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Objective: This study aimed to evaluate whether deep learning-based image

reconstruction (DLR) improves the accuracy of di�usion tensor imaging (DTI)

measurements used to assess the severity of depression.

Methods: A total of 52 patients diagnosed with depression in our hospital

between March 2023 and July 2023 were enrolled in this study. The severity

of depression was measured using the 9-item Patient Health Questionnaire

(PHQ-9). Each patient underwent DTI scans. Two image sets were generated:

one with the original DTI (ORI DTI) and one using DLR DTI. Tract-Based Spatial

Statistics (TBSS) were used to compare the fractional anisotropy (FA) between

DLR DTI and ORI DTI, as well as between patients with mild-to-moderate and

those with severe depression. Multivariate logistic regression was carried out to

determine independent factors for discriminatingmild-to-moderate from severe

depression patients. Receiver operating characteristic (ROC) curve analysis and

areas under the curve (AUC) were used to assess the diagnostic performance.

Results: Twenty-eight patients with mild-to-moderate depression and 24 with

severe depression were included. No significant di�erences were observed

between the two groups in terms of gender (p = 0.115), age (p = 0.603),

or educational background (p = 0.148). Compared to patients with mild-to-

moderate depression, those with severe depression showed lower FA values

in the right corticospinal tract (CST) on ORI DTI. Using DLR DTI, decreases in

FA values were observed in the right CST, right anterior thalamic radiation, and

left superior longitudinal fasciculus. The diagnostic model based on DLR DTI

outperformed the ORI DTI model in assessing severity of depression (AUC: 0.951

vs. 0.764, p < 0.001).

Conclusion: DLR DTI demonstrated greater sensitivity in detecting white matter

(WM) abnormalities in patients with severe depression and provided better

diagnostic performance in evaluating severity of depression.

KEYWORDS

deep learning, di�usion tensor imaging, depression, white matter tract, fractional

anisotropy
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HIGHLIGHTS

- Compared to conventional DTI, deep learning-based image

reconstruction DTI is more sensitive in detecting WM damage

in patients with severe depression.

- The deep learning-based image reconstruction DTI offers more

imaging biomarkers than traditional DTI for assessing severity

of depression.

- In studies of psychological diseases such as depression, deep

learning-based image reconstruction DTI provides a more

sensitive approach, particularly when sample sizes are small.

1 Introduction

Depression is among the most prevalent psychiatric disorders

(Ferrari et al., 2013). According to the World Health Organization

(WHO), major depressive disorder (MDD) ranked third in global

disease burden in 2018 and is expected to rank first by 2030

(Malhi and Mann, 2018). Assessing the severity of depression

at initial diagnosis and during regular follow-up is crucial

for guiding clinical management. For patients with moderate

depression, defined by a 9-item Patient Health Questionnaire

(PHQ-9) score of 10 and 14, antidepressant therapy is typically

recommended as a first-line treatment. In case of moderate-to-

severe or severe depression (PHQ-9 ≥ 15), a combination of

antidepressant medication and psychotherapy is advised (Simon

et al., 2024). Currently, the assessment of severity of depression

primarily relies on the subjective questionnaire according to

the patient’s symptoms, with the PHQ being one of the most

widely used tools (Levis et al., 2020; Negeri et al., 2021).

However, such subjective assessments can be influenced by the

clinician’s judgment and the patient’s understanding (Uher et al.,

2008).

Objective and quantitative methods may improve the reliability

of assessing severity of depression. White matter (WM) integrity

is compromised in patients with depression. It may serve as a

Abbreviations: MDD, major depressive disorder; PHQ-9, Patient Health

Questionnaire; WM, white matter; DTI, di�usion tensor imaging; DW,

Di�usion-weighted; DWI, Di�usion-weighted imaging; SNR, signal-to-noise

ratio; SS EPI, single-shot echo-planar imaging; MUSE, multiplexed sensitivity

encoding; MR, magnetic resonance; DLR, deep learning-based image

reconstruction; MRI, magnetic resonance imaging; DSM-5, Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition; GAD-7, Generalized

Anxiety Disorder-7; CNN, convolutional neural network; AIS, Athens

Insomnia Scale; T2WI, T2weighted imaging;ORI DTI, original DTI; ROI, region

of interest; SD, standard deviation; CNR, contrast-to-noise ratio; DICOM,

Digital Imaging and Communications in Medicine; NIfTI, Neuroimaging

Informatics Technology Initiative; TBSS, Tract-Based Spatial Statistics; FSL,

FMRIB software library; FA, fractional anisotropy; MNI, Montreal Neurological

Institute; few, family-wise error; JHU, Johns Hopkins University; GM, gray

matter; OR, odds ratio; CI, confidence interval; ROC, receiver operating

characteristic; AUC, area under the curve; LOOCV, leave-one-out cross-

validation; CST, corticospinal tract; SLF, superior longitudinal fasciculus; ATR,

anterior thalamic radiation; BDNF, brain-derived neurotrophic factor.

