMRI data, and recorded 
the number of stimuli each participant perceived. Four convolutional neural 
network (CNN) models were trained for perception-based classification tasks 
(the occurrence of Aristotle illusion vs. Reverse illusion, the occurrence vs. 
absence of Reverse illusion), and stimulus-based classification tasks (Aristotle 
vs. Reverse, Reverse vs. Asynchronous, and Aristotle vs. Asynchronous).

Results: Simple fully convolution network (SFCN) achieved the highest 
classification accuracy of 68.4% for the occurrence of Aristotle illusion vs. 
Reverse illusion, and 80.1% for the occurrence vs. absence of Reverse illusion. 
For stimulus-based classification tasks, all CNN models yielded accuracies 
around 50% failing to distinguish among the three types of applied stimuli. 
Gradient-weighted class activation mapping (Grad-CAM) analysis revealed 
salient brain regions-of-interest (ROIs) for the perception-based classification 
tasks, including the somatosensory cortex and parietal regions.

Discussion: Our findings demonstrate that perception-driven neural responses 
are classifiable using fMRI-based CNN models. Saliency analysis of the trained 
CNNs reveals the involvement of the somatosensory cortex and parietal regions 
in making classification decisions, consistent with previous research. Other 
salient ROIs include orbitofrontal cortex, middle temporal pole, supplementary 
motor area, and middle cingulate cortex.
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1 Introduction

The ability to perceive and interpret sensations is fundamental to 
human interaction with the environment. In some instances, 
we perceive external stimuli in ways that differ from reality. Such 
perceptual illusions occur when a stimulus delivered under specific 
conditions elicits a different conscious experience due to changes in 
those conditions (Hayward, 2008). By examining how the brain 
produces illusory perceptions, researchers can gain insights into the 
neural mechanisms underlying sensory integration and perception.

Although perceptual illusions have been documented across 
various sensory modalities, most research has focused on visual 
illusions (Robinson, 2013; Keil, 2020; Manassi and Whitney, 2022). 
This emphasis has yielded a detailed understanding of the neural basis 
of visual perception; however, comparatively less is known about the 
neural basis of tactile illusions. Among tactile illusions, the Aristotle 
illusion is one of the well-known perceptual phenomena. The Aristotle 
illusion occurs when a person crosses two fingers and touches a single 
object on the medial side of the crossed fingers, leading to the 
perception of one object as two. Conversely, if two objects are touched 
on the external sides of the crossed fingers, they are perceived as one 
(Benedetti, 1985). This phenomenon may result from the neural 
integration of cutaneous tactile inputs with proprioceptive information 
regarding the atypical (crossed) positioning of the stimulated 
skin locations.

Despite its simplicity, the Aristotle illusion offers a unique 
opportunity to study how the brain resolves conflicting tactile and 
proprioceptive inputs to support perceptual decision-making. 
Specifically, it offers a tractable framework for exploring how the brain 
selects among competing perceptual hypotheses under an illusory 
condition. This process involves not only integrating somatotopically 
organized tactile signals with proprioceptive representations but also 
evaluating conflicting sensory cues to construct a coherent percept. 
Identifying the cortical regions supporting this resolution process 
offers insight into how the brain stabilizes perceptual experience in the 
presence of contradictory input.

A previous study employed EEG and source localization to 
investigate the neural correlates of the Aristotle illusion (Bufalari et al., 
2014). Researchers found that the P200 component from the posterior 
parietal cortex (PPC) was stronger when participants did not perceive 
the illusion compared to when they did. However, the low spatial 
resolution of EEG poses challenges for detecting neural activity related 
to the Aristotle illusion from deep brain regions. Indeed, previous 
research has implicated several subcortical and middle regions in 
tactile information, such as the thalamus, cingulate cortex, insular 
cortex and frontal cortex (Allen et al., 2016). Neuroimaging studies on 
proprio-tactile illusion have also highlighted deep brain regions, 
including the supplementary motor area (SMA) and thalamus 
(Kavounoudias et al., 2008). Given these findings, functional magnetic 
resonance imaging (fMRI), with its high spatial resolution and ability 
to examine neural responses in deep brain regions, is well suited for 
analyzing whole-brain activity patterns associated with the 
Aristotle illusion.

Previous fMRI studies on tactile illusions have revealed several 
brain regions involved in the illusory processing of tactile information. 
In the cutaneous rabbit illusion, where rapid stimulation at distinct 
arm points creates the sensation of intermediate “hopping” tactile 
stimuli, increased blood oxygen level-dependent (BOLD) signals were 

observed in the primary somatosensory cortex (S1) at unstimulated 
skin  locations as well as in premotor and prefrontal regions 
(Blankenburg et al., 2006). The velvet hand illusion, which induces the 
sensation of a velvety texture using a grid of wires between the hands, 
showed enhanced activation in S1 and increased connectivity with 
somatosensory-related regions (Rajaei et al., 2018). Yet, no fMRI study 
to date has investigated the neural correlates of the Aristotle illusion.