biomarker for both the presence (Nothdurfter et al., 2024) and

severity (Nobuhara et al., 2006) of the disorder. Diffusion tensor

imaging (DTI) is a widely used non-invasive method to evaluate

WM integrity (Pilmeyer et al., 2024). However, the conventional

diffusion-weighted (DW) sequence, typically performed with

single-shot echo-planar imaging (SSEPI), is prone to low signal-

to-noise (SNR), which can limit diagnostic accuracy. Multiplexed

sensitivity encoding (MUSE) technology was introduced to enable

small-field-of-view imaging and multiple excitations, thereby

improving signal sampling efficiency and reducing acquisition time

and motion artifacts (Chen et al., 2013). MUSE has proved its

potential to enhance diagnostic efficacy in other diseases (Wang

et al., 2024), though it still exhibits more noise than structural

magnetic resonance (MR) sequences. Deep learning-based image

reconstruction (DLR) has emerged as a promising approach to

enhance MRI quality (Kyathanahally et al., 2018; Loizillon et al.,

2024), with several manufacturers now offering DLR for clinical

use. Studies show that applying DLR to MUSE diffusion-weighted

imaging (DWI) can yield more robust phase estimation and

higher resolution (Zhang et al., 2021). Because of its high SNR,

DLR may enhance the accuracy of DTI-based WM assessments.

Nevertheless, its role in evaluating the severity of depression

remains unexplored.

This study investigated the value of DLR DTI for measuring

WM damage in patients with depression and explored its potential

to differentiate the severity of depression. These findings may

support the use of DLR DTI as a quantitative tool for assessing the

severity of psychiatric diseases such as depression.

2 Methods and materials

2.1 Population and psychological
assessment

This paper retrospectively enrolled patients with clinically

confirmed depression who underwent DTI scans at our hospital

from April to July 2023. Face-to-face assessments of depression,

anxiety, and insomnia were conducted, followed by the MRI within

1 week.

Inclusion criteria were as follows: (1) a clinical diagnosis with a

PHQ-9 score above 4; (2) right-handed patients; (3) age over 18

years. Exclusion criteria were as follows: (1) brain abnormalities

(tumors, hemorrhages, infarcts) detected by conventional MRI; (2)

a current or past history of severe physical or neurological diseases;

(3) a family history of severe mental or neurological diseases in

first-degree relatives; (4) a current or past history of psychiatric

conditions such as depression, anxiety, or substance abuse; (5)

contraindications to MRI; (6) DTIs with noticeable artifacts that

could affect the investigation of the images. Age, gender, and

educational background were recorded, with education categorized

into four groups: below senior high school, senior high school,

college graduate, or above college graduate. A total of 52 patients

(mean age 51.020± 12.379 years) were included in this study, with

18 males and 34 females.

Psychological assessments were carried out under the

supervision of a psychiatrist with over 5 years of experience
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to ensure reliability and consistency. Severity of depression

was evaluated using the PHQ-9 based on the Diagnostic

and Statistical Manual of Mental Disorders, Fifth Edition

(DSM-5), with patients categorized into mild to moderate

depression or severe depression groups using a cutoff value

of 15 (Kroenke et al., 2001). Anxiety symptoms were assessed

with the Generalized Anxiety Disorder-7 (GAD-7) scale (Spitzer

et al., 2006), and insomnia was measured using the Athens

Insomnia Scale (AIS) (Soldatos et al., 2000). This study was

approved by the ethics committee of the Second Affiliated

Hospital of Naval Medical University, and all patients provided

informed consent.

2.2 MRI acquisition

MR images were acquired using a 3.0 T MRI scanner (Signa

Premier; GE Healthcare, Milwaukee, WI, USA) with a 48-channel

phased-array head coil. Each participant received T2WI and

DTI. To alleviate distortion and susceptibility artifacts, DTI was

imaged using the advanced MUSE DWI technique. T2WI was

scanned with repetition time (TR) = 6,505ms, echo time (TE)

= 103.4ms, field of view (FOV) = 24 × 24 cm2, matrix size

= 512 × 512, slice thickness = 5.0mm, slice gap = 0mm,

number of slices = 30, and number of excitation (NEX) = 1.

DTI was acquired with TR = 5,500ms, TE = 57.5ms, FOV =

24 × 24 cm2, matrix = 160 × 160, slice thickness = 3.0mm,

number of slices = 50, b-value = 0 and 1,000 s/mm2, number

of diffusions weighting directions = 30, and NEX = 2. The

DW images of DTI were separately reconstructed using the

original (i.e., conventional inverse Fourier transformation) and a

vendor-provided, commercially available deep learning algorithm

(AIRTM Recon DL; GE Healthcare, USA). The AIRTM Recon DL

pipeline included a deep convolutional neural network (CNN)

that operated on raw, complex-valued imaging data to produce

a clean output image. The CNN contained 4.4 million trainable

parameters in ∼10,000 kernels and was trained using a supervised

learning approach with a training database of 4 million unique

image/augmentation combinations. Training was performed in a

single epoch of the training database. The ADAM optimizer was

used to minimize the loss between the predicted and near-perfect

images. A generative adversarial network was not used to enhance

image sharpness, thereby avoiding potential hallucinations of new

features (Lebel, 2020).

2.3 Image analysis

2.3.1 Image signal evaluation
In the first DWI images with a b-value of 1,000 from

DLR DTIs, regions of interest (ROIs) were delineated in the

right frontal cortex and the WM of the semioval center

level. An additional ROI was delineated in the right frontal

background at the same level. These ROIs were then copied

onto the ORI DTI to maintain consistent size and location.

The delineation process was illustrated in Supplementary Figure 1.

The ROI delineation was performed by two radiologists with

more than 5 years of diagnostic experience. Discrepancies were

resolved through discussion to reach consensus. The average

signal value and standard deviation (SD) with each ROI were

recorded as measures of tissue signal and noise. The SNR and

contrast-to-noise ratio (CNR) for the WM and cortex were

calculated for both DW images of ORI and DLR DTI using the

following formulas:

SNR = SIbrain tissue/SDbackground

CNR = (SIbrain tissue − SIbackground)/
√

SDbrain tissue
2 + SDbackground

2

2.3.2 Quantitative analysis of DTI
Raw Digital Imaging and Communications in Medicine

(DICOM) images were converted to Neuroimaging Informatics

Technology Initiative (NIfTI) using dcm2niix (https://github.com/

rordenlab/dcm2niix). The image data were analyzed using Tract-

Based Spatial Statistics (TBSS) and the FMRIB software library

(FSL, version 4.1.8; http://www.fmrib.ox.ac.uk/fsl). The fractional

anisotropy (FA) image was calculated through the following steps.

First, susceptibility distortions were corrected with the top-up

tool. Second, motion and eddy current distortions were corrected

using the eddy correct tool. Third, brain masks were extracted

from the b0 image with the FSL brain extraction tool. Fourth,

the FA was produced with the DTIFIT. Each patient’s FA image

was registered to the FMRIB58_FA template in the Montreal

Neurological Institute (MNI) space using FNIRT, FMRIB’s non-

linear registration tool. A mean FA image was calculated from

all aligned maps, and a mean FA skeleton was generated using a

threshold value of 0.2. Finally, each patient’s FA map was projected

onto the skeleton.

Voxel-wise differences in the skeletonized FA between the

DLR and ORI DTI were compared using paired two-sample t-

tests. These differences between patients with mild-to-moderate

and severe depression were assessed using two-sample t-tests.

The analysis was performed with 5,000 permutations and the

threshold-free cluster enhancement (TFCE) in FSL’s randomize

tool (version 2.1), incorporating age and gender as covariates

to minimize their potential effects. Statistical significance was

defined as p< 0.05 (two-sided, family-wise error [FWE] corrected).

The WM regions showing significant differences in the DTI

metrics were overlaid onto the Johns Hopkins University (JHU)

WM Tractography Atlas. ROIs were then defined post-hoc

based on statistically significant clusters (FWE-corrected p <

0.05), which were converted into binary masks. Due to the

alignment of significant cluster masks, individual skeletonized

FA data, and statistical maps within the same MNI space (from

initial FNIRT registration and TBSS projection), the masks were

directly applied to each subject’s skeletonized FA image without

further spatial transformation. Mean FA values within each ROI

were extracted for each subject using fslmeants for subsequent

post-hoc analysis.

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1607130
https://github.com/rordenlab/dcm2niix
https://github.com/rordenlab/dcm2niix
http://www.fmrib.ox.ac.uk/fsl
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cui et al. 10.3389/fnins.2025.1607130

2.4 Statistical analysis

Unpaired two-sample t-tests were performed to evaluate

age and psychological test scores between patients with mild-

to-moderate and severe depression. Kruskal–Wallis tests were

employed for non-normally distributed samples. A chi-square

test was utilized to assess differences in sex distribution, while

an appropriate non-parametric test was applied to compare

educational background. Signal, noise, SNR, and CNR of WM

and gray matter (GM) were compared between the ORI and DLR

DTI. Paired t-tests were used to assess differences in FA across the

whole brain between ORI and DLR DTI. Mean diffusion metrics

were then extracted from brain regions that showed significant

differences between the two image types.