In previous fMRI studies, researchers observed the neural 
correlates of tactile illusion through univariate analysis (Friston et al., 
1994). This analytical approach relies on correlations between 
individual BOLD signals and the predicted hemodynamic response 
function (HRF) by stimulus designs via the general linear model 
applied to each individual voxel. However, neural responses to stimuli 
may be better explained in a high-dimensional space. The functional 
relationships between neural responses and stimuli may be nonlinear, 
and the shape of the HRF can deviate from the conventional canonical 
form across different participants or individual voxels (Aguirre et al., 
1998; Chen et al., 2023). Additionally, recent findings have raised 
concerns about the effectiveness of univariate analysis in predicting 
individual differences (Kragel et  al., 2021). One approach to 
overcoming these limitations is the use of multi-variate decoding 
analyses based on machine learning techniques (Kriegeskorte et al., 
2006; Norman et  al., 2006). In recent years, researchers have 
successfully decoded neural responses to various stimuli using 
multivoxel pattern analysis (MVPA) in the tactile perception domain 
(Kim et  al., 2017; Kim et  al., 2019). However, traditional MVPA 
techniques require feature selection and extraction processes and are 
limited when applied to high-dimensional raw data.

Deep learning has emerged as a powerful technique for medical 
image analysis following the great success of convolutional neural 
networks (CNNs) in the natural image domain. CNNs enable fully 
automated extraction of important image features and facilitate 
end-to-end prediction without the need for manual feature 
engineering. Consequently, CNNs have been applied to fMRI data for 
the diagnosis of Alzheimer’s disease, autism, and schizophrenia (Sarraf 
and Tofighi, 2016; Meszlényi et al., 2017; Yin et al., 2022). Beyond 
disease diagnosis, fMRI-based CNN models have also been developed 
for classifying brain task states, including visual brain states, 
sensorimotor task states, emotional states, and others (Zhang et al., 
2023; Vu et al., 2020; Tchibozo et al., 2022; Wang et al., 2020). Another 
significant advancement in medical deep learning has been the 
development of model interpretation techniques to counter the 
“black-box” nature inherent in artificial neural networks. Class 
activation mapping (CAM) and its various extensions are among the 
most established techniques for visualizing the decision-making 
processes of CNNs (Selvaraju et al., 2017). Gradient-weighted CAM 
(Grad-CAM) family has been employed in diverse brain MRI 
applications, including the classification of multiple sclerosis, 
prediction of seizure onset zones, detection of brain tumors, and 
categorization of degenerative neurological diseases (Zhang et al., 
2021; Luckett et al., 2022; Mahesh et al., 2024; Song et al., 2024).

This study investigated deep learning methods that directly 
analyze whole-brain fMRI data related to the Aristotle illusion in an 
end-to-end manner. While one or two tactile stimuli were applied to 
participants’ fingers, we collected associated fMRI data and recorded 
the number of stimuli each participant perceived. We developed CNN 
models which classify these fMRI data according to the type of applied 
stimulus and the number of perceived stimuli. We  then applied 
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Grad-CAM to identify and visualize brain regions considered 
important for the classification decisions made by the trained CNNs. 
We assumed that the regions highlighted by Grad-CAM contribute to 
classification performance by exhibiting distinct activation patterns 
depending on the stimulus type or the perceptual experience. Based 
on previous studies, we hypothesized that somatosensory and parietal 
regions would show significant differences in classification accuracy 
across illusion conditions. Furthermore, we aimed to identify deep 
brain regions that were not detected in earlier studies of Aristotle 
illusion. These findings advance our understanding of the mechanisms 
underlying the Aristotle illusion, specifically regarding how the brain 
constructs tactile percepts in illusory contexts. To the best of our 
knowledge, this was the first study to apply deep learning methods to 
examine brain activation patterns associated with tactile stimulation 
using novel fMRI data recorded concurrently during 
stimulus presentation.

2 Materials and methods

2.1 Participants

Thirty participants (15 females; mean age ± standard deviation: 
24.6 ± 2.4) with no contraindications for MRI and no history of 
neurological disorders were included in this study. Only right-handed 
participants were recruited to control for handedness effects. The 
study was approved by the ethics committee of the Ulsan National 
Institute of Science and Technology (UNISTIRB-17-20-A). All 
participants were informed of the study objectives and experimental 
procedures and voluntarily provided written informed consent.