Two-sample t-tests were used to compare FA values between

two groups of patients. Pearson correlation analysis was applied

for normally distributed data, whereas Spearman correlation

was employed for non-normally distributed data to assess the

relationships between diffusion parameters and psychological test

scores. Correlation coefficients were interpreted as mild (0.2–0.4),

moderate (0.4–0.7), or strong (0.7). Univariate logistic regression

was performed to calculate odds ratios (ORs) and 95% confidence

intervals (CIs) for FA values in various differentiated brain regions,

assessing their diagnostic performance in distinguishing severity of

depression. Additionally, the univariate logistic regression models

were constructed based on the FAs of different brain regions. A

multivariate logistic regression model was conducted using FAs

from different brain regions derived from DLR DTI to assess

severity of depression. Model performance was assessed using

the receiver operating characteristic (ROC) curve by calculating

the areas under the curve (AUCs). The Delong test was used

to evaluate the differences among models. Statistical power was

calculated at a significance level of 0.05 using R software provided

functions “pwr.t2n.test,” “power.roc.test,” and “pwr.f2.test” for

parameter comparisons, ROC analysis, andmultivariate regression,

respectively. The predictive performance of the univariable logistic

regression models was further assessed using leave-one-out cross-

validation (LOOCV) implemented in R software with the “caret”

package. In this approach, each model was iteratively trained on

n-1 samples and validated on the excluded sample. All analyses

were performed using SPSS 26.0 (IBM Corp., Armonk, NY) and R

software 2024.04.2 (Posit Software, PBC), with p < 0.05 considered

statistically significant.

3 Results

3.1 Patient characteristics

Among all patients, there were 28 cases of mild-to-moderate

depression and 24 cases of severe depression. No significant

differences were observed between the two groups in terms of

gender (male/female: 7/21 vs. 11/13, p = 0.115), age (51.857 ±

14.656 vs. 50.042± 9.262, p= 0.603), or education level (p= 0.148).

However, significant differences were found in depression scores

(17.583± 2.145 vs. 8.643± 2.599, p< 0.001), anxiety scores (16.167

± 2.959 vs. 7.643± 2.376, p < 0.001), and insomnia scores (16.250

± 3.082 vs. 10.179± 2.763, p < 0.001), as summarized in Table 1.

3.2 DLR and ORI DTI signals

The signal intensities in WM and GM regions on DLR DTI

were slightly lower than those on ORI DTI, but these differences

were not statistically significant (1030.538 ± 175.730 vs. 1037.494

± 184.817, p = 0.110; 1092.458 ± 178.225 vs. 1099.863 ± 185.227,

p = 0.080). In contrast, noise levels in both WM and GM were

significantly lower on DLR DTI compared to ORI DTI (77.978 ±

30.912 vs. 94.034 ± 32.281, p < 0.001; 50.904 ± 32.349 vs. 66.747

± 26.691, p < 0.001). The background signal was also significantly

reduced on DLR DTI (33.929 ± 12.813 vs. 43.622 ± 13.421, p <

0.001). Compared to ORI DTI, the DLR DTI showed higher SNR

(66.068 ± 71.134 vs. 43.324 ± 51.976, p < 0.001; 69.208 ± 70.139

vs. 45.579 ± 50.882, p < 0.001) and CNR (14.676 ± 8.665 vs.

10.629± 4.064, p < 0.001; 22.764± 10.363 vs. 15.772± 5.046, p <

0.001) in WM and GM. Figure 1 illustrates the ORI and DLR DTI

images, highlighting the DLR algorithm’s ability to reduce noise

across all regions, including the parenchyma, extracranial tissues,

and background, thereby substantially improving the overall image

quality of DTI.

3.3 Di�erences of FA between DLR and ORI
DTI

The brain regions with significant differences are shown in

Figure 2 and Supplementary Tables 1, 2. Among these, six clusters

exceeded 50 voxels, with the largest comprising 86,785 voxels.

The mean FA of this largest cluster was significantly lower when

measured using DLR DTI compared to ORI DTI (0.488± 0.014 vs.

0.500 ± 0.014, p < 0.001). Overall, FA values obtained from DLR

DTI were reduced across most WM regions relative to those from

ORI DTI.