2.2 Tactile stimuli

We adopted the design of tactile stimuli from the previous study 
in which the Aristotle illusion was observed (Bufalari et al., 2014). 
During the experiment, a Velcro tape held the participants’ right-hand 
fingers crossed to prevent discomfort or involuntary muscle 
movement that might arise from actively maintaining this unnatural 
posture (Figure  1A). The experimenter administered tactile 
stimulation by moving wooden balls (6 mm in diameter) attached to 
a stick along the distal phalanges of the crossed fingers. The 
experimenter was trained to maintain a consistent frequency of 
approximately 1.5 cycles per second, applying a controlled force across 
three different tactile stimulation conditions (see below). Only the 
wooden balls made contact with the participants’ skin. Three distinct 
stimulation conditions were presented as follows. In the Aristotle 
condition, a single ball stimulus was applied to the middle of the 
crossed fingers (right index and middle), potentially leading to the 
illusory perception of two stimuli. In the reverse condition, two 
stimuli were synchronously applied to both lateral ends of the crossed 
fingers, possibly inducing the illusory perception of a single stimulus. 
In addition to these mismatch conditions between actual and 
perceived stimuli, the Asynchronous condition was included, in which 
two asynchronously delivered stimuli were veridically perceived as 
two separate contacts. In both the Aristotle and Reverse conditions, 
the corresponding areas of the crossed fingers were touched 
simultaneously. In contrast, during the Asynchronous condition, the 

corresponding finger areas were stimulated at different time intervals 
(Figure 1A).

2.3 fMRI experiment

We applied the experimental procedure from the previous study 
(Bufalari et  al., 2014) with modifications tailored to the fMRI 
experiments. Prior to the fMRI session, participants were visually shown 
the tactile stimuli and informed that they might perceive either one or 
two balls at the central or lateral areas of their crossed right middle and 
index fingers. In addition, the experimenter informed participants that 
two questions would be asked in each trial. After the initial stimulation, 
the first question assessed the number of stimuli perceived, which 
determined whether an illusion had occurred. Participants were 
instructed to press the ‘1’ button with their left index finger if they felt a 
single stimulus, and the ‘2’ button with their left middle finger if they felt 
two stimuli. Following the presentation of an identical second stimulus, 
the second question inquired about the perceived spatial distance 
between the stimuli. Participants were instructed to respond with ‘1’ 
using their left index finger if they felt a single stimulus or were unable 
to distinguish a spatial difference. They responded with ‘4’ using their 
left little finger if they perceived the stimuli as being separated by the full 
width of their crossed fingers. If the stimuli felt farther apart than button 
‘1’ but less than the finger width, they were instructed to respond with 
‘2’ with their left middle finger; if wider than ‘2’ but narrower than ‘4,’ 
they were to respond with ‘3’ with their left ring finger. Participants were 
asked to respond as accurately and quickly as possible.

During the fMRI experiment, three types of tactile stimuli 
(Aristotle, Reverse, and Asynchronous) were presented, with each 
type administered in five trials within a single session (Figure 1B). 
Each participant completed two fMRI sessions, performing a total of 
30 trials (10 repetitions of each tactile stimulus). The sequence of the 
30 trials was fully randomized for each participant. Only one type of 
tactile stimulus was presented within each trial. In each trial, the 
experimenter presented a single type of tactile stimulus for 15 s, 
during which the word “Stimulating” appeared on the screen. 
Afterward, participants responded to the first question, which was 
displayed for 3 s. Responses were recorded using a button box held in 
the left hand. Following the first question, the experimenter presented 
the same type of tactile stimulus again for another 15 s. Subsequently, 
the second question was displayed for 6 s. Each trial lasted 48 s and 
was followed by a 9-s resting period. Each session lasted 720 s, 
resulting in a total experimental time of 1,440 s per participant.

2.4 MRI acquisition and preprocessing

MRI scanning was performed using a 3 T scanner (Magnetom 
TrioTim, Siemens, Germany) equipped with a 64-channel head coil at 
the Center for Neuroscience Imaging Research in Suwon, Republic of 
Korea. Functional images were acquired using a slice-accelerated 
multiband gradient-echo-based echo planar imaging (EPI) sequence 
with T2*-weighted blood oxygenation level-dependent (BOLD) 
contrast. Functional images covering the entire brain were obtained (48 
slices; repetition time (TR) = 3 s; echo time (TE) = 30 ms; flip 
angle = 90°; Field of view (FOV) = 192 mm; slice thickness = 3 mm; 
voxel size = 2.0 × 2.0 × 3.0 3mm ). High-resolution anatomical images 
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were also obtained using a T1-weighted 3D MPRAGE sequence 
(TR = 2,300 ms; TE = 2.28 ms; flip angle = 8°; FOV = 256 mm; voxel 
size = 1.0 × 1.0 × 1.0 3mm ). Functional images were preprocessed using 
SPM12 software (Wellcome Department of Imaging Neuroscience, 
London, UK) with standard procedures, including slice-timing 
correction, re-alignment, co-registration, segmentation, and spatial 
normalization to the Montreal Neurological Institute (MNI) template.

2.5 Behavioral data analysis

We categorized trials as either illusion trial s or non-illusion trials 
based on how participants perceived the stimuli under different 

conditions. In the Aristotle stimulation condition, a trial was classified 
as an illusion trial if participants reported perceiving two stimuli. In 
the Reverse and Asynchronous conditions, a trial was categorized as 
an illusion trial if participants reported perceiving one stimulus. The 
illusion rate was defined as the proportion of illusion trials among all 
trials in which the participant provided a response. Statistical analysis 
is described in Section 2.8.

2.6 fMRI classification tasks

The fMRI data acquired during the application of tactile stimuli 
were analyzed using deep learning-based classification. A total of five 

FIGURE 1

Tactile stimulation and experimental paradigm. (A) For the Aristotle stimuli, only one stimulus is administered, but participants perceive two objects. For 
the Reverse stimuli, two stimuli are administered, but only one object is perceived. For the Asynchronous (control) stimuli, two stimuli are administered 
while the fingers are crossed, and participants perceive two objects without experiencing the illusion. (B) The experimental procedure consisted of two 
questions. The first question asked how many stimuli were perceived, allowing determination of whether the illusion occurred. The second question 
asked about the perceived distance between the stimuli. In each trial, the tactile stimulus was presented for 15 s, after which participants answered the 
first question. In the next step, the same stimulus was presented again for another 15 s, followed by the second question. The three types of stimuli—
Aristotle, Reverse, and Asynchronous—were randomly assigned. Each stimulus was repeated for five trials, resulting in 15 trials per session, with each 
participant completing two sessions.
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classification tasks were formulated based on two criteria, as described 
below. First, based on the type of stimulus applied, binary classification 
was performed for each of the following pairs of stimulus categories: 
Aristotle (n = 596) vs. Reverse (n = 594), Reverse vs. Asynchronous 
(n  = 590), and Aristotle vs. Asynchronous. Second, based on the 
number of stimuli felt by participants, binary classification was 
conducted for the occurrence of the Aristotle illusion (n = 544) vs. 
Reverse illusion (n = 212), corresponding to experiences of two vs. 
one stimulus, respectively, as well as for the occurrence (n = 212) vs. 
absence (n = 382) of the Reverse illusion, corresponding to experiences 
of one vs. two stimuli, respectively. Other potential classification tasks, 
including the absence of the Aristotle illusion (52 cases), were 
excluded due to the insufficient sample size, which would lead to 
severe class imbalance.

2.7 CNN learning and analysis

We employed and compared four CNN models for fMRI 
classification: ResNet10, ResNet18, DenseNet121, and a Simple Fully 
Convolution Network (SFCN). ResNet is a well-established CNN 
architecture characterized by residual connections that improve the 
gradient-based optimization of model parameters (He et al., 2016). 
DenseNet is distinguished by its layer-wise concatenation, which 
enhances representational capacity and was selected as a representative 
of large-scale models (Huang et al., 2017). SFCN architecture is a 
lightweight 3D model type originally developed for predicting 
biological age from brain MRI (see Figure 2 for detailed architecture) 
(Peng et al., 2021). In terms of parameter counts, the SFCN, ResNet10, 
ResNet18, and DenseNet121 contained approximately 0.74 million, 
3.96 million, 8.30 million, and 11.24 million parameters, respectively.

Model performance was assessed using 5-fold cross-validation, 
with the fMRI dataset randomly divided into training and validation 
subsets in an 8:2 ratio. Each trial’s data were assigned entirely to either 
the training or validation set to reduce the risk of overestimating 
prediction accuracy. To address the class imbalance in the training 
datasets, the majority class was randomly undersampled (Batista et al., 
2004). All CNN models were implemented in a Python 3.7.4 
environment on Ubuntu 18.04, using PyTorch 1.13.1 and CUDA 11.7. 
Model training was conducted on a single RTX A6000 GPU (NVIDIA, 

Santa Clara, CA, USA) with 24GB of memory. Key hyperparameters 
were optimized by using the Bayesian optimization framework 
Optuna (Akiba et al., 2019). For the three stimulus-based classification 
tasks, a shared set of hyperparameters was used: learning rate of 
1 × 10−3, weight decay of 0.4, and batch size of 64. For the two 
perception-based classification tasks, hyperparameters were separately 
optimized as follows: for the classification of the Aristotle illusion vs. 
the Reverse illusion, a learning rate of 3 × 10−4, weight decay of 0.4, 
and batch size of 32 were used; for the classification of occurrence vs. 
absence of the Reverse illusion, a learning rate of 1 × 10−5, weight 
decay of 0.2, and batch size of 16 were used.

Grad-CAM was employed to generate saliency maps that 
highlight important regions of the fMRI images contributing to the 
CNN’s predictions. Grad-CAM produces a saliency map by taking a 
weighted combination of the feature map activations from the last 
convolutional layer followed by a rectified linear unit (ReLU) function. 
The importance weight for each feature map is computed via global 
pooling of the gradient of the network output with respect to the 
feature map, as written in Equation 1 (Selvaraju et al., 2017).

 
( )α α−

 ∂
= =  ∂ 

∑Grad CAM ReLU , Poolk k kk k

yL A
A  

(1)

where kA is the kth feature map activation, and y is the output of 
the entire network.

2.8 Statistical analysis

Two types of statistical analyses were performed in this study. 
First, repeated-measures ANOVA (rmANOVA) was conducted to 
examine differences in the illusion rate across the three stimulation 
conditions: Aristotle, Reverse, and Asynchronous. Perceived distance 
was defined as the average reported distance between two stimuli for 
each condition and was also analyzed using rmANOVA to evaluate 
differences among the three stimulation conditions.