3.4 Di�erentiating mild-to-moderate and
severe depression based on DLR and ORI
DTI

Based on DLR DTI, differences in FA between patients with

mild-to-moderate and severe depression were observed in the

right corticospinal tract (CST), left superior longitudinal fasciculus

(SLF), and right anterior thalamic radiation (ATR) (Table 2,

Figures 3A–D). The differential brain regions identified based on

ORI DTI were in the right CST (Figure 3E). The different regions

analyzed based on ORI DTI were included within the regions

analyzed based on DLR DTI (Figure 3F). A comparison of FA

extracted from the differential brain regions is shown in Figure 4.

The FA in all brain regions was negatively correlated with scores

on PLC-9, GAD-7, and AIS (Figure 5). In terms of correlation with

PLC-9, the FA of the right ATR based on DLR DTI had a moderate

and the highest correlation (r2 = −0.592, p <0.001), whereas the

FA of the right CST based on ORI DTI had a mild and the lowest

correlation (r2 =−0.333, p= 0.016).

Univariate logistic regression was performed to evaluate the

diagnostic efficacy of each parameter in differentiating mild-to-

moderate and severe depression (Table 3). Among these, the FA of
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TABLE 1 The demographic characteristics of the patients.

Demographic characteristics Mild to moderate depression
(mean ± SD/n) (n = 28)

Severe depression (mean ±
SD/n) (n = 24)

p-value

Age (year) 50.042± 9.262 51.857± 14.656 0.603

Gender (female/male) 21/7 11/13 0.115

Educational background (below senior high

school/senior high school/graduate/above

graduate)

1/19/6/1 1/18/5/0 0.148

PHQ-9 8.643± 2.599 17.583± 2.145 <0.001

GAD-7 7.643± 2.376 16.167± 2.959 <0.001

AIS 10.179± 2.763 16.250± 3.082 <0.001

PHQ, Patient Health Questionnaire; GAD, Generalized Anxiety Disorder; AIS, Athens Insomnia Scale; SD, standard deviation.

FIGURE 1

Comparison of deep learning post-reconstruction di�usion tensor images (DLR DTI) and original DTI (ORI DTI). (A–D) Show ORI DTI, and (E–H) show

DLR DTI. The images were derived from the same patient and demonstrated significant noise reduction in ORI DTI after DL post-reconstruction. In

both sequences, visual inspection reveals a reduction of noise in the parenchyma, extracranial tissues, and background. The interface of gray and

white matter is clearer in DLR DTI, even at the skull base, where bone structure and air space always a�ect the magnetic field.

the right ATR based on DLR DTI showed the highest odds ratio

(OR = 0.678, 95% CI: 0.517, 0.796), while the FA of the right

CST based on ORI DTI had the lowest (OR = 0.505, 95% CI:

0.416, 0.587). The univariate logistic regression models were built

to differentiate between mild-to-moderate and severe depression

(Table 4). The model based on the FA of the right CST from ORI

DTI achieved an AUC of 0.764 (95% CI: 0.637, 0.891). According

to the DeLong test, the model utilizing the FA of the right ATR

fromDLR DTI demonstrated significantly better performance than

the ORI DTI-based CST model (p = 0.042). However, models

incorporating the FAs of the right CST cluster 1, left SLF, or

right CST cluster 2 based on DLR DTI showed no differences

with the ORI DTI-based CST model (p = 0.110, p = 0.362,

and p= 0.408).

Combining all the FAs of differential brain regions identified by

DLR DTI into a single model resulted in an AUC of 0.951 (95% CI

0.898, 1.000) (Table 4, Figure 6). The right ATR and left SLF were

included in this combined model. LOOCV demonstrated that the

DLR-combined model achieved an AUC of 0.885. Comprehensive

performance metrics for all models, validated by LOOCV, are

presented in Supplementary Table 3. The Delong test showed that

the combined model outperformed the model based on ORI DTI

(p= 0.001).

The statistical power exceeded 0.90 for all parameter

comparisons between patients with mild-to-moderate and severe

depression, except for ORI DTI, which showed a power of 0.87.

Similarly, the statistical power of all ROC analyses involving single

parameters was above 0.90, whereas the multivariate regression
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FIGURE 2

Comparison of fractional anisotropy (FA) between deep learning post-reconstruction di�usion tensor images (DLR DTI) and original DTI (ORI DTI). It

represents the di�erent regions of FA between DLR DTI and ORI DTI. The blue regions show that the FAs of DLR DTI are smaller than those of ORI DTI

in multiple brain regions. DLR DTI, deep learning post-reconstruction di�usion tensor images; ORI DTI, original di�usion tensor images.

TABLE 2 The significantly di�erent regions of white matter in fractional anisotropy (FA) between the two groups (mild to moderate depression > severe

depression).

Cluster Side Brain regions (JHU) Voxel size MNI coordinate (max vox) p-value

X (mm) Y (mm) Z (mm)

ORI DTI 1 R Corticospinal tract 698 34 −48 12 0.041

DLR DTI 1 R Corticospinal tract_1 2,943 34 −35 12 0.023

DLR DTI 2 R Anterior thalamic radiation 275 11 7 −5 0.048

DLR DTI 3 L Superior longitudinal fasciculus 274 −26 13 29 0.040

DLR DTI 4 R Corticospinal tract_2 92 27 −23 1 0.049

ORI DTI, original diffusion tensor imaging; DLR DTI, deep learning-based image reconstruction diffusion tensor imaging; L, left; R, right; Corticospinal tract_1, corticospinal tract

cluster 1; Corticospinal tract_2, corticospinal tract cluster 2; OR, odd ratio; CI, confidence interval; JHU, Johns Hopkins University White-Matter Tractography Atlas; MNI, Montreal

Neurological Institute.

analysis had a power of 0.81. These findings indicated that all

logistic regression models demonstrated good statistical power.

4 Discussion

This study demonstrated the potential of DLRDTI for assessing

depression. DLR significantly enhanced the signal-to-noise ratio

(SNR) and contrast-to-noise ratio (CNR) of DTI images. By

reducing noise, DLR DTI was more effective than ORI DTI in

detecting damaged WM tracts in patients with severe depression.

Furthermore, a combined model using DLR DTI outperformed

the model based on ORI DTI in distinguishing between mild to

moderate and severe depression.

Following DLR, a significant noise reduction was observed in

bothWM and GM on DTI images in the present study. Specifically,

the SNR in WM and GM increased by about 50%, whereas the

CNR improved by ∼40% compared to the original images. The
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FIGURE 3

Di�erential brain regions of fractional anisotropy (FA) derived from deep learning post-reconstruction di�usion tensor images (DLR DTI) and original

DTI (ORI DTI) in patients with severe and those with mild-to-moderate depression. Based on DLR DTI analysis, four di�erential brain regions were

found between the two groups, located in the right corticospinal tract_1 (DLR_R_CST_1), right anterior thalamic radiation (DLR_R_ATR), left superior

longitudinal fasciculus (DLR_L_SLF), and right corticospinal tract_2 (DLR_R_CST_2) (A–D). Based on ORI DTI analysis, only one di�erential brain

region was found between the two groups, located in the right corticospinal tract (ORI_R_CST) (E). In (F), blue, orange, purple, and red represent the

DLR_R_CST_1, DLR_R_ATR, DLR_L_SLF, and DLR_R_CST_2, respectively. In the fusing images, it can be observed that most parts of the ORI_R_CST

(dashed line) overlapped with DLR_R_CST_1 (blue). DLR DTI, deep learning post-reconstruction di�usion tensor images; ORI DTI, original di�usion

tensor images; DLR_R_CST_1, deep learning post-reconstruction_right corticospinal tract_1; DLR_R_ATR, deep learning post-reconstruction_right

anterior thalamic radiation; DLR_L_SLF, deep learning post-reconstruction_left superior longitudinal fasciculus; ORI_R_CST, original_right

corticospinal tract.

noise reduction significantly enhanced tissue resolution. As shown

in Figure 2, DLR DTI improved the delineation between GM

and WM, resulting in sharper boundaries and facilitating easier

tissue differentiation. This improvement also enabled more precise

delineation of ROIs, which could benefit the image post-processing

of the DTI.

As Denis Le Bihan et al. noted, SNR could impact the

quantification of DWI (Iima et al., 2020). Both simulation-based

and in vivo studies have examined the impact of noise on FA indices

in DTI (Pierpaoli and Basser, 1996; Bastin et al., 1998; Anderson,

2001; Jones and Basser, 2004; Landman et al., 2007). These studies

demonstrated that low SNR leads to an upward bias in measured

FA values. This bias contributed to the overestimation of axial

diffusivity (AD) and the underestimation of radial diffusivity (RD)

(Pierpaoli and Basser, 1996; Bastin et al., 1998; Anderson, 2001;

Jones and Basser, 2004; Landman et al., 2007). The DLR used in this

study significantly improved the SNR of DTI images. Consistently,

we observed that higher SNR after DLR was associated with lower

FA indices of DTI, accompanied by decreased AD and increased

RD (Supplementary Figure 2). Similarly, a recent study reported

considerably lower FA value in the femur and tibia growth plates

after applying the same DLR algorithm (Santos et al., 2024).