Second, to analyze the saliency maps derived from Grad-CAM, 
each map was divided into 120 regions of interest (ROIs) based on 
the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 

FIGURE 2

Architecture of the SFCN. The SFCN is a lightweight 3D CNN model consisting of six blocks, each composed of a convolution layer followed by a 
maximum or average pooling for feature extraction, and a final block comprising a convolution layer followed by a fully connected layer for decision-
making.
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et al., 2002). To identify ROIs that consistently exhibited elevated 
saliency across individuals, we calculated a mean saliency value for 
each ROI per subject, followed by a grand mean averaged across all 
ROIs and participants. Individual ROI means were then compared to 
the grand mean using the Wilcoxon signed-rank test, assuming 
non-Gaussian distributions. Multiple comparisons were corrected 
using false discovery rate (FDR) correction. Statistically significant 
brain regions identified through this analysis were visualized using 
BrainNet Viewer (Xia et  al., 2013). To examine inter-individual 
variability, subject-wise saliency values were extracted from each 
statistically significant ROI. For each ROI, saliency values were 
plotted across all participants, with the group mean and standard 
error overlaid as summary statistics. A horizontal reference line 
indicating the grand mean saliency was added to 
facilitate interpretation.

3 Results

3.1 Behavioral results

We observed behavioral results reflecting the illusion effect in 
both the Aristotle and Reverse conditions, consistent with previous 
findings (Bufalari et  al., 2014). A one-way rmANOVA revealed a 
significant effect of stimulus condition (Aristotle, Reverse, 
Asynchronous) on illusion rate [F(2,58) = 97.46, p = 2.84 −× 1910 ] 
(Figure 3A). Tukey’s post-hoc test indicated that the illusion rate in 
the Asynchronous condition was significantly lower than that in both 
the Aristotle (p = 9.59 −× 1010 ) and Reverse conditions (p = 1.35 −× 310
), corroborating that the Asynchronous stimulus served as a veridical 
reference. Furthermore, the illusion rate in the Aristotle condition was 
significantly higher than in the Reverse condition (p = 1.21 −× 1910 ), 
suggesting that the Aristotle stimulus induced a stronger illusion effect.

Another one-way rmANOVA showed a significant effect of 
stimulation condition on perceived distance [F(2,58) = 24.07, 
p = 2.45 −× 810 ] (Figure 3B). Tukey’s post-hoc tests revealed that the 
Aristotle condition led to significantly greater perceived distance 
compared to both the Reverse (p = 2.51 −× 610 ) and Asynchronous 
conditions (p = 0.01). Moreover, the perceived distance in the Reverse 
condition was significantly smaller than that in the Asynchronous 
condition (p = 1.98 −× 410 ). When comparing conditions against the 
Asynchronous stimulus, the Aristotle condition—despite the actual 
stimulus being the closest—was perceived as the farthest. In contrast, 
the Reverse condition—although physically similar in distance to the 
Asynchronous condition—was perceived as the closest. These results 
indicate that illusory stimuli (Aristotle and Reverse) induced 
significant perceptual distortions. Table 1 summarizes participants’ 
perceptual responses to three tactile stimuli recorded during the fMRI 
experiments. For the Aristotle and Reverse conditions, illusory and 
veridical responses are indicated by green and yellow highlights, 
respectively. These responses served as labels for the fMRI data used 
in the classification tasks described in section 2.6.

3.2 Classification of fMRI data

3.2.1 Perception-based classification
Table 2 presents the performances of CNN models in perception-

based classification tasks. For the classification between the occurrence 
of the Aristotle illusion and the Reverse illusion (corresponding to 
perceiving two vs. one stimulus, respectively), the SFCN achieved the 
highest performance across all metrics, with an accuracy of 68.0%, 
precision of 0.67, recall of 0.73, and F1-score of 0.70. Classification 
accuracy decreased in the following order: SFCN, ResNet10, 
ResNet18, and DenseNet121. For the classification between the 
occurrence and absence of Reverse illusion (corresponding to 

FIGURE 3

Frequency of illusory percepts and perceived distance across three stimulus conditions: Aristotle, Reverse, and Asynchronous. (A) Percentage of 
illusory percepts across the three stimulus conditions. (B) Mean perceived distances across the three stimulus conditions. A score of 1 was assigned 
when no difference was perceived in the location of stimuli, whereas a score of 4 indicated maximal perceived distance. Means and standard errors are 
reported.
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perceiving one vs. two stimuli, respectively), the SFCN again 
outperformed the other models, achieving an accuracy of 80.1%, 
precision of 0.74, recall of 0.74, and F1-score of 0.73. ResNet10, 
ResNet18 and DenseNet121 achieved accuracies of 73.7, 74.0, and 
72.9%, respectively. In summary, the number of stimuli perceived by 
participants was classifiable based on fMRI data with moderate to 
high accuracy.

3.2.2 Stimulus-based classification
For all stimulus-based classification tasks (Aristotle vs. Reverse, 

Reverse vs. Asynchronous, Asynchronous vs. Aristotle), all CNN 
models yielded maximum accuracies around 0.5 over training epochs, 
indicating that performance did not improve beyond that of initial 
random choice (see an example learning curve in the Discussion 
section). This suggests that the CNN models failed to extract 
discriminative fMRI image features capable of distinguishing among 
the three types of applied stimuli.

3.3 Grad-CAM analysis

Grad-CAM was applied to the SFCN model, which exhibited the 
best performance across the two perception-based classification tasks. 
Figure 4 presents selected axial, coronal, and sagittal slices of mean 3D 
saliency maps averaged across all participants in each validation set. 
Note that simple pixel-wise averaging sufficed to obtain the mean 
saliency map, as all fMRI images had been spatially co-registered 
during the pre-processing phase. The grand-mean-based ROI analysis 
of the resulting saliency maps (outlined in Section 2.8) identified 
significant ROIs for each task as detailed below. For the Aristotle 
illusion vs. Reverse illusion classification, seven significant ROIs were 
identified (p < 0.05), including the superior parietal lobule (p = 0.002), 
inferior parietal lobule (p = 0.001), precuneus (p = 0.003), postcentral 
gyrus (S1) (p = 0.003), middle temporal pole (p = 0.002), orbitofrontal 
cortex (OFC) (p = 0.003), and angular gyrus (p = 0.03). For the 
occurrence vs. absence of the Reverse illusion, five ROIs were 
identified, including the supplementary motor area (SMA) (p = 0.001), 
paracentral lobule (p = 0.01), inferior parietal lobule (p = 0.01), and 
middle cingulate cortex (p = 0.01). Figure 5 shows the identified ROIs 
for the two tasks using BrainNet Viewer.

Further analysis of inter-individual variability was performed by 
plotting subject-wise saliency values for each ROI identified as 
significant in the group-level Grad-CAM analysis (Figures 5C,D). 
Subject mean values were narrowly distributed and closely aligned 
with the grand mean, indicating minimal inter-subject variation in 

baseline saliency levels. In both classification tasks, the ROI-specific 
saliency values were consistently higher than subject-level means.

4 Discussion

This study aimed to identify brain regions involved in the Aristotle 
illusion using fMRI and deep learning-based decoding. Behavioral 
results demonstrated that the illusory stimuli effectively induced 
tactile illusions in participants. To decode the neural representations 
associated with tactile perception, we  trained CNNs for two 
classification approaches: the first based on the type of applied 
stimulus (stimulus-based classification) and the second based on the 
number of perceived stimuli (perception-based classification). The 
validation results showed that perception-based classification was 
feasible, achieving moderate to high accuracies, whereas stimulus-
based classification was not successful due to ineffective CNN training.

In the perception-based classification, the CNN models exhibited 
a typical learning pattern: training accuracy steadily increased over 
epochs, while validation accuracy initially rose but eventually 
plateaued or declined (Figure  6A). In the CNN learning for the 
stimulus-based classification, training accuracy increased over epochs, 
indicating successful loss minimization. However, validation accuracy 
decreased from the initial value of approximately 0.5, which resulted 
from random initialization—suggesting poor model generalization 
(Figure  6B). These findings imply that fMRI image features may 
correlate more strongly with participants’ subjective experience than 
with the type of stimulus applied. Consequently, we  applied 
Grad-CAM analysis solely to perception classification tasks, including 
the occurrence of the Aristotle illusion vs. the Reverse illusion and the 
occurrence vs. absence of the Reverse illusion.

The classification between the Aristotle illusion and the Reverse 
illusion was particularly important for probing distinct neural 
mechanisms underlying divergent perceptual outcomes. The Grad-
CAM-based classification between these two perceptual illusions was 
therefore aimed at revealing brain regions that not only encode tactile 
signals but also contribute to higher-level resolution of spatial 
mismatch between tactile and proprioceptive cues. Identifying these 
neural substrates provides critical insights into how the brain supports 
interpretation of mismatched sensory information.

Although the contrast between the occurrence vs. absence of the 
Aristotle illusion may be theoretically meaningful, it was excluded 
from the main analysis due to severe class imbalance: 544 trials 
reflected illusory perception, while only 52 reflected veridical 
perception. An initial evaluation showed that the model consistently 
predicted the majority class, resulting in superficially high accuracy 
but no meaningful discriminative performance. While this task was 
tested for completeness, the results were not sufficiently informative 
and are therefore not reported in detail. For the occurrence of the 
Aristotle vs. Reverse illusion, Grad-CAM analysis identified the 
parietal regions, primary somatosensory cortex (S1), OFC, and 
temporal pole as salient brain regions. The key difference between the 
Aristotle and Reverse illusions lies in how the brain interprets tactile 
stimuli relative to proprioceptive cues. In both illusions, crossing the 
fingers creates a mismatch between actual tactile input and the brain’s 
internal representation of the body. In the Aristotle illusion, a single 
stimulus is misinterpreted as two due to the altered spatial 
configuration of the fingers. Conversely, in the Reverse illusion, two 

TABLE 1 Behavioral responses for three stimulus conditions: Aristotle 
(one stimulus), Reverse (two synchronous stimuli), and Asynchronous 
(two asynchronous stimuli).