Other studies have employed different deep learning algorithms to

denoise DW images and reported notably reduced FA values of DTI

(Sagawa et al., 2021; Pouliquen et al., 2024). The CNR of DLR DTI

was also improved. The DLR algorithm primarily optimizes images

by reducing background noise and significantly mitigating Gibbs

artifacts caused by K-space undersampling. After DLR processing,

background noise around lesions was significantly reduced without

compromising tissue signals, thereby improving the image quality.
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FIGURE 4

Comparison of the extracted mean fractional anisotropy (FA) values from the di�erential white matter between the patients with severe and those

with mild-to-moderate depression: (A–D) show the comparisons of the extracted mean FA values of di�erent white matter regions based on the

deep learning post-reconstruction di�usion tensor images (DLR DTI) between the two groups; (E) shows the comparisons of the extracted mean FA

values of di�erent white matter regions based on the original DTI (ORI DTI) between the two groups. FA, fractional anisotropy; ORI, original; DLR,

deep learning post-reconstruction.

The enhanced tissue contrast improves quantitative diagnosis and

disease differentiation. Consequently, quantitative analyses based

on DLR DTI may provide more accurate tissue characterization

across various pathological conditions, ultimately supporting more

reliable disease evaluation.

In this study, analysis of FA derived from DLR DTI identified

four distinct brain regions that differentiated patients with mild-

to-moderate depression from those with severe depression. These

regions included the right CST, right ATR, and left SLF. Among

them, the right ATR demonstrated the strongest correlation

with severity of depression. Previous research has extensively

investigated WM tract damage in depression. For example, Ahn

et al. reported damage to multiple WM tracts, including the

forceps major, left CST, left SLF-parietal bundle, right ATR,

and right SLF-temporal bundle, in MDD patients compared to

healthy controls (Ahn et al., 2024). Several studies with limited

sample sizes have also indicated WM integrity impairment in

patients with MDD (Bracht et al., 2015). However, due to

potential limitations in generalization and reliability, larger sample

sizes have become standard in this field. For instance, Velzen

et al. analyzed a large DTI dataset comprising 1,305 depression

patients and 1,602 healthy controls to identify and rank the

most robustly impaired WM (van Velzen et al., 2020). Their

results indicated that the corona radiata, corpus callosum, and

internal capsule (a part of the CST) were among the most affected

regions. Similarly, a large-sample study by Shen et al., utilizing

data from the United Kingdom Biobank Imaging Study, found

that reduced WM microstructure in the ATR was significantly

associated with multiple depressive symptoms. Specifically, the

severity of depression was linked to decreased WM integrity in

the association fibers and thalamic radiations (Shen et al., 2019).

These findings strongly implicate the ATR in the development of
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FIGURE 5

The heatmap of the correlation between each di�erential brain region and depression, anxiety, and sleep. The fractional anisotropy (FA) of the right

anterior thalamic radiation based on deep learning post-reconstruction di�usion tensor images (DLR DTI) had the highest correlation with

depression scores. *Means p < 0.05, **means p < 0.01, ***means p < 0.001. ORI, original; DLR, deep learning post-reconstruction.

TABLE 3 The contribution of DLR DTI and ORI DTI in distinguishing mild to moderate depression from severe depression.

Factors Univariate logistic regression Multivariate logistic regression

OR (95% CI) p-value OR (95% CI) p-value

ORI DTI ORI_Right corticospinal tract 0.505 (0.416, 0.587) 0.001 – –

DLR DTI DLR_Right corticospinal tract_1 0.644 (0.485, 0.765) 0.001 3.020 (0.586, 9.828) 0.787

DLR DTI DLR_Right anterior thalamic radiation 0.678 (0.517, 0.796) <0.001 0.599 (0.394, 0.754) 0.028

DLR DTI DLR_Left superior longitudinal fasciculus 0.556 (0.452, 0.649) 0.001 0.566 (0.374, 0.718) 0.043

DLR DTI DLR_Right corticospinal tract_2 0.617 (0.482, 0.727) 0.001 2.140 (0.690, 4.771) 0.457

ORI DTI, original diffusion tensor imaging; DLR DTI, deep learning-based image reconstruction diffusion tensor imaging; corticospinal tract_1, corticospinal tract cluster 1; corticospinal

tract_2, corticospinal tract cluster 2; OR, odd ratio; CI, confidence interval.

TABLE 4 The performance of the model based on DLR DTI and ORI DTI in distinguishing mild to moderate depression from severe depression.