Condition One 
stimulus 

perceived

Two stimuli 
perceived

Non-
response

Aristotle 52 544 4

Reverse 212 382 6

Asynchronous 48 542 10

Green-highlighted cells indicate illusory responses, while yellow-highlighted cells represent 
veridical responses.
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separate stimuli are perceived as one because the brain integrates the 
signals into a single percept. This perceptual difference is reflected in 
S1 activity. Previous research has implicated S1 with processing the 
Aristotle illusion (Bufalari et al., 2014). One such study found that the 
N20 amplitude in S1 was significantly higher under the Reverse 
illusion condition than under the Aristotle illusion condition, which 
may account for the robust decoding of the Aristotle vs. Reverse 
illusions in this region.

Furthermore, we observed a significant difference in the inferior 
parietal cortex between the two illusions. The parietal region plays an 
essential role in multisensory integration, involving the proprioceptive 
and tactile information (Kavounoudias et al., 2008; Blankenburg et al., 
2006; Marasco and De Nooij, 2023), suggesting that different types of 
illusions may be distinctly represented in this area. The OFC, a higher-
order brain region known for integrating sensory, motor and 
associative information (Stalnaker et al., 2015; Wang et al., 2020), has 
also been implicated in encoding tactile information (Frey et  al., 

2009). Additionally, the temporal pole is involved in the representation 
of tactile roughness perception (Kim et  al., 2017). These finding 
suggest that the difference between the Aristotle and Reverse illusions 
is modulated by both high-level perceptual interpretation and 
low-level sensory encoding.

When distinguishing the Reverse illusion from non-illusory 
perception, the goal was to isolate brain regions responsible for 
integrating conflicting sensory cues and suppressing illusory 
interpretations under conditions of spatial ambiguity. In this 
comparison, the tactile stimuli were physically identical, but the 
perceptual outcomes differed. This contrast allowed us to find brain 
regions that mediate the failure or success of perceptual disambiguation. 
Grad-CAM revealed that salient regions in this classification included 
the IPL, middle cingulate cortex, and SMA. The consistent involvement 
of the parietal cortex across both classification tasks highlights its key 
role in tactile illusion processing. This aligns with previous findings 
showing significantly different P200 responses in the parietal region 

TABLE 2 Performance of four CNN models (SFCN, ResNet10, ResNet18, DenseNet121) for two classification tasks based on participants’ perception: (i) 
occurrence of the Aristotle illusion vs. the Reverse illusion, and (ii) occurrence vs. absence of Reverse illusion.

Model Occurrence of Aristotle vs. Reverse Reverse illusion vs. no Reverse illusion

Accuracy Precision Recall F1-
score

Accuracy Precision Recall F1-score

SFCN 0.684 0.670 0.726 0.695 0.801 0.741 0.735 0.725

ResNet10 0.626 0.609 0.623 0.597 0.756 0.677 0.678 0.653

ResNet18 0.620 0.602 0.649 0.607 0.740 0.645 0.641 0.621

DenseNet121 0.585 0.558 0.564 0.525 0.729 0.634 0.609 0.597

FIGURE 4

Selected axial, coronal, and sagittal slices of mean Grad-CAM saliency maps from the SFCN model for two perception-based classification tasks: 
(A) Occurrence of the Aristotle illusion vs. Reverse illusion and (B) occurrence vs. absence of the Reverse illusion. The displayed maps represent the 
average of all individual maps in the validation datasets. In the maps, higher intensity values (red) indicate regions to which the SFCN model assigned 
greater attention during classification.
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between illusory and non-illusory trials in the Reverse illusion 
condition (Bufalari et al., 2014). Our results support the notion that the 
parietal cortex plays a crucial role in recalibrating sensory information 

when somatotopic and external spatial reference frames are misaligned. 
Beyond the IPL, significant activation was also identified in the SMA 
and middle cingulate cortex. Prior studies have demonstrated that the 

FIGURE 5

Salient ROIs identified by Grad-CAM analysis for the SFCN classification model. (A) For classification of the occurrence of the Aristotle illusion vs. 
Reverse illusion, the superior parietal lobule, inferior parietal lobule, precuneus, postcentral gyrus (S1), middle temporal pole, orbitofrontal cortex (OFC), 
and angular gyrus were significantly above the grand mean (p < 0.05). (B) For the occurrence vs. absence of the Reverse illusion, the supplementary 
motor area (SMA), paracentral lobule, inferior parietal lobule, and middle cingulate cortex were identified as salient ROIs. (C) Subject-wise saliency 
values for each significant ROI in the Aristotle illusion vs. Reverse illusion. (D) Subject-wise saliency values for each significant ROI in the presence vs. 
absence of the Reverse illusion. Each gray dot represents one participant. Red circles indicate the mean saliency of each ROI, with black bars 
representing the standard error. The dashed line represents the grand mean across all brain regions.