Model AUC (95%CI) ACC SE SP

ORI DTI ORI_Right corticospinal tract model 0.764 (0.637, 0.891) 0.692 0.750 0.643

DLR DTI DLR_Right corticospinal tract_1 model 0.832 (0.721, 0.943) 0.788 0.958 0.643

DLR DTI DLR_Right anterior thalamic radiation model 0.900 (0.813, 0.987) 0.846 0.833 0.857

DLR DTI DLR_Left superior longitudinal fasciculus model 0.830 (0.720, 0.941) 0.788 0.708 0.857

DLR DTI DLR_Right corticospinal tract_2 model 0.814 (0.699, 0.929) 0.769 0.667 0.857

DLR DTI DLR_Combined model 0.951 (0.898, 1.000) 0.856 0.776 0.958

The DLR combined model was built using values derived from all the different brain regions, based on deep learning post-processing diffusion tensor images and adjusted for age, gender, and

educational background. ORI DTI, original diffusion tensor imaging; DLR DTI, deep learning-based image reconstruction diffusion tensor imaging; corticospinal tract_1, corticospinal tract

cluster 1; corticospinal tract_2, corticospinal tract cluster 2; CI, confidence interval; AUC, area under curve; ACC, accuracy; SE, sensitivity; SP, specificity.

depression. The ATR is a component of the limbic-thalamo-cortical

circuit (Li et al., 2023) and has been linked to reward-seeking

and punishment-related functions in the human brain (Coenen

et al., 2012). Additionally, the integrity of ATR may influence the

development of MDD through brain circuitry involved in cognitive

control (Sanjuan et al., 2013). Moreover, a study investigating

Brain-Derived Neurotrophic Factor (BDNF) reported a correlation

between this gene and ATR damage in patients with severe

depression (Choi et al., 2015). BDNF plays a pivotal role in neuronal

plasticity, differentiation, survival, and function (Dwivedi, 2009).

The discovery further underscores the role of ATR disruption in

severe depression.

Previous studies have demonstrated ATR damage in patients

with depression. However, in our small-sample study, analysis

based on ORI DTI failed to identify these crucial brain regions.

When we applied DLR DTI, which improved tissue SNR, to

the same sample size, it demonstrated greater sensitivity in

detecting ATR as a vital region associated with severe depression.
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FIGURE 6

The Receiver Operating Characteristic (ROC) curve of the severity of

depression assessment model is based on fractional anisotropy (FA)

values in di�erent brain regions. The DLR combined model, which

incorporates FA values from all di�erential brain regions based on

deep learning post-reconstruction di�usion tensor images (DLR

DTI) (indicated by the red line), has the largest area under the curve.

ORI, original; DLR, deep learning post-reconstruction.

Additionally, our DLR DTI-based analysis revealed damage to the

left SLF in patients with severe depression, showing a negative

correlation between severity of depression and left SLF integrity.

This result aligns with previous studies (Cole et al., 2012; Guo et al.,

2012; Lai and Wu, 2014). Similar to the ATR, this WM region was

not detected using ORI DTI, potentially due to noise interfering

with the accuracy of FA calculations compared to DLR DTI. For

the brain region identified differently by both methods, the right

CST and its voxels identified by ORI DTI were encompassed within

those detected by DLR DTI. However, the correlation between

extracted values and severity of depression was lower, underlining

DLR DTI’s superior sensitivity in identifying differential brain

regions. Furthermore, the severity of depression assessment

model constructed using differential brain regions identified

by DLR DTI demonstrated substantially higher predictive

efficiency than the ORI DTI-based model, offering robust

performance and significant clinical value for accurately evaluating

patient conditions.

This study has several limitations. First, although the statistical

power with the sample used in this study was acceptable, the

preliminary results based on a small sample size may limit

the generality. Larger studies are required to validate these

findings. Second, while the advanced MUSE reduces distortions

and susceptibility artifacts of DWI compared to conventional

single-shot EPI DTI, it doubles the acquisition time under

identical imaging parameters. Previous studies have reported

that the DLR used in this study can accelerate the acquisition

of liver DWI without compromising diagnostic performance

compared with standard slow acquisition (Zhu et al., 2025).

Therefore, further study should investigate the feasibility of using

DLR to reduce MUSE DTI acquisition times and evaluate its

impact on assessing the severity of depression. Thirdly, due

to the limited sample size, this preliminary study did not

compare multiple machine learning models (such as support

vector machines, random forests, or gradient boosting) to

identify the most effective method for leveraging DTI data.

This will be addressed in future studies as more samples are

collected. Finally, the diagnosis of depression in this study

was based on subjective questionnaires rather than pathological

or immunohistochemical examination. However, this practical

clinical condition further reflects the importance of a precise,

objective, and quantitative assessment in the diagnosis and

evaluation of psychiatric disorders.

In conclusion, this study demonstrated that DLR can

significantly improve the SNR of DTI images, significantly

influencing the quantification of DTI-derived parameters.

Compared to the ORI DTI, the fslmeants DLR DTI identified

more depression-related WM damages and showed superior

diagnostic performance in distinguishing mild-to-moderate from

severe depression based on FA values of these detected damages.

Therefore, the application of DLR to DTI may be beneficial for the

assessment and management of patients with depression.
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