FIGURE 6

Training and validation accuracy curves obtained while training SFCN models for (A) occurrence of Aristotle vs. Reverse (as an example of perception-
based classification) and (B) Aristotle vs. Asynchronous (as an example of stimulus-based classification).
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SMA is involved in encoding tactile roughness (Kim et  al., 2017). 
Moreover, the middle cingulate cortex has been associated with body 
representation (Popa et al., 2019) and plays a critical role in integrating 
proprioceptive and sensory signals associated with motor functions 
(Rahman et al., 2022). Based on these findings, we suggest that middle 
brain regions also play a role in distinguishing the Reverse illusion.

In addition to group-level findings, we examined inter-individual 
variability in saliency distributions to evaluate the consistency of model 
attention across participants. Subject-wise saliency values for each 
significant ROI were plotted, showing that most participants exhibited 
elevated saliency relative to the grand mean. This pattern, observed 
across both classification tasks, suggests that the identified ROIs were 
not driven by outliers, but rather reflect stable, interpretable patterns 
across subjects. Furthermore, when comparing these ROI-specific 
saliency values to each participant’s whole-brain average saliency, 
we found that the highlighted regions consistently exceeded individual 
baselines. The narrow distribution of subject-level mean saliency values 
further supports that the observed patterns were not subject-specific 
artifacts but reflect anatomically meaningful, region-specific effects. 
These findings support the robustness of the Grad-CAM results and 
reinforce the neuroanatomical relevance of the highlighted regions.

Although the classification results were promising, several 
methodological considerations should be  acknowledged to better 
interpret the findings. First, the relatively small sample size in the 
fMRI experiments may limit the generalizability of the results. Despite 
the number of data points for classification was increased through 
multiple MR acquisitions per subject, the diversity of the data 
distribution may still have been insufficient for optimal model 
generalization. This likely explains why the highest accuracy was 
achieved using the SFCN, which has the smallest number of model 
parameters among all the models tested. The moderate accuracy in 
distinguishing between the Aristotle and Reverse illusions may also 
be  attributed to the limited amount of training data. Second, the 
interpretability of Grad-CAM visualization is closely tied to the 
classification performance of the models. The explanatory power of 
the resultant saliency maps may be limited by classification accuracies, 
particularly in the Aristotle vs. Reverse task, which achieved only 68% 
accuracy. To improve the reliability of the saliency maps, increasing 
training data volume and refining vision encoders will be essential to 
enhance prediction performance.

We adopted a stimulation duration of 15 s to allow participants 
sufficient time to focus on the tactile input and to obtain a reliable 
number of fMRI data points per trial. However, it is plausible that the 
illusion arises within the first few seconds of stimulation, while the 
prolonged duration may additionally engage higher-order cognitive 
processes such as sustained attention. To more precisely capture the 
neural dynamics that occur immediately following the onset of the 
illusory percept, future studies could employ a faster trial structure or 
utilize neuroimaging techniques with higher temporal resolution, 
such as magnetoencephalography, to better understand the real-time 
integration of proprioceptive and tactile information.

One potential concern involves the possibility that participants had 
partial awareness of the number of tactile stimuli, which may have 
influenced cognitive evaluation rather than reflecting purely perceptual 
experience. However, several aspects of the experimental design were 
carefully structured to minimize this effect. The stimulus apparatus, 
although briefly shown to participants, served only to familiarize them 
with the tactile setup. No pre-training or behavioral sessions were 

administered prior to scanning, the stimulators remained out of view 
during the experiment, and the number of stimuli was varied randomly 
within each session. These precautions ensured that participants could 
not anticipate or visually confirm the nature of the tactile input, thereby 
reducing cognitive influences on perceptual responses. Finally, while 
this study identified local brain regions associated with the tactile 
illusion, investigating functional connectivity between these regions 
could yield a deeper understanding of the network-level mechanisms 
underlying tactile illusions. In future work, we will collect additional 
fMRI data and employ advanced vision models with enhanced 
representational capacities, trained on large datasets. We also plan to 
explore inter-regional connectivity using graph neural networks and 
related methods (Cai et  al., 2022). As we  improve classification 
accuracy, we will update the saliency maps and investigate any changes 
in brain regions associated with tactile perception.

5 Conclusion

To the best of our knowledge, this study was the first to apply deep 
learning techniques to fMRI data obtained during tactile stimulation to 
decode the neural correlates of the Aristotle illusion. Our findings 
demonstrate that perception-driven neural responses distinguish tactile 
illusions more effectively than stimulus-driven responses. In line with 
previous research, we confirmed the involvement of the somatosensory 
cortex and parietal regions in illusion processing through saliency 
analysis of deep learning models. Additionally, we identified other key 
regions—such as the OFC, middle temporal pole, SMA, and middle 
cingulate cortex—as playing significant roles. Future research should 
focus on refining decoding models, incorporating connectivity analyses, 
and exploring neuromodulation techniques to further elucidate the 
mechanisms underlying tactile illusions.
